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A B S T R A C T

Given a query that specifies partial 3D shape, a Part-based 3D Model Retrieval (P3DMR) system finds 3D shapes
whose part or parts matches the query. An approach to P3DMR is to partition or segment whole models into sub-
parts and performs query-part-to-target-parts matching. Whatever the definition of part, e.g., a rectangular
volume in Euclidean space or a part segmented on a mesh manifold, the computation will be very costly. The
part-whole matching must account for, for each 3D whole shape in a database, varying position, scale and
orientation of the segmented sub parts. Another approach, in an attempt to make part-whole matching efficient,
tries to approximate part-whole inclusion test with a single comparison between a pair of features, one re-
presenting the part-based query and the other representing the whole shape. Aggregation of local geometrical
features of parts into a feature per whole 3D shape, e.g., via Bag-of-Features approach, is an example. This
approach so far suffered from inaccuracy as the aggregation is not optimized for part-whole inclusion test of 3D
shapes. This paper proposes a novel P3DMR algorithm called Part-Whole Relation Embedding network (PWRE-net)
that effectively and efficiently performs part-whole inclusion test via learned embedding into a common feature
space. Using deep neural network, the PWRE-net learns, from a large number of part-whole shape pairs, a
common embedding of partial shapes and their associated whole shapes. For the training, training datasets
containing part-whole shape pairs are created automatically from unlabeled 3D models. Experimental evaluation
shows that PWRE-net outperforms existing algorithms both in terms of retrieval accuracy and efficiency.

1. Introduction

As number of three-dimensional (3D) shape models grows at an
explosive rate, technology for shape-similarity based 3D Model
Retrieval (3DMR) has been gaining attention. The majority of 3DMR
algorithms focus on Whole-based 3D Model Retrieval (W3DMR) in
which whole 3D shape is given as a query to the retrieval system. This
form of 3DMR has been studied for over a decade. For a class of ap-
plication scenarios and databases, certain W3DMR algorithms achieve
retrieval accuracy and efficiency for practical use.

Another class of 3DMR is called Part-based 3D Model Retrieval
(P3DMR) or part-in-whole retrieval (Liu et al., 2013), which would
retrieve a list of whole 3D shapes given a partial 3D shape as a query.
P3DMR has many practical applications in such areas as industrial
product design, archaeology, medicine, or drug screening. Unlike
W3DMR, however, P3DMR has not been studied well in the past.
P3DMR is technically more challenging than W3DMR. In P3DMR, we
don't know which model in a database contains a shape specified by a
part-based query. We also don't know, a priori, at which position, scale,

and orientation the partial shape of the query is included in the 3D
model. A brute force search through the configuration space and the
database incurs very large computational cost. We thus think that the
challenge central to P3DMR is that of computational cost. Retrieval
accuracy is of course important, even under 3D geometric transforma-
tion (i.e., translation, scaling, and rotation in 3D space) and/or global
deformation of the partial and whole shapes.

The existing P3DMR algorithms can be classified into one of the two
approaches; Part-to-Parts Matching (PPsM) and Part-to-Whole
Matching (PWM). The PPsM approach is adopted by the majority of
existing P3DMR algorithms (e.g., Attene et al., 2011; Furuya et al.,
2015; Kanezaki et al., 2010; Shalom et al., 2008). This approach regards
a whole 3D shape as a set of (potentially overlapping) sub-parts. The
whole 3D shape is segmented into multiple (e.g., tens to thousands of)
sub-parts, and each sub-part is described by a shape feature. Alternative
definitions of “sub-part” exist, e.g., a part defined on mesh manifold
generated via mesh segmentation, or a part in 3D Euclidean space
generated by a spherical- or a rectangular (Furuya et al., 2015) sub-
volume. A similarity between a part-based query and a whole 3D shape
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is computed by comparing the feature of the part-based query with
features of ALL the sub-parts of the whole 3D shape. The PPsM-based
algorithm achieves certain level of retrieval accuracy via laborious
matching between the query and sub-parts of the whole 3D shapes.
However, PPsM suffers from high temporal- and spatial-cost. Temporal
cost is high since a feature of the query must be compared against
features of every sub-part of every 3D shape in the database. Spatial
cost for storing features of all the sub-parts of all the 3D shapes is also
very high.

In PWM, each of the partial shape of the query and the whole 3D
shape is described by single feature. The feature of the whole 3D shape
is expected to represent its constituent sub-parts so that the inclusion
relationship between the part-based query and the whole 3D shape can
be tested. To approximate the inclusion test, typical PWM algorithms
(e.g., Liu et al., 2006; Savelonas et al., 2014) aggregate a set of sub-part
features into a single feature vector per whole 3D shape, often by using
Bag-of-Features (Csurka et al., 2004) or its variants (e.g., Perronnin
et al., 2010; Zhou et al., 2010). Thanks to the aggregation, scores of
approximated part-whole inclusion test can be computed efficiently by
comparing a pair of features. However, the approximation of the in-
clusion test via aggregation of sub-part features is imperfect, resulting
in failure of the test. Consequently, PWM-based algorithms tend to have
lower accuracy than PPsM-based ones. It is also difficult for PWM to
precisely localize a part in matched whole shapes.

In this paper, we propose a P3DMR algorithm called Part-Whole
Relationship Embedding network, or PWRE-net (pronounced ``power
net''). Our approach is close to that of PWM, as we try to efficiently
compare a part-based query with a whole 3D model by a single com-
parison of a pair of features in a common embedding space. The algo-
rithm learns to embed features of sub-part 3D shapes and features of
whole 3D shapes into a common feature space so that part and whole
can be quickly compared. The embedding is computed by using two
feature transformation pipelines (Fig. 1), one for sub-part 3D shape
features and the other for whole 3D shape features, realized by using
Deep Neural Network (DNN). A handcrafted low-level local geometrical
feature with built-in invariance to 3D rotation, translation, and scaling
is used as input to the pipelines. In P-block, a low-level feature for a part
is refined and then transformed to become a feature in the part-whole
common feature space. In W-block, a set of low-level features de-
scribing parts of a whole 3D model is refined individually, aggregated
by averaging, and then transformed to become a feature in the common
feature space. An initial ranked list of retrieval results is found simply
by comparing embedded features of whole 3D shapes with the em-
bedded features of the query part. A PPsM-based post-processing is
performed on the whole 3D shapes included in the initial ranked list for
more precise ranking and for localization of the part in the matched
whole.

We create two benchmark datasets to quantitatively evaluate
PWRE-net algorithm. The benchmarks include both training data (i.e.,
part-whole shape pairs) and test data. As with many DNN-based algo-
rithms, training of PWRE-net relies on quantity and quality of training
dataset consisting of part-whole shape pairs. No such dataset exists, and
manually creating one large enough (e.g., 1M pairs) for the DNN
training is not feasible. We thus devise a simple yet effective algorithm
to generate part-whole shape pairs from a set of unlabeled whole 3D
models. Experimental evaluation using these datasets shows that the
proposed PWRE-net produces retrieval accuracy superior to previous
PPsM-based and PWM-based algorithms.

Contributions of this paper can be summarized as follows;

• Proposed and evaluated a part-based 3D model retrieval (P3DMR)
algorithm called PWRE-net that employs common embedding of
partial shape and whole shape via deep-learning based feature
transformation.

• Created two benchmark datasets for P3DMR consisting of a training
set and a test set. Fi
g.
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• Experimentally evaluated proposed PWRE-net algorithm by using
the benchmarks datasets and demonstrated that the proposed deep
learning-based approach is effective for the challenging P3DMR
task.

This paper is organized as follows. We review related work in the
next section. In Section 3, the proposed algorithm is described. Ex-
periments using new benchmark databases and their results are pre-
sented in Section 4. We discuss limitation of the algorithm in Section 5,
followed by conclusion and future work in Section 6.

2. Related work

2.1. Approaches to P3DMR

The Part-to-Parts Matching (PPsM) compares a part-based query with
parts of a whole 3D shape. Sliding sub-volume search (e.g., Kanezaki
et al., 2010; Song and Xiao, 2014) is a representative PPsM-based al-
gorithm. Kanezaki et al. (2010) and Song and Xiao (2014) generate
numerous rectangular sub-volumes having diverse scales at every po-
sition of 2.5D indoor scene, and features extracted from these sub-vo-
lumes are compared against a feature of the query. Another class of
PPsM-based algorithms (e.g., Attene et al., 2011; Ferreira et al., 2010;
Ip and Gupta, 2007; Shalom et al., 2008; Suzuki et al., 2005) segments
the whole 3D shapes into sub-parts for comparison. For example,
(Shalom et al., 2008) hierarchically segments a whole 3D shape re-
presented as a manifold mesh into multiple meaningful sub-parts. A tree
structured graph, whose nodes correspond to parts of the whole 3D
shape, is generated and bipartite graph matching is performed to
compare part-based query against parts of the whole 3D shape.
(Furuya et al., 2015) employs randomized sub-volume partitioning of
the whole 3D shape, and each sub-volume is described by a compact
binary 3D geometric feature having invariance against rotation of 3D
shapes.

These PPsM-based algorithms effectively identify, or localize, parts
similar to the part-based query from whole 3D shapes. Also, to speed up
retrieval, several algorithms adopted index structure (Attene et al.,
2011; Shalom et al., 2008) or hashing (Furuya et al., 2015) of sub-
volume features. However, they suffer from a large memory footprint
for a database containing a significant number of 3D models.

Alternatively, the Part-to-Whole Matching (PWM) approach describes
each of the part-based query and the whole 3D shape as a feature, and
similarity between the part and the whole is efficiently computed by a
comparison among the pair of features. Most of the PWM approach
(e.g., Liu et al., 2006; Savelonas et al., 2014; Sfikas et al., 2013) adopts
local features and their aggregation to compute features for the whole
3D shapes. (Savelonas et al., 2014) is a P3DMR algorithm for 3D pottery
objects. It extracts a set of local 3D geometric features from an entire
shape of 3D pottery, and they are aggregated into a single feature per
3D model for efficient comparison against the feature for the query
which is a pottery fragment.

Retrieval using the PWM approach is usually more efficient than
that using the PPsM approach. That is, only one feature per whole 3D
shape need to be stored and compared against a feature of the part-
based query. Also, the PWM approach works well if the partial query is
sufficiently large (e.g., more than 50% of the entire 3D shape).
However, if a smaller part is specified as a query, feature matching
using an existing PWM approach would fail since the aggregated fea-
tures is not optimal for P3DMR. Furthermore, unlike the PPsM ap-
proach, the PWM approach has difficulty localizing parts within the
whole 3D shape that match the query since positional information of
local features is discarded during aggregation. Our approach thus
combines PPsM with PWM, in which the latter is used for re-ranking for
accuracy and for localization.

2.2. Deep learning for 3D model retrieval

Recently, 3D model retrieval has seen application of deep learning.
For W3DMR, in which an entire 3D shape is given as a query, a number
of algorithms use Deep Convolutional Neural Network (DCNN) (e.g.,
Bai et al., 2016; Furuya and Ohbuchi, 2016b; Masci et al., 2015; Su
et al., 2015; Wu et al., 2015). They train DCNN by using a set of labeled
3D shapes to build accurate feature detector for 3D shapes. Feature
vectors describing 3D models are extracted from a layer close to the
final classification layer of the DCNN after training of the DCNN as a
classifier is completed.

Deep learning also shows its remarkable accuracy on cross-modal
3D model retrieval. For example, for sketch-based 3DMR, in which a
hand-drawn sketch is given as query, Wang et al. (2015) and Zhu et al.
(2016) embed both feature of a hand-drawn sketch and feature of a 3D
shape into a common latent space by using DCNN. Similarly, (Li et al.,
2015) learned a latent feature space shared by both 2D natural images
and 3D shapes to perform 3DMR queried by natural images.

Note that successes of these deep learning-based 3DMR algorithms
relies heavily on large-scale, labeled datasets (e.g., Deng et al., 2009;
Eitz et al., 2012; Wu et al., 2015) to train deep neural networks.
However, no dataset large enough to be useful for deep learning of
P3DMR existed. This lack of dataset probably explains why deep
learning hasn't been applied to P3DMR yet. To deal with this issue, we
employ automatic generation of training dataset for P3DMR by using a
large set of unlabeled whole 3D shapes.

2.3. Deep learning for part-based 2D image retrieval

Recent progress of deep learning technique for 2D images enables
effective and efficient part-based 2D image retrieval (e.g., Mohedano
et al., 2016; Salvador et al., 2016; Tolias et al., 2016). These studies
employ 2D DCNN to extract accurate visual features from the part-
based query image and the retrieval target images. At the convolutional
layer in the DCNN, a feature map, or neuron activations computed by
convolution, of the query is compared against local regions of feature
map of the retrieval target. Matching the feature maps is performed at
every convolutional layer in the DCNN to detect 2D object(s) having
diverse scales.

To improve P3DMR, a possible approach is to extend the 2D DCNN
such as those used in (Mohedano et al., 2016; Salvador et al., 2016;
Tolias et al., 2016) to 3D. That is, voxel representation of partial 3D
shape and whole 3D shape are fed into the 3D CNN and their 3D feature
maps are used for matching. However, we don't employ this 3D CNN-
based approach since voxel-based 3D CNN generally generates feature
that is not invariant to rotation of objects. As we mentioned in the in-
troduction, P3DMR algorithm should be robust against 3D geometric
transformation including 3D rotation of the partial and whole shapes.
We thus employ carefully designed 3D geometric feature having in-
variance to 3D rotation of 3D shape as input to DNN.

3. Proposed algorithm

3.1. Overview of the algorithm

To effectively and efficiently compare partial 3D shapes against
whole 3D shapes, we try to learn part-in-whole inclusion relation be-
tween partial shapes and whole shapes by means of their embedding
into common feature space. Using the embedding, a partial shape and a
whole shape are in part-in-whole relation if their features are close in
the common feature space. A deep embedding network called Part-
Whole Embedding Network (PWRE-net) is used to map low-level shape
features into the common feature space (see Fig. 1) To make the em-
bedded features robust against 3D geometric transformation of 3D
shape, the PWRE-net takes as its input a handcrafted, low-level 3D
geometric feature having invariance against translation, scaling, and
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rotation. Details of the PWRE-net will be described in Section 3.2.
Learning a common embedding feature space for diverse part-whole

pairs requires a large number of training samples. Here, a sample is a
pair of partial 3D shape and whole 3D shape having a proper part-in-
whole relationship. To our knowledge, no dataset containing large
enough number of such part-whole pairs exists. Manually creating such
a large dataset, e.g., by hand-editing whole shape to generate parts, is
impractical. We thus propose a simple yet effective algorithm to auto-
matically generate large number of diverse part-whole shape pairs at
low cost from a set of unlabeled 3D models found in large-scale 3D shape
repositories (e.g., Wu et al., 2015). Section 3.3 describes detailed pro-
cedures for generating part-whole pairs and for training the PWRE-net
by the using generated part-whole pairs.

Once the PWRE-net is properly trained, part-based 3D model re-
trieval is performed in two-stage cascade of PWM followed by PPsM. In
the first, PWM stage, similarity from the partial shape query to all the
retrieval targets (i.e., whole 3D shapes) in the database are computed in
the common embedding feature space. In the second stage, PPsM be-
tween the query and the top-ranked retrieval results from the first stage
is performed to improve ranking results and to localize the part in the
target 3D model. Section 3.4 describes details of retrieval.

3.2. Architecture of PWRE-net

The PWRE-net consists of two sub neural networks (or blocks)
running in parallel, that are, P-block for embedding partial 3D shapes
and W-block for embedding whole 3D shapes (see Fig. 1). The PWRE-
net resembles to Siamese network (Chopra et al., 2005), which consists
of two deep embedding networks having identical structure. The P-
block and the W-block of the PWRE-net, however, have different
structures. The P-block is designed to extract salient 3D geometric
features of the partial 3D shapes. On the other hand, the W-block is
designed to extract salient features of the whole 3D shapes considering
their local, detailed 3D geometric features.

3.2.1. Architecture of P-block
Input to P-block: We feed a low-level 3D geometric feature that

represents a partial 3D shape into the P-block. Given a partial 3D shape
P, which is defined as a polygonal 3D model, P is first converted into a
set of oriented points. We use an algorithm by (Osada et al., 2002) to
convert a polygonal model to an oriented point set. Specifically, the
algorithm uses the following equation to sample a point p on a triangle
surface of 3D model.

= − + − +r r r r rp t t t(1 ) (1 )1 1 1 2 2 1 2 3 (1)

In the equation, t1, t2, and t3 are vertices of the triangle, and r1 and
r2 are quasi-random number sequences generated by using Sobol's al-
gorithm (Press et al., 1992). Compared to pseudo-random number se-
quence, quasi-random number sequence samples the surface more
uniformly, reducing variance. Given a total number of points per 3D
model Np, the number of points for each triangle is computed in pro-
portion to the area of the triangle. Each point p is associated with the
normal vector n of the triangle on which the point is sampled. We
sample Np=1000 oriented points on a partial 3D shape. Oriented point
set of the 3D shape is uniformly scaled to fit a sphere having diameter 1.

The oriented point set is then described by a low-level 3D geometric
feature that is invariant against translation, scaling, and rotation in 3D
space. We use Surflet-Pair-Relation Histograms (SPRH) (Rusu et al.,
2009; Wahl et al., 2003) as a feature for the oriented point set. For each
pair of two oriented points p and p’, associated with their normal
vectors n and n′, we compute three angular statistics, i.e., α, β, and γ,
which are calculated as follows;

= ′ ′

= ′

= ′ −

α
β
γ δ

w n u n
v n
u p p

arctan( · , · )
·
·( )/ (2)

= = × ′ − = × = ′ −δ δu n v u p p w u v p pwhere , ( )/ , , and 2

We compute these angular statistics for all the pair of oriented
points sampled on the partial 3D shape. The set of triplets, each of
which consists of α, β, and γ per oriented point pair, is voted to a three-
dimensional joint histogram to form a SPRH feature for the partial 3D
shape. (Rusu et al., 2009) uses 5 bins for each statistic resulting in
5×5×5=125-dimensional SPRH feature vector. In this paper, we
use more bins to extract richer low-level 3D geometric feature and leave
refinement of the feature to the neural network that follows. Specifi-
cally, we use 9 bins each to extract 9× 9×9=729-dimensional SPRH
feature from the oriented point set.

Feature embedding by using P-block: Given a SPRH feature for the
partial 3D shape, the P-block embeds the SPRH feature into the salient
feature space shared with the W-block. The P-block is a fully-connected
neural network with 6 layers including the input and the output (or
embedding) layer. The number of neurons for each layer is set to 729,
1024, 1024, 1024, 512, and 128, respectively. 729 neurons at the first
layer corresponds to the number of dimensions of the SPRH feature and
128 neurons at the output layer is the dimensionality of the common
embedding feature space. To non-linearly transform features, we use
ReLU (Krizhevsky et al., 2012) as activation function at all the layers
except for the input and output layers. Neuron activations of the output
layer is L2-normalized to form the embedded feature of the partial 3D
shape.

Before entering the P-block, each SPRH feature is normalized, by
using ZCA-whitening algorithm (Bell and Sejnowski, 1996), so that it
has zero mean, unit variance, and no correlation among all the pair of
dimensions in the SPRH feature vector. Whitening of input features is
used commonly to accelerate convergence of deep neural network
training.

3.2.2. Architecture of W-block
Input to W-block: The W-block takes as its input a set of local, low-

level 3D geometric features extracted from local regions of a whole 3D
shape. Given a whole 3D shape W represented as a polygonal mesh, it is
converted to an oriented point set by using the algorithm described in
Section 3.2.1. We sample Np=16,000 oriented points per whole 3D
shape, as opposed to Np=1000 for a partial shape, so that each local
region of the whole 3D shape has sufficient number of points for feature
extraction. Each local region is defined by a sphere. Center of the sphere
coincides with a randomly chosen oriented points of W, and radius of
the sphere is randomly chosen from the range [0.01, 0.4]. We sample
500 local regions per whole 3D shape.

Each local region is then described by another low-level shape
feature Point Feature Histogram (PFH) (Rusu et al., 2009). The PFH is
essentially localized SPRH, so the computation is quite similar to the
SPRH. That is, triplets of the angular statistics (α, β, γ) are computed
from all the pair of oriented points within the local region and these
triplets are voted to form a joint histogram. Similar to the P-block, we
use 9 bins to extract a 729-dimensional low-level PFH feature per local
region. We obtain 500 PFH features per whole 3D shape.

We used a sphere having random location and radius to define a
local region for simplicity and efficiency. Alternatives are possible, e.g.,
automatic mesh-manifold-based segmentation of whole 3D shape into
parts (e.g., Shalom et al., 2008), or cutting off cuboids having random
position, orientation, and aspect ratio (Furuya et al., 2015). We avoided
these alternatives as mesh-manifold-based segmentation can be com-
putationally expensive and random cuboids (Furuya et al., 2015) are
often very thin so that they often won't match query 3D shape.

We used a set of local shape features, as opposed to a global shape
feature (e.g., Wahl et al., 2003), to describe the whole 3D shape. We
think that a global shape feature won't capture enough local geometry
of the whole shape for part-whole matching. When refined, aggregated,
and then refined again for embedding, a set of local features would
better represent partial geometry of a whole 3D shape.
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Feature embedding by using W-block: The W-block is also a fully-
connected neural network. But it differs from the P-block in that the W-
block has the aggregation layer which pools a set of (refined) local
features into a single feature per whole 3D shape for further refinement
and embedding. Given a set of local features (i.e., PFH features) for the
whole 3D shape, each PFH feature is first fed into the W-block in-
dependently for individual refinement. Then, in the aggregation layer
placed at the middle of the W-block, the set of refined local features is
pooled, by averaging, into a single feature per whole 3D shape. The
aggregated feature is embedded into the common feature space via the
latter half of the W-block to be compared against the embedded features
of a partial 3D shape.

The W-block has 7 layers, all fully connected except for the ag-
gregation layer placed in the middle. The aggregation layer is put after
the third fully connected layer. Numbers of neurons for the layers, not
including the aggregation layer, are 729, 1024, 1024, 1024, 512, and
128.

As with the P-block, each PFH feature is ZCA-whitened prior to
entering the W-block. Output of the W-block, embedded feature for a
whole 3D shape, is L2-normalized and placed in the common feature
space to be compared against features of partial 3D shapes.

Note that the first three layers of the P-block and W-block share
their parameters, i.e., weights for the edges connecting adjacent layers.
This is because they both perform local feature refinement, and sharing
makes training easier by reducing total number of parameters of the
PWRE-net. It also regularizes training, and reduces memory require-
ments of the neural network.

3.3. Effective training of PWRE-net

To train the PWRE-net, we need two types of part-whole pairs, i.e.,
positive pairs and negative pairs. A positive pair consists of a partial 3D
shape Ppos and a whole 3D shape Wpos that includes Ppos. A negative
pair consists of a partial 3D shape Pneg and a whole 3D shape Wneg

which does not include Pneg.

3.3.1. Automatic part-whole pair generation
We propose a simple algorithm for automatically generating nu-

merous and diverse part-whole pairs for training. Fig. 2 shows the basic
idea for the algorithm and its procedure is summarized in Algorithm 1.
The algorithm requires a set S of (unlabeled) whole 3D shapes. We
assume that each whole 3D shape in S is represented as an oriented
point set. Given a whole 3D shape Wa picked up from S, we carve out a

partial shape Pa from Wa by using a sphere having random position and
random radius. Pa is a set of oriented points of the whole 3D shape
enclosed by the sphere. We make a positive pair from Pa and Wa since
Pa ⊂ Wa. A negative pair is formed from Pa and a whole 3D shape Wb

sampled from S such that Pa ⊂ Wa ≠ Wb.
Nevertheless, if Wa and Wb happen to have very similar global

shapes, they are expected to have similar parts. For example, two 3D
shapes of car usually have tires, steering wheels, side view mirrors, etc.
in common. Based on this observation, we make positive pairs from not
only between Pa and Wa but also from Pa and other whole 3D shapes
having global shape similar toWa. To do so, we first find kNN(Wa), that
are, a set of k whole 3D shapes that are most similar toWa. The kNN() is
performed in the feature space of 3D shape feature DkSA-POD
(Furuya and Ohbuchi, 2016a) and k is set to 10 in the experiments. Note
here that kNN(Wa) includes Wa itself. The set of positive pairs Posa and
the set of negative pairs Nega for the partial 3D shape Pa are defined as
follows;

= ∈

= ∈ ∖

Pos k
Neg S k

P W W W
P W W W

{( , ) NN( )}
{( , ) NN( )}

a a i i a

a a i i a (3)

Since we have a number (e.g., 3k) of whole 3D shapes in S, and the
number of sub-parts per whole 3D model is significant (e.g., 1k), the
number of all the possible positive and negative pairs is quite large.
Using these all pairs for training of the PWRE-net is impractical. In this
paper, we randomly sample 2M part-whole pairs, consisting of 1M
positive pairs and 1M negative pairs, from the set of possible combi-
nations and use the sampled pairs to train PWRE-net.

The algorithm described above runs a risk of generating noisy part-
whole training pairs, due to randomness (of radius and position) in
defining partial shape Pa, inaccuracy of the shape features used in de-
fining a set of k similar whole shapes, or the value k. In practice,
however, the algorithm generated diverse training part-whole shape
pairs in sufficient number with small enough noise for the training of
deep neural network.

3.3.2. Training of PWRE-net
The PWRE-net is trained so that it embeds the feature of Ppos and

the feature of Wpos in proximity to each other, and embeds the feature
of Pneg and the feature ofWneg away from each other. Such an objective
can be formalized as the contrastive loss function L (Chopra et al.,
2005);
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where f indicates feature embedding of a 3D shape computed by using

Fig. 2. Basic idea for automatic part-whole pair generation. Each positive pair consists of
a whole 3D shape W and its part automatically segmented from W. A negative pair is
formed between W and a part of the other whole 3D shapes.

Algorithm 1
Automatic part-whole pair generation.
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the PWRE-net, d is a squared Euclidean distance between the two em-
bedded features, and m is a margin that controls distances among em-
bedded features of negative pairs. We fix m to 1.0 in the experiments.
Parameters, or weights for edges, of the PWRE-net are randomly in-
itialized by using the method proposed by (He et al., 2015). We use
Stochastic Gradient Descent algorithm with mini-batch size= 32 for
the training. To adaptively assign learning rate to each parameter, we
employ Adagrad algorithm (Duchi et al., 2011) with initial learning
rate= 0.1. Training is iterated for 10 epochs. Algorithm 2 describes the
training procedure.

3.4. P3DMR by using the PWRE-net

Before the retrieval, features in the common embedding space of all
the retrieval targets, that are, all the whole 3D shapes in the database,
are computed by using the trained PWRE-net. The features are then

stored in the database. Retrieval by using the proposed algorithm is
performed in two stages. Algorithm 3 summarizes procedures for re-
trieval.

At the first retrieval stage, a feature in the common embedding
space of the given partial 3D shape query is computed by using the
trained PWRE-net. Then, the feature of the query is compared against
the features of the retrieval target whole shapes in the database by
using Euclidean distance. The distances between the query and the
retrieval targets are sorted in ascending order to yield initial ranking
results.

The second retrieval stage attempts to further improve retrieval
accuracy and to localize parts of the retrieval targets that match the
query. To do so, we carefully compare the query and the top-ranked
retrieval targets by using the PPsM approach. Specifically, we first pick
Nr=20 top-ranked retrieval targets from the initial ranking results and
extract a set of low-level 3D geometric features from each of these Nr

retrieval targets. We sample a set of 4000 oriented points per retrieval
target and extract 300 PFH features from local regions segmented by
using local spheres with random position and radius. The SPRH feature
of the query is compared against the 300 PFH features of the retrieval
target by using Euclidean distance. Minimum among these 300 dis-
tances becomes an overall PPsM distance between the query and the
retrieval target. Final ranking of a whole shape included in the top Nr

retrieval of the 1st stage is computed by summing, with equal weights,
the distances from the 1st and 2nd stages.

Localizing parts of the retrieved whole 3D shapes that match the
query is performed as follows. We assign a matching score to each part
of the Nr whole 3D shapes. Matching score for each part is computed by
inverting the distance between the query and the part obtained at the
second retrieval stage. For each of the Nr whole 3D shapes, a partial
shape having maximum score is localized as a match to the query shape.

We also visualize the result of localization by using the method
described in (Furuya et al., 2015). That is, we color parts of the whole
3D shapes according to the similarities among the query and the parts
of the whole 3D shapes. Each similarity value is normalized in the range
[0, 1], and then, to visualize localization, the similarity is mapped to
hue in HSV color space.

Retrieval using the proposed algorithm is efficient both in terms of
time and memory footprint. The first retrieval stage only has to store
low-dimensional embedded features that represent the whole 3D shapes
(not the numerous sub-volumes of the whole 3D shapes) in the data-
base. Distance between a pair of the query and the retrieval target is
quickly obtained by comparing their embedded features once. Although
the second retrieval stage performs PPsM, its computation is efficient
since only Nr=20 top-ranked retrieval targets are processed for re-
ranking and localization of parts.

4. Experiments and results

4.1. Experimental setup

4.1.1. Benchmark databases
Since the existing benchmark databases for P3DMR (e.g., Dutagaci

et al., 2009; Furuya et al., 2015; Pratikakis et al., 2016) do not include a
set of training whole 3D shapes, we can't use these benchmarks to
evaluate the proposed algorithm. We therefore create two new bench-
mark databases, i.e., P-ModelNet and P-SH11NR, each of which consists
of a training set used to train the PWRE-net and a test set used to
evaluate retrieval accuracy and efficiency. Fig. 3 shows examples of
partial 3D shapes and whole 3D shapes contained in the benchmarks.

P-ModelNet: The P-ModelNet benchmark is built as a subset of the
ModelNet dataset (Wu et al., 2015) which contains diverse rigid 3D
shapes. The training set for the P-ModelNet includes 2832 whole 3D
shapes classified into 16 object categories such as airplane, chair, car,
piano, etc. The test set consists of a query set having 200 partial 3D
shapes and a retrieval target set with 322 whole 3D shapes. The

Algorithm 2
Training PWRE-net.

Algorithm 3
Two-stage retrieval by using trained PWRE-net.
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retrieval target set has the same object categories with the training set
but these sets are disjoint each other. Each partial 3D shape was created
by manually cutting off a part of the whole 3D shape in the retrieval
target set. Ground truth, i.e., the set Gq of correct retrieval targets for
the query Pq, was defined as follows. First, the whole 3D shape, from
which the query Pq was cut off, was added to Gq. We then visually
checked if each of remaining retrieval targets contains similar part(s) to
Pq, and if so, we include the retrieval target in Gq. For example, Gq for a
query shape of steering wheel contains whole 3D shapes of vehicle (e.g.,
car or bus) only if a steering wheel is defined inside these 3D shapes.

P-SH11NR: The P-SH11NR was originally created by (Furuya et al.,
2015) based on non-rigid 3D shapes included in the SHREC 2011 Non-
rigid (SH11NR) dataset (Lian et al., 2011). The original P-SH11NR has
only the test set, i.e., the query set of 180 partial 3D shapes and the
retrieval target set including 600 non-rigid 3D shapes classified into 30
object categories (e.g., bird, cat, human, octopus, etc). In the experi-
ments, we randomly pick up 300 whole 3D shapes from the retrieval
targets and group them into a training set. The remaining 300 whole 3D
shapes are used as retrieval targets. Ground truth for each query 3D
shape is the same as the original P-SH11NR benchmark.

Note that, both for the P-ModelNet and the P-SH11NR, we don't use
the object category labels attached to the training 3D shapes during
training of the PWRE-net. We use Nearest Neighbor (NN) [%], Mean
Average Precision (MAP) [%], Recall-Precision curve as accuracy in-
dices. NN is also referred as Precision@1 which means accuracy of a
retrieved target ranked in the top of ranking results. Since training of
the PWRE-net is essentially affected by randomness due to random
initialization of parameters or automatic training pair generation, we
conducted every experiment for 3 times and their average accuracy will
be reported. We used a PC having two Intel Xeon E5-2650V2 (8 cores, 16
threads each) CPUs, a NVIDIA GeForce GTX 980 GPU, and 256GByte
DRAM. Training of PWRE-net using 2M part-whole pairs took about 2–3
days.

Although P-ModelNet and P-SH11NR enable us to quantitatively
evaluate PWRE-net, scales of these two benchmark datasets are quite
small. In addition, 3D shapes in these datasets are “too clean” since they
were created by using 3D modeling software. Ideally, we should also
quantitatively evaluate PWRE-net under (1) larger-scale setting by
using more diverse 3D shapes and (2) more realistic setting by using
“noisy” 3D shapes generated with, for example, 3D range scanners.
However, even if we could collect such 3D shapes, manually creating
ground-truth for P3DMR is quite laborious. Therefore, we conduct
qualitative evaluation by using two existing datasets of 3D models
without ground-truth for P3DMR.

ShapeNet Core55: We use ShapeNet Core55 (Chang et al., 2015),

which is one of the largest datasets of 3D CAD models, to evaluate
scalability (i.e., learning capability) of PWRE-net. ShapeNet Core55
contains diverse rigid 3D shapes classified into 55 object categories. The
training set and the test set of ShapeNet Core55 includes 35,764 and
10,265 whole 3D shapes, respectively. We use the training set to train
PWRE-net and use the test set as retrieval targets. We use the same
query set with P-ModelNet.

ObjectScans: We use a Large Dataset of Object Scans (Choi et al.,
2016) to evaluate robustness of PWRE-net against various noise, such as
variation in distance, holes, cracks, self-occlusions, and background
clutter that occurs in range-scanned 3D models. We use a set of 401
polygonal 3D models classified into 10 object categories such as bicycle,
chair, plant, etc. Each 3D model is reconstructed from a depth image
sequence of real-world object(s) acquired with 3D range scanners. The
set of 3D models is randomly split into a training set of 201 3D models
and a test set (i.e., retrieval target) of 200 3D models. Prior to con-
verting the 3D model into oriented point set, a floor on which objects lie
is removed by using RANSAC algorithm (Fischler and Bolles, 1981) so
that excessive number of points are not sampled on the floor. 45 part-
based queries are created by manually cutting off the parts of the 3D
models in the test set.

4.1.2. Competitors to proposed algorithms
We compare the proposed algorithm against three existing P3DMR

algorithms (RSVP (Furuya et al., 2015), SV-PFH, and SV-DSIFT) and
two baseline algorithms using deep learning (BF+DNN and
FV+DNN).

RSVP: The RSVP algorithm is classified into PPsM approach which
compares a query against numerous sub-volumes of retrieval targets.
The RSVP segments each retrieval target into a set of sub-volumes, or
cuboids, by using 3D grids having random interval and random or-
ientation. Each sub-volume is then described by a compact binary 3D
geometric feature. Distance between a pair of the query and the re-
trieval target is computed by comparing the binary feature of the query
against all the binary features of the retrieval target. Hamming distance
is used to quickly compare these binary features. We use the original
parameter settings as (Furuya et al., 2015) for the experiments.

SV-PFH, SV-DSIFT: These algorithms are PWM approach which
represents both the query and the retrieval target as a single feature per
query/target. The SV-PFH (or SV-DSIFT) extracts a set of PFH features
(or a set of DSIFT features (Furuya and Ohbuchi, 2009)) either from the
query or the retrieval target. DSIFT is a local 2D image feature extracted
from multi-view rendered images of the 3D shape. The set of local
features is aggregated by using Super Vector coding (Zhou et al., 2010)
to a feature per 3D shape for efficient comparison. The SV-PFH

Fig. 3. Examples of part-based queries and retrieval target whole
3D shapes contained in the benchmark databases.
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algorithm is quite similar to (Liu et al., 2006) and (Savelonas et al.,
2014) in that they both employ local 3D geometric feature and their
aggregation.

BF+DNN, FV+DNN: PWRE-net refines, aggregates, and embeds
3D shape features by using DNNs. To gauge importance of using
DNNs for feature refinement and feature aggregation, we replace
the first half of PWRE-net with the existing feature encoding algo-
rithms. Specifically, BF+DNN uses Bag-of-Features (BF) algorithm
(Csurka et al., 2004) while FV+DNN uses Fisher Vector (FV) coding
algorithm (Perronnin et al., 2010) to refine and aggregate 3D shape

features. A SPRH feature extracted from a part-based query is encoded
by using either BF or FV. On the other hand, a set of PFH features
representing a retrieval target is aggregated to a single feature by using
BF or FV. These encoded/aggregated features are embedded into their
common feature space via the embedding DNN (i.e., the latter half of
the PWRE-net). We use codebook size of 4096 for BF and 16 for FV,
respectively. Therefore, the embedding DNN takes as input feature
vectors having 4096 dims. for BF+DNN and 2×729×16=23,328
dims. for FV+DNN. The embedding DNN is trained under the same
setting with PWRE-net as described in Section 3.3.

4.2. Experimental results

4.2.1. Hyper parameters for PWRE-net
Number of training pairs: Fig. 4 plots retrieval accuracies against

the number of training pairs generated by using the proposed automatic
part-whole pair generation algorithm. In the figure, “Number of
training pairs” is sum of the number of positive pairs and the number of
negative pairs, which are evenly sampled from the training set of whole
3D shapes. Obviously, increasing the number of training pairs improves
retrieval accuracy. We can observe that 2M training pairs are sufficient
to train the PWRE-net both for the P-ModelNet and the P-SH11NR
benchmarks. These results suggest that learning numerous and diverse
part-in-whole relation of 3D shape is effective for accurate P3DMR. We
speculate that much larger number of training set pairs would be re-
quired for a large-scaler dataset having more diverse 3D shapes clas-
sified into larger number of object categories.

Number of embedding dimensions: Fig. 5 plots MAP scores against
the number of dimensions for the embedded feature space shared by
partial 3D shapes and whole 3D shapes. To conduct this experiment, we
varied the numbers of neurons in the output layers for P-block and W-
block, and 2M training pairs are used to train the PWRE-net. Interest-
ingly, the numbers of embedding dimensions have only small impact on
retrieval accuracy. Although slight peaks can be observed at around
100 dimensions, MAP scores are almost constant (over 40% for P-
ModelNet and over 70% for P-SH11NR) from 4 to 1024 dimensions we
have experimented. We speculate that the P-ModelNet and the P-
SH11NR do not require high dimensional space for feature embedding
since these datasets comprise relatively small number of object cate-
gories. In such datasets, relations among partial 3D shapes and whole
3D shapes are not complicated and hence the PWRE-net could find good
feature embedding into the low-dimensional space.

We visualized the embedded feature space yielded by the PWRE-net.
Fig. 6 shows embedded features of the partial 3D shapes and the whole
3D shapes in the test set of P-ModelNet. To visualize the features, we
first embedded partial/whole 3D shapes into a 64-dimensional common
feature space by using PWRE-net, and then, they were re-embedded
into 2-dimensional space by using t-SNE algorithm (Maaten and

Fig. 4. Number of training pairs and retrieval accuracy.

Fig. 5. Number of dimensions for embedded feature space and retrieval accuracy.

Fig. 6. t-SNE visualization of the embedded feature space. Left figure plots all the embedded features of part-based queries (red) and retrieval targets (blue) in the P-ModelNet. Right three
figures are zooms of the embedded feature space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Hinton, 2008). We can see that whole 3D shapes (e.g., airplanes) and
their parts (e.g., wing, jet engine, and landing gear) are embedded
nearby each other.

Input to PWRE-net: This subsection experimentally verifies that the
combination of SPRH and PFH features is an appropriate choice for the
input to PWRE-net. To this end, we substitute the other 3D shape fea-
tures for SPRH and PFH. We use five 3D shape features, i.e., D2
(Osada et al., 2002), AAD (Ohbuchi et al., 2005), Spin Image (SI)
(Johnson and Hebert, 1999), RoPS (Guo et al., 2013), and POD
(Furuya and Ohbuchi, 2015). For the experiments, global 3D shape
features i.e., D2 and AAD, are localized to extract a set of local features
from a whole 3D shape. A set of local spheres is sampled from the whole
3D shape, and each local sphere is described by D2 or AAD. Similarly,
local 3D shape features, i.e., SI, RoPS, and POD, are globalized to re-
present a global region of a partial 3D shape as a single feature vector.
We also compare SPRH/PFH features having 9 bins with those having
(original) 5 bins to show that using more bins contributes to higher
retrieval accuracy. The hyper-parameters for training (i.e., number of
training pairs, number of embedding dimensions, initial learning rate,
etc.) are fixed throughout the experiments.

Table 1 compares retrieval accuracies of the seven combinations of
3D shape features input to PWRE-net. SPRH/PFH with 9 bins sig-
nificantly outperforms the other features. We can also observe that
accuracies of SI, RoPS, and POD suffer both in P-ModelNet and P-
SH11NR. We presume low accuracies of these features would be due to
failure of normalizing 3D rotation of spherical regions from which the
features are extracted. SI, RoPS, and POD normalize rotation of the
region by using either a normal vector at the center of the region or
principal axes of points within the region. When we generate training
part-whole pairs, we sample parts from a whole 3D shape by using
spheres having random location and scale. Results of orientation nor-
malization of such randomly chosen spheres are likely to be quite dif-
ferent from those of part-based queries. The discrepancy could have
resulted in the low accuracy.

On the other hand, SPRH/PFH, as well as D2 and AAD, are in-
herently rotation invariant, without requiring rotation normalization.
They achieve rotation invariance by using pairwise statistics of oriented
points. In addition, via histogramming the statistics, they form similar
feature vectors even if location and scale of the spherical regions vary
somewhat.

4.2.2. Comparison against existing P3DMR algorithms
Retrieval accuracy: Table 2 compares retrieval accuracies of the

seven P3DMR algorithms. In the table, “PWRE-net+ reranking” per-
forms both the first and the second retrieval stages of the proposed
algorithm. That is, initial ranking results are generated by comparing
the embedded features produced by the PWRE-net, and the top 20 re-
trieved whole 3D shapes are re-ranked by using the PPsM approach.
“PWRE-net” performs only the first retrieval stage, i.e., the initial
ranking results are used for evaluation.

As shown in Table 2, the proposed algorithm significantly outper-
forms the existing P3DMR algorithms (except for NN in the P-ModelNet

against RSVP). Re-ranking further improves retrieval accuracy, espe-
cially for NN score, due to careful matching among part-based query
and sub-volumes of the top 20 whole 3D shapes in the initial ranking
results. Comparison among the three PWM approaches (i.e., SV-PFH,
SV-DSIFT, and PWRE-net) verifies the effectiveness of learning part-in-
whole relations of 3D shapes; accuracies of PWRE-net exceed those of
SV-PFH and SV-DSIFT with large margins. Fig. 7 compares Recall-Pre-
cision curves for the seven algorithms. The proposed algorithm keeps
higher precisions at high recall, indicating that it can retrieve more
relevant whole 3D shapes that have similar part(s) to the query. Fig. 8

Table 1
Comparison of 3D shape features fed into PWRE-net.

Input to PWRE-net P-ModelNet P-SH11NR

P-block W-block MAP [%] MAP [%]

D2 localized D2 24.1 45.7
AAD localized AAD 37.2 66.6
globalized SI SI 14.9 11.3
globalized RoPS RoPS 20.6 25.1
globalized POD POD 27.8 25.3
SPRH (5 bins) PFH (5 bins) 45.4 74.6
SPRH (9 bins) PFH (9 bins) 48.4 78.3

Table 2
Comparison of retrieval accuracies [%].

Algorithms P-ModelNet P-SH11NR

NN MAP NN MAP

RSVP 71.2 34.9 86.3 63.5
SV-PFH 45.5 28.6 60.0 52.5
SV-DSIFT 31.8 25.1 28.9 28.9
BF+DNN 19.3 21.2 25.9 31.4
FV+DNN 38.5 40.4 70.6 70.4
PWRE-net 53.0 48.4 85.7 78.3
PWRE-net+ reranking 64.2 49.7 88.9 78.6

Fig. 7. Recall-Precision curves for the P3DMR algorithms.
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shows examples of retrieval results, as well as localization of parts,
produced by PWRE-net and RSVP. The PWRE-net clearly yields favor-
able ranking order than the RSVP.

Comparison among BF+DNN, FV+DNN, and PWRE-net shows
the effectiveness of processing feature refinement and feature ag-
gregation by DNN. Training by using BF-encoded features fails probably
due to information loss caused by vector quantization of the input 3D
shape features. FV+DNN performs better than BF+DNN since FV can
encode richer information of the 3D shape features than BF. PWRE-net
outperforms both of them by a large margin.

Retrieval efficiency: Table 3 compares efficiency for querying the P-
ModelNet database. In Table 3, “feat.” indicates time for feature ex-
traction from a part-based query, “dist.” is time for distance computa-
tion among the feature of the query and the features of 322 retrieval
targets in the database, and “rerank.” is time for re-ranking. “Memory
footprint” shows spatial cost for the features of retrieval targets and the
other data used for feature extraction (i.e., parameters for PWRE-net or
SV codebook for RSVP and SV-PFH).

Although the PWRE-net with re-ranking is the slowest among the
three algorithms we have compared, 3.5 seconds per query is accep-
table for practical use. Note that computation time of the proposed
algorithm is dominated by re-ranking. If we omit the re-ranking, the
PWRE-net processes a query much faster than the RSVP and the SV-

PFH. The PWRE-net is also memory-efficient; it requires only 13.5
Mbytes to store parameters of the PWRE-net and embedded features of
the 322 retrieval targets. The PWRE-net could scale to larger databases
since it represents each whole 3D shape as a compact (128-dimen-
sional) feature which occupies only 512 bytes per 3D shape.

4.2.3. Evaluation under large-scale and realistic settings
Large-scale setting: To demonstrate learning capability of PWRE-

net, we conducted retrieval experiment by using ShapeNet Core55 da-
taset. PWRE-net was trained by using 2M part-whole pairs sampled
from 35,764 3D models in the training set. Fig. 9 shows examples of
retrieval results. As shown in Fig. 9(a), querying airplanes, cars, and
chairs by their partial shapes succeeds probably due to richness in
number of these whole 3D models contained in the training set. On the
other hand, as shown in Fig. 9(b), querying by partial shapes of fork,
skeleton, or fire extinguisher fails since the training set contains few or
no 3D models of these objects. Although we can't evaluate in a quan-
titative manner, these results suggest that PWRE-net could learn diverse
part-whole relation of 3D shapes as long as sufficient number of 3D
models can be used for training.

Realistic setting: We also demonstrate robustness of PWRE-net
against various types of noise occurred in scanned 3D models such as
holes, cracks, self-occlusions, and background clutter. PWRE-net was
trained by using 2M part-whole pairs generated from 201 3D models in
the ObjectScans training set. Fig. 10 shows examples of retrieval
rankings for the ObjectScans test set. Although not perfect, PWRE-net
produces good retrieval results queried by the partial shapes of plant,
motorbike, and bicycle. PWRE-net would be able to learn part-in-whole
relation of 3D shapes even if they contain geometric and topological
noise and background clutter. This experimental result is encouraging
since it suggests PWRE-net could be applied to part-based retrieval of
not only synthetic 3D models but also more realistic 3D models gen-
erated with 3D range scanners. Further detailed and quantitative

Fig. 8. Examples of retrieval rankings for the P-ModelNet test set (a) and the P-SH11NR test set (b). For each part-based query, the first row shows top 10 retrieved whole 3D shapes by the
proposed algorithm and the second row is those by the RSVP (Furuya et al., 2015) algorithm. Checkmarks indicate “correct” results for the query. Colors on the surface of whole 3D shape
depict similarity between the query and the part of the whole 3D shape (High similarity for red, low similarity for blue). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Comparison of retrieval efficiency for P-ModelNet.

Algorithms Computation time [s] per query Memory footprint
[Mbytes]

Feat. Dist. Rerank. Total

RSVP 2.298 0.002 – 2.300 42.3
SV-PFH 1.481 0.026 – 1.507 451.1
PWRE-net 0.136 0.002 3.441 3.579 13.5
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evaluation under realistic setting should be considered, but we leave
this issue to future work.

5. Discussion

In the previous section, we experimentally demonstrated superior
retrieval accuracy and efficiency of PWRE-net to its competitors.
However, PWRE-net has one significant drawback; Feature embedding
by PWRE-net has difficulty in handling “multimodality” of partial 3D

shape. Multimodality here means that a particular 3D shape exists as a
part of multiple objects belonging to different categories. For example,
a wheel can be included in diverse objects such as a car, bus, airplane,
chair, piano, etc. Nevertheless, as illustrated in Fig. 6, PWRE-net em-
beds 3D shapes of wheel close to 3D shapes of cars, not close to air-
planes and chairs. In such an embedding feature space, retrieval
ranking queried by 3D shape of wheel would be occupied by 3D shapes
of car, which is not necessarily desirable result.

The embedding feature space of Fig. 6 was formed probably because

Fig. 9. Examples of retrieval rankings for the large-scale dataset (ShapeNet Core55 test set). (a) PWRE-net can learn part-in-whole relation of diverse 3D object categories if sufficient
number of 3D models are available for training. (b) However, for some object categories with very small number of training 3D models, learning part-in-whole relation fails and PWRE-net
produces retrieval ranking of irrelevant 3D models.

Fig. 10. Examples of retrieval rankings for the realistic dataset (ObjectScans test set). Although rank and localization are not perfect, PWRE-net produces favorable rankings even if both
part-based queries and retrieval targets contain geometric and topological noise as well as cluttered backgrounds.
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the automatic part-whole pair generation algorithm produced more
wheel-car pairs than wheel-chair pairs and wheel-airplane pairs. The
difference in number of part-whole pairs would depend on the pro-
portion of volume of partial 3D shape to volume of whole 3D shape.
Compared to wheels of a chair or an airplane, wheels of a car have
larger proportion of volume in the whole 3D shape. Therefore, auto-
matic part-whole pair generation algorithm, which samples local
spheres at random position and random scale as partial shapes, is more
likely to cut off wheels from cars than from chairs or airplanes. Con-
sequently, most of the partial 3D shapes of a wheel are embedded close
to whole 3D shapes of cars through the training that tries to minimize
the contrastive loss function.

To solve the problem of multimodality of partial 3D shapes, we
would require different network architecture and/or loss function from
PWRE-net. One possible direction is to utilize the matching DNN (Han
et al., 2015; Žbontar and LeCun, 2015). Instead of feature embedding,
the matching DNN predicts a matching score, or a similarity, of two
input data by using a combination of their features. The matching DNN
concatenates two features of the input data at the middle of the DNN
and the combined feature is further transformed through the sub-
sequent network for prediction. The multimodality problem could be
alleviated by using the matching DNN since it can simultaneously
consider both partial and whole 3D shapes to predict their similarity.
Properly trained matching DNN would yield high similarities for any
input part-whole pairs of wheel-car, wheel-chair, and wheel-airplane.
The matching DNN, however, also has a drawback; it suffers from high
temporal cost for retrieval since all the pairs among the query and the
retrieval targets need to be fed into the DNN at the retrieval stage to
generate ranking list of retrieval targets.

6. Conclusion and future work

Part-based 3D Model Retrieval (P3DMR) is technically quite chal-
lenging. We don't know position, scale, and orientation of part(s) of 3D
model that is specified by a part-based query shape. Also, we don't
know which 3D model in a database contains a partial shape that
matches to the query. Previous approaches to P3DMR suffer from in-
accuracy or inefficiency to compare a part-based query shape against
retrieval target whole 3D shapes in the database. Part-to-Parts Matching
(PPsM) approach requires very high computational cost for matching
the feature of part-based query to the features of all the sub-volumes of
whole 3D shapes. On the other hand, Part-to-Whole Matching (PWM)
approach, which approximates the inclusion test by using aggregation
of local features extracted from the whole 3D shape, often suffers from
low retrieval accuracy.

This paper proposed a novel P3DMR algorithm called Part-Whole
Relationship Embedding network (PWRE-net). The algorithm learns,
from a large number of part-whole shape pairs, a common embedding
feature space that places two shapes together if one includes the other.
Using the learned embedding space, part-whole inclusion can be tested
very quickly by nearest neighbor search for an efficient P3DMR. The
embedding is realized by using a pair of deep neural networks (DNNs)
that transforms low-level 3D geometric features representing either part
or whole into features in the common embedding space. A large number
of diverse part-whole shape pairs necessary to train the DNNs are
generated automatically from unlabeled 3D shapes. Experimental eva-
luation using newly created P3DMR benchmark datasets showed that
the PWRE-net produced superior accuracy, speed, and spatial cost than
previous P3DMR algorithms.

A possible future work is to quantitatively test the algorithm using a
larger and more realistic 3D model database. Another is to improve
quality and diversity of the part-whole shape pairs for training. This can
be done, for example, by combining multiple definitions of locality for
segmentation, e.g., using both sphere in 3D Euclidean space and circle
on 2-manifold to generate parts from whole.
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