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ABSTRACT 
This paper proposes an improvement to Manifold Ranking 
algorithm used for search results ranking in the context of shape-
based 3D model retrieval. Manifold Ranking algorithm by Zhou 
et al estimates, given a set of high-dimensional feature vectors, a 
lower-dimensional manifold on which the features lie. It then 
computes diffusion-based distances from a feature vector (or 
feature vectors) to the other feature vectors on the manifold. 
When applied to content-based retrieval, overall retrieval 
accuracy is significantly better than a “simple” fixed distance 
metric. However, in a small neighborhood of query, retrieval 
ranks obtained by a “simple” distance metric (e.g., L1-norm) 
performs better than those obtained by Manifold Ranking. 
Proposed re-ranking algorithm tries to combine ranking results 
due to both simple distance metric and Manifold Ranking in an 
automatic query expansion framework for better ranking results. 
Experimental evaluation has shown that the proposed method is 
effective in improving retrieval accuracy.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering, 
Selection process.  

General Terms 
Algorithms, Experimentation. 

Keywords 
Content-based retrieval, re-ranking, automatic query expansion, 
manifold ranking, distance metric learning, 3D model retrieval. 

1. INTRODUCTION 
Three-dimensional (3D) shape models have been used in a 
variety of application areas, for example, mechanical and 
architectural design, entertainment, medical diagnosis, and for 
archaeology. Effective and efficient management methods for 
3D models, especially via content based retrieval based on their 
shape, has become an important topic to be studied.  

Generic processing pipeline for shape-based retrieval of 3D 
models starts with extraction of shape descriptors, or features, 
from query and database 3D models. Then, based on these 
features, database models are ranked based on their similarity to 
the query. In earlier 3D model retrieval algorithms, ranking has 
been performed by using a “fixed” distance, such as L1-norm. 

However, learned distance metric adapted to the feature 
distribution is known to significantly improve retrieval accuracy. 
Such distance metric learning, whether it is supervised, 
unsupervised, or semi-supervised, has been quite popular in the 
field of text, image or video retrieval (e.g., [2]). 

Manifold Ranking (MR) by Zhou et al [11, 12] is a powerful 
distance metric learning algorithm. It learns distribution of high-
dimensional features in input feature space by connecting input 
features into a graph based on their proximity. Distances among 
feature points on the graph, which is an approximation of a low-
dimensional manifold of features, are computed by using 
diffusion-like process on the graph. MR significantly improves 
retrieval accuracy (e.g., [2]).  

While quite powerful, we found a weakness in MR. Our 
experience shows that MR often yields lower recall at top k 
retrievals, for example, ݇ ≲30, than a “simple” distance such as 
L1-norm. Figure 1 shows such a case in shape-based 3D morel 
retrieval. It plots recall against retrieval rank for a simple 
distance metric L0.5-norm (broken line) and learned distance 
metric by MR algorithm (solid red line). For top ranked 
retrievals, e.g., top 50 or so, simple, fixed distance of L0.5-norm 
yields higher recall than MR. For lower ranked retrievals, e.g., 
rank>100 or so, MR yields higher recall. Overall, MR has much 
higher accuracy. (In this example, its ground truth has 88 entries. 
Consequently, recall value for the “Ideal” retrieval algorithm 
saturates at 1.0 beyond rank 88.) 

 
Figure 1. For top-ranked retrievals (e.g., rank<50), simple 
distance (L0.5) produces better recall than Manifold 
Ranking (MR). Overall, however, MR produces significantly 
higher retrieval accuracy. 

2. RELATED WORK 
In the field of text, image, and video retrieval, distance metric 
learning has been embraced for some time. Distance metric 
learning has also been used in 3D model retrieval. Non-linear 
dimension reduction based on manifold learning has been 
employed [6]. A manifold learning algorithms in general 
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assumes and tries to find a low dimensional manifold on which 
data samples lie. For example, Locally Linear Embedding [8] 
creates a graph of input data samples based on proximity (e.g., 
by L1-norm) of the samples in their ambient, high dimensional 
feature space. The graph is an estimate of lower dimensional 
manifold on which the samples lie. By projecting original data 
samples onto an approximation of the manifold, lower 
dimensional representations of data samples are obtained.   

Another popular manifold-based distance metric learning 
algorithm is Manifold Ranking (MR) by Zhou et al [11, 12, 2]. 
Similar to manifold learning, MR creates, as an estimate of low-
dimensional data manifold, a graph connecting data samples by 
their proximity. Distances among the features are computed by 
diffusing relevance value on the graph, typically using an 
iterative process. MR has been shown to significantly improve 
overall retrieval accuracy for 3D model retrieval compared to a 
fixed “simple” distance such as L1-norm or Kullback-Leibler 
Divergence [7]. However, we discovered thorough experience 
that, for data samples that lie close to the query, i.e., higher 
ranked retrievals, a fixed, simple distance produces better 
retrieval results than MR. MR does outperform “simple” 
distances in terms of overall retrieval accuracy and retrieval 
accuracy for lower-ranked results. We suspect that the process 
of graph formation and relevance value diffusion may be erasing 
small geometrical details of the feature space near the query.  

This paper proposes an algorithm that combines strength of both 
simple distance such as L1-norm and Manifold Ranking based 
learned distances for a better ranking results. 

3. LOCAL GEOMETRY ADAPTIVE 
MANIFOLD RE-RANKING 
Proposed algorithm tries to combine higher accuracy of fixed 
distance near the query with overall strength of MR. The 
proposed algorithm is a simple 2-stage, automatic query 
expansion algorithm as described below; 

(1) Initial Retrieval: Two sets of ranked lists are retrieved by 
MR-based adaptive distance as well as by a simple distance 
such as L1-norm. 

(2) Trusted retrieval set selection: A set T of “trusted 
retrievals” are selected by comparing top ranked w 
retrievals, that is, w- nearest neighbors to the query, from 
the two ranked lists in (1). The parameter w is called query 
expansion window size. The set T consists of retrievals that 
appeared within top w of both ranked lists. (See Figure 2.) 

There are T l w   members in T.  

(3) Re-ranking: MR-based ranking is performed by using the 
set T as the set of expanded queries.  

3.1 Ranking by Simple Distance 
There are many different simple, or “non-data-adaptive” 
distances. To compute a distance among a pair of n-dimensional 
feature vectors ix and jx , we experimented with three different 
distances; Lp-norm ( , )Lp i jd x x  for p=1.0 and p=0.5 and 
Kullback-Leibler Divergence ( , )KLD i jd x x . Due to space 
limitation, however, we will present experimental result for L1-
norm, 1( , )L i jd x x , only.  
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Figure 2. “Trusted retrieval set” is found by comparing 
ranked retrieval results produced by the MR and a simple 
distance. The set is used for second round of ranking by MR.  

3.2 Manifold Ranking and Re-Ranking 
MR [11, 12] forms a graph G approximating a low-dimensional 
manifold based on proximity of feature points in an ambient n-
dimensional feature space, i.e., by k-nearest neighbor connection. 
Each edge of the graph G is associated with an affinity value 
that controls diffusion of relevance through the edge. The 
affinity is computed as the affinity among a pair of features on 
the edge.  

Let  1 1,..., , ,...,l l mX x x x x be the set of n-dimensional 
features in n . Vertices from 1x  to lx  are the queries and the 
rest are the features points we want to rank.  Let :d X X    
denote a distance metric on ,X  e.g., L1 norm or Cosine 
distance, that assigns a pair of points ix  and ix   a distance 

( , ).i jd x x   Let :f X    be a ranking function that assigns 
each ix  a ranking score ,if forming a rank vector 

 1,..., T
mf f f , a m c  matrix. Let the m-dimensional vector 

1, ,
T

ny y y     be a label vector. 

In the proposed algorithm, MR is used in two modes. For the 
initial retrieval step, MR computes the similarity ranks of 3D 
models in the database to a query. So we set 1iy   for the query 
model only and 0iy   for the rest, i.e., all the models in the 
database. For the re-ranking step, we give the set T having l 
features to the MR algorithm. Thus, we set 1iy   for the 
features of the initial query and the features in the “trusted 
retrieval” set T, while 0iy   is given to all the other features for 
the 3D models in the database. 

Create an affinity matrix W  where ijW  indicates the similarity 
between samples ix  and jx  

 

 2 2 exp ( , ) 2   

  0                   otherwise

i j
ij

d x x if i j   


W  (2) 

The matrix W  is positive symmetric. Positive parameter   
defines the radius of influence of diffusion. Note that 0ii W  
since there is no edge connecting a point with itself. As the 
distance ( , )i jd x x , we use L1-norm 1( , )L i jd x x  in (1). The 
matrix W  may be dense, but it could also be formed by 
connecting only k nearest neighbor of a feature in question to 
produce a sparse .W  Finite neighborhood defined by k affects 
geometry of the manifold embodied in ,W  thus ranking 
accuracy, as we will see in experiments. The parameter k also 
affects computational cost of MR as k changes sparsity of .W  

From W , a normalized graph Laplacian L  is formed; 
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where D is a diagonal matrix in which ijD  equals to the sum of 
the i-th row of W , that is, ij ijj

D W The ranking vector 

1, ,
T

nf f   F   that indicates the likelihood of vertices having 
a label can then be estimated by iterating the following equation 
until convergence; 
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The parameter 0   is a regularization parameter, and affects 
retrieval performance and the convergence of the iteration above. 
Let *f  be the limit of the above iteration. Rank each point ix  as 
a label *argmaxi j c ijy f . In the case above, *f  has a closed 
form solution; 

   1
* 1f 


 I L Y  (5) 

Computational cost is an issue to be considered if MR is to be 
used in an interactive segmentation loop. The cost of MR is 
dominated by the cost of meshing and computing *f . The cost 
increases with the size of the matrix L , that is, the number of 
samples m. For example, the matrix L  takes O(m2) (if it is 
dense) to store and roughly O(m3) to perform label propagation 
via matrix inversion.  

4. EXPERIMENTS AND RESULTS 
We performed experiments to evaluate effectiveness of the 
proposed re-ranking algorithm. In Section 4.1, we first evaluate 
effect of MR neighborhood size k on retrieval accuracy. We then 
evaluate the effect of the size of locality w. 

Retrieval experiments are performed by using two benchmark 
databases: McGill Shape Benchmark (MSB) [9] for highly 
articulated (non-rigid) but less geometrically detailed shapes, 
and SHape REtrieval Contest (SHREC) 2006 benchmark [10] 
for a set of quite diverse, rigid, and relatively detailed shapes. 
MSB contains models represented as densely sampled closed 
manifold mesh, while SHREC 2006 contains 3D models 
represented by using polygons soup, meshes having high 
variance in sampling density, etc. MSB uses models in the 
dataset as query for evaluation, while SHREC 2006 uses a set of 
30 out-of-sample queries for evaluation. As the performance 
index, we use Mean Average Precision (MAP) in the following. 

We used a 3D model feature vector produced by Bag-of-
Features Dense SIFT (BF-DSIFT) [1] algorithm. BF-DSIFT is a 
view-based 3D shape comparison algorithm. Given a 3D model, 
BF-DSIFT renders range images from multiple viewpoints 
located uniformly in the solid angle. From each range image, 
SIFT features are extracted at densely and randomly placed 
feature points. Having multiple viewpoints and use of (in-plane) 
rotation invariant SIFT feature provides 3D rotation invariance. 
A set of over 10k SIFT features are extracted from a 3D model, 
which is then integrated into a feature vector having 30k or so 
dimension by using bag-of-features approach. Combination of 
SIFT, a multi-scale local visual feature, and bag-of-features 
integration enables the BF-DSIFT to have invariance against 
articulation and global deformation of 3D models. BF-DSIFT is 
one of best-performing algorithms; it placed 1st in SHREC 2012 
Generic 3D model track [3]. 

4.1 MR meshing neighborhood size k 
We evaluated the impact of MR neighborhood size k on retrieval 
accuracy. A small k might capture local geometry of feature 

manifold better for higher retrieval accuracy. A small k also 
produces a sparser matrix, which leads to less memory footprint 
and less computational cost. On the other hand, if k is too small, 
the graph as an estimate of feature manifold would break up, 
resulting in lower retrieval accuracy. 

Figure 3 and Figure 4 show plots of MAP against neighborhood 
size k and window size w for MSB and SHREC 2006 
benchmarks. These plots used L1-norm for MR meshing and 
BF-DSIFT as input feature. For w=20, which is the best 
performing windows size for both MSB and SHREC 2006, 
MAP scores peak at k=5 for MSB and k=20 for SHREC 2006. 
For the values of k beyond these peaks, performance degradation 
is gradual and small (<0.05). For the values of k smaller than 
these peaks, i.e., k<5, retrieval accuracies drop steeply. 

 

Figure 3. Neighborhood size k for MR meshing and retrieval 
accuracy using BF-DSIFT feature measured on MSB 
benchmark (L1 norm). MAP peaks at k=5. 

 

Figure 4. Neighborhood size k for MR meshing and retrieval 
accuracy using BF-DSIFT feature measured on SHREC2006 
benchmark (L1 norm). MAP peaks at k=10. 

4.2 Query expansion window size w 
We evaluated the impact of query expansion window size w on 
retrieval accuracy. Figure 5 and Figure 6 show, respectively, 
results for MSB and SHREC 2006 benchmarks. Both used L1-
norm for MR meshing and BF-DSIFT as input feature. In each 
plot, query expansion window size w=0 represents the baseline 
case, i.e., MR without proposed re-ranking.  

For both benchmark databases, retrieval accuracy measured by 
using MAP improved significantly and consistently for non-zero 
w, i.e., if proposed re-ranking is used. As the figures show, MAP 
values plotted against w have peak at around w=20. Shape of the 
plots and the positions of the peaks are similar among the two 
benchmarks. Also, MR neighborhood size k does have only 
small impact on the position of peaks, except for the cases where 
k=2. Table 1 summarizes best MAP scores for both baseline and 
proposed algorithms. 
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Figure 5. Query expansion window size w, graph 
neighborhood size k, and retrieval accuracy (MAP) 
measured using BF-DSIFT feature on MSB benchmark (L1 
norm). (w=0 is the baseline for respective values of k.) 

 

Figure 6. Query expansion window size w, graph 
neighborhood size k, and retrieval accuracy (MAP) 
measured using BF-DSIFT feature on SHREC 2006 
benchmark (L1 norm). (w=0 is the baseline for respective 
values of k.) 

Table 1. Best MAP scores for original MR and proposed re-
ranking algorithms.  

 MR 
(i.e., w=0) 

Proposed 
re-ranking 

MAP 
increase

MSB 
0.7358 
(k=5, w=0) 

0.7574 
(k=5, w=20) 

+0.0216 

SHREC 
2006 

0.5830 
(k=7, w=0) 

0.6256 
(k=18, w=15) 

+0.0426 

5. SUMMARY AND CONCLUSION 
Distance metric learning using manifold assumption is known to 
provide significant improvement in ranking performance for 
image, text and other retrieval tasks. One such algorithm is 
Manifold Ranking (MR) algorithm by Zhou, et al [11, 12]. 
Experiments show that MR algorithm provides significant 
improvement in overall retrieval accuracy compared to a simple, 
fixed distance metric such as L1-norm.  Ranking performance of 
MR is less than a simple, fixed distance, however, at a small 
proximity of query, i.e., for high-rank retrievals. This paper 
proposed a novel re-ranking algorithm that takes advantage of 
both simple, fixed distance and MR-based learned distance.  

The proposed algorithm is an automatic query expansion 
algorithm. The algorithm first performs retrieval by using both 
simple, fixed distance and MR to have two ranked lists of 

retrievals. Then, by comparing the top w results from the two 
lists, a set of “trusted retrievals” are selected. The union of the 
trusted retrieval set and the original query becomes an expanded 
set of queries to be fed to MR algorithm for a re-ranked retrieval 
results. Experimental evaluation using multiple benchmark 
databases showed that the proposed algorithm is effective in 
improving retrieval accuracy. For example, performance 
measured in Mean Average Precision (MAP) increased by 7% 
from 0.5830 to 0.6256 in the case of SHREC 2006 benchmark,  . 
A drawback of the proposed algorithm is an increased cost of 
ranking, which involves two MR rankings and a ranking using 
simple distance. We plan to investigate a method to alleviate this 
drawback.  
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