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Abstract—An effective and widespread approach for shape-based 
3D model retrieval (3DMR) is to use a feature vector per 3D model 
obtained by aggregating, or pooling, a set of local features 
extracted from the 3D model. State-of-the-art feature aggregation 
algorithms, such as Fisher Vector (FV) coding [7] or Super Vector 
(SV) coding [22], used in the approach is not spatially efficient, 
however. The FV or SV, for example, typically encodes a local 
feature into a very high-dimensional (e.g., 300k-dimensional) 
vector. For a database containing a large number of 3D models, 
the spatial cost of storing all the aggregated feature vectors for the 
database becomes very high. In this paper, we propose a novel, 
spatially efficient yet accurate feature aggregation algorithm 
called Sum of Sparse Binary codes (SSB) aggregation. The SSB first 
encodes a local feature into a highly sparse binary code. Then, a 
set of sparse binary codes are aggregated efficiently by simple 
summing into a compact feature vector. We also propose fast SSB 
(fSSB) aggregation, which is a computationally efficient 
approximation of the SSB. Experiments using a 3DMR scenario 
show that the proposed algorithms are significantly more efficient 
than the state-of-the-art feature aggregation algorithms we have 
compared against. At the same time, retrieval accuracies of the 
proposed algorithms are equal or better than the state-of-the-art 
aggregation algorithms.  

Keywords- feature encoding, feature aggregation, local feature, 
sparse coding, binary feature, shape-based 3D model retrieval 

I. INTRODUCTION  

Three-dimensional (3D) shape model has become an 
important media data type for a wide variety of application areas 
including mechanical design, medical diagnosis and treatment 
planning, architectural design, or for navigation of autonomous 
vehicle. Recent proliferation of 3D printers and 3D scanners 
(e.g., RGB-D cameras) has afforded us opportunities for 
capturing, editing, or generating 3D shapes in our daily life. 
These trends have given impetus to develop effective and 
efficient, and scalable methods for 3D shape analysis, 
recognition, or retrieval.  

The most popular approach for shape-based 3D model 
retrieval (3DMR) (e.g., [4], [17]) is to extract a set of local 
features from a 3D model and then aggregating them into a 
single feature vector per 3D model. A feature vector per 3D 
model generated by such an approach often possesses invariance 
against articulation or global deformation of the 3D model. By 

using aggregated features, comparison of a pair of shapes is more 
efficient. In comparison, a naïve approach for comparing two 
sets of local features can be expensive. In whole-based 3DMR 
(e.g., [4], [28]), an entire 3D model is the query, a set of local 
features extracted from the 3D model is aggregated into a feature 
vector for the 3D model. In part-based 3DMR (e.g., [20]), a 
partial 3D shape is the query. An aggregated feature vector for 
the query is compared against a large number of aggregated 
feature vectors corresponding to multiple 3D region-of-interests 
(ROIs) sampled from 3D models in a database.  

A number of feature aggregation algorithms have been 
proposed [25]. Feature aggregation generally consists of two 
steps, i.e., encoding and pooling of local features. A codebook, 
or a set of codewords, is determined, typically, by clustering the 
set of local features. A local feature is encoded by using 
codewords around the feature as well as the statistics associated 
with the codewords. A state-of-the-art approach, e.g., Fisher 
Vector (FV) coding [7] or Super Vector (SV) coding [22], 
performs accurate feature encoding by using statistics such as 
density, mean, and/or variance of local features. The set of 
encoded local features is pooled into a single feature to reduce 
temporal and spatial cost for feature comparison. In whole-based 
3DMR scenario [18], SV coding especially showed superior 
retrieval accuracy to the other state-of-the-art approaches 
including, FV, Locality-constrained Linear (LL) coding [12], 
and Vector of Locally Aggregated Descriptors (VLAD) [9].   

Despite their success, most of these feature aggregation 
algorithms are spatially inefficient. Their feature encoding step 
produces a very high-dimensional (e.g., 300k dim.), dense, and 
real-valued representation for a local feature. Therefore, for a 
database having a significant size, memory footprint for storing 
the set of encoded local features could become a problem. This 
is so even though the set of encoded features is pooled into a 
single feature per 3D model or per 3D ROI. Certain application, 
e.g., part-based 3DMR, requires the encoded local features to be 
stored on memory without pooling so that an encoded local 
feature can be reused for computing aggregated features of a 
large number of overlapping ROIs per 3D model.  

In this paper, to achieve efficient and accurate feature 
aggregation, we propose a pair of novel feature aggregation 
algorithms that employ sparse binary encoding of local features. 
One of the proposed algorithms is called Sum of Sparse Binary 
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codes (SSB) aggregation. The SSB encodes a local feature into a 
sparse binary code in which a small number (e.g., 3) of bits are 
‘1’ while the remaining bits are ‘0’. The sparse binary code is 
very compact to store since only the positions of ‘1’ bits need to 
be recorded. Feature encoding in SSB is done by combining k-
Sparse Autoencoder (kSA) [3] with Angular Quantization-based 
Binary Codes (AQBC) algorithm [23]. A local feature, which is 
typically dense, real-valued vector, is first sparsely encoded via 
kSA and is then binarized by using AQBC. The kSA is expected 
to perform accurate feature encoding for two reasons. Firstly, 
kSA could jointly optimize the codebook learning and feature 
encoding. In comparison, most of the previous feature 
aggregation algorithms, e.g., SV and FV, employ a “greedy” 
approach. That is, they first learn a codebook by clustering the 
set of training local features. Then, in a disconnected step, they 
encode local features by using the learned codebook. Secondly, 
k-sparse constraint of kSA could enhance saliency of encoded 
local features. Effectiveness of k-sparseness has been 
demonstrated in several state-of-the-art feature aggregation 
algorithms, e.g., LL or Localized Soft-assignment (LS) coding 
[13]. The AQBC efficiently converts a sparsely encoded, real-
valued local feature into a binary code having low quantization 
error. Then, simply by summing, a set of sparse binary codes are 
efficiently pooled into a feature per 3D model.  

In addition to SSB, we also propose fast SSB (fSSB) 
aggregation, a computationally efficient approximation of SSB. 
Computational bottleneck of the SSB is its feature encoding step 
using kSA. We employ a set of “landmark” local features and 
their tree-structured index to accelerate the feature encoding. 

We evaluate the proposed algorithms by using a whole-based 
3DMR scenario. Experimental results using multiple benchmark 
databases and a variety of local features show superior 
performance of the proposed algorithms in terms of memory 
efficiency, time efficiency, and retrieval accuracy.  

Contributions of this paper can be summarized as follows; 

 Proposition of SSB aggregation and its approximation, 
fSSB aggregation, for more efficient yet accurate 
aggregation of local features.  

 Empirical evaluation of the proposed feature aggregation 
algorithms using a whole-based 3DMR scenario. 

II. RELATED WORK 

A. Aggregation of Local Features 

Algorithms for aggregating local features may be classified 
into two groups, that are, sparse coding (SC)-based approach and 
higher-order statistics (HS)-based approach. The SC-based 
approach includes Bag-of-Features (BF) [8], ScSPM [11], LL 
coding, LS coding, and Diffusion-on-Manifold [19]. They 
sparsely encode a local feature by using weighted linear sum of 
neighboring codewords. Sparse representation of local features 
is compact since it can be described by indices of codewords and 
their coefficients. However, the existing SC-based aggregation 
algorithms are not necessarily optimal in terms of accuracy since 
their codebook learning and feature encoding are done 
separately. The HS-based approach includes FV, SV, and 
VLAD. They could perform accurate feature encoding by 
exploiting high order statistics, e.g., density, mean, and/or 

variances, computed from local features and codewords 
associated with them. Since a HS-based approach often produces 
very high dimensional encoded features, the HS-based feature 
aggregation would not be suitable for spatially efficient 3DMR.   

The proposed SSB aggregation falls into the SC-based 
approach. The SSB differs from the other SC-based algorithms 
in that the SSB jointly optimizes codebook and feature encoding 
by using kSA for higher accuracy. The SSB also binarizes the 
sparsely encoded local features to further compress the features. 

B. Efficient 3DMR using Binary Local Features 

Several recent studies employed binary local features for 
efficient retrieval or matching of 3D shapes. Matsuda et al. [21] 
proposed lightweight binary local features for 3D voxels, i.e., 
3DBRIEF and 3DORB. They can be extracted quickly from a 
3D voxel. Also, these local features are compact since each local 
feature is represented as a binary code whose length is hundreds 
of bits. Prakhya et al. [16] proposed a fast-to-compute binary 
local feature called B-SHOT for fast and memory-efficient 
keypoint matching on 3D point clouds. However, these binary 
local features discard a large amount of information about local 
3D geometry during feature extraction. Therefore, aggregated 
features computed from the set of binary local features tend to 
yield insufficient retrieval accuracy. Also, feature aggregation 
algorithms intended for binary local features, e.g., bag of binary 
words [6] or Fisher Vector of Bernoulli Mixture Model [27], 
yield high-dimensional and dense aggregated features as with 
the BF or FV for real-valued local features. In contrast, the SSB 
aggregation can be applied to a variety of rich real-valued local 
features to produce compact yet salient aggregated features. 

III. PROPOSED ALGORITHM 

A. Overview of the Algorithm 

Toward more efficient yet accurate aggregation of local 
features, we propose novel feature aggregation algorithms that 
employ sparse and binary representation of local features. One 
of the proposed algorithms is called Sum of Sparse Binary codes 
(SSB) aggregation. The SSB (Fig. 1b) encodes a set of real-
valued local features into a set of sparse binary codes. 
Sparsifying local features enhances saliency of the local features. 
Binarization that follows produces a compact representation for 
the local features. The set of sparse binary codes are efficiently 
aggregated into a single feature vector per 3D model by simple 
sum-pooling. We employ k-Sparse Autoencoder (kSA) [3] to 
generate sparse codes for the local features. The kSA is expected 
to produce accurate sparse codes of the local features since it 
jointly optimizes a codebook and feature encoding. To 
accurately and efficiently binarize the sparse features, we use 
Angular Quantization-based Binary Codes (AQBC) algorithm 
[23]. The AQBC efficiently converts real vectors into binary 
codes with low quantization error. 

While the feature encoding of the SSB is memory-efficient 
and accurate, it becomes time-consuming especially when the 
kSA contains a large number of codewords. Computation time 
for feature encoding increases linearly to the number of 
codewords of the kSA. To alleviate this bottleneck, we also 
propose a faster-to-compute approximation of the SSB, which 
we call fast SSB (fSSB) aggregation (Fig. 1c), by using an index 
structure in the local feature space. The fSSB is able to encode a 
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local feature in constant time regardless of number of 
codewords. To be specific, as a pre-processing, a set of 
“landmark” local features is selected and their sparse binary 
codes are computed by using the kSA and the AQBC algorithm. 
Also, the set of landmark local features is indexed by using a kd-
tree. At the feature encoding stage, each local feature is vector 
quantized into its nearest landmark local feature and is encoded 
into a sparse binary code for the landmark. This approximation 
of feature coding for the fSSB can be computed very quickly 
since the coding only need to find the nearest landmark for the 
local feature via a tree-structured index. As with the original SSB, 
an aggregated feature for the fSSB is formed by summing the 
sparse binary codes. 

 
Figure 1.  Overview of the proposed feature aggregation algorithms. 

B. Sum of Sparse Binary Codes (SSB) Aggregation 

1) Aggregating Local Features by SSB 

As with the other existing feature aggregation algorithms, the 
SSB aggregation proceeds in two steps, that are, encoding and 
pooling of local features. Pre-processing for the SSB, i.e., 
training kSA, will be described in Section III-B-2.  

At the encoding stage, a set of local features extracted from 
a 3D model is encoded into a set of sparse binary codes. Each 
local feature is first fed into the trained kSA to generate sparse 
representation of the local feature. We use the following 
equation to sparsify each local feature; 

   e  h y xW  (1) 

where x is a local feature represented as a real-valued and dense 
vector, and We indicates a weight matrix for the encoder of kSA. 
h is unit activation in the hidden layer of the kSA, which is a 
sparse representation of the local feature of x. h is an n-
dimensional vector, where n is equal to the number of units (or 
codewords) in the hidden layer, and h has only k non-zero 
elements. σ is a non-linear activation function. The kSA 
combines Rectified Linear Units (ReLU) [2] and k-largest value 
selection for activation function. Specifically, each element yi of 
y is rectified by ReLU, i.e., zi = max(0, yi). And k largest 
elements among {zi | i = 1, …, n} are kept while the rest are set 
to zero. 

The set of sparsified local features is then binarized by using 
the AQBC algorithm. In the n-dimensional feature space, the 
AQBC binarizes each sparse local feature by vector-quantizing 
it into a vertex of n-dimensional unit hyper-cube that has 
maximum Cosine similarity with the local feature. Finding the 
most similar vertex to the local feature can be computed very 
efficiently when the feature is highly sparse [23]. Each binary 
code is represented as an n-bit string. Since the local features 
encoded by kSA are sparse, the binarized codes generated by the 
AQBC are also sparse. That is, most bits within the n-bit binary 
code are ‘0’. Note that the number of ‘1’ bits in the binary code 
produced by the AQBC is not necessarily equal to k. In practice, 
however, the AQBC most often generates a binary code having 
k ‘1’s.  

The set of sparse binarized local features produced by the 
method described above is very compact. We only need to store 
bit positions of ‘1’s within the binary code instead of storing the 
whole n-bit code. For example, if we were to use 4 bytes to store 
a bit position of ‘1’ and the kSA operates with k=3, each sparse 
binarized local feature occupies only 4×3=12 bytes, and the 
feature size does not depend on the length n of the binary code.  

At the pooling stage, the set of binarized sparse local features 
is efficiently aggregated into a single feature vector per 3D 
model by sum-pooling. The aggregated feature is an n-
dimensional vector whose element is either zero or non-zero 
integer. To effectively compare the aggregated features, each 
aggregated feature vector is normalized, in succession, by 
power-normalization and L2-normalization, as with [7]. 
Comparison of a pair of normalized aggregated features is done 
by employing Cosine similarity. 

Encode & decode 
local features by  

forward propagation

Tune parameters by
back propagation … 

… 

… 
kSA 

Encoder 

Decoder 

Feed into the kSA 

A large set of  
local features 
extracted from 

database 3D models 

A real-valued 
 local feature

… 

… 
Encoder Encode by 

forward propagation

Feed into the kSA 

A set of local 
features extracted 
from a 3D model 

A set of  
sparsely encoded 

local features 
Binarize by AQBC 

Pool by summing 

A set of  
sparse binary  
local features 

An aggregated 
feature 

(01010)2 
(01001)

2
 (10010)2…

(1, 4, 0, 3, 1) 

A local feature space

Encode into 
a sparse binary code  

of the nearest landmark 

A set of local 
features extracted 
from a 3D model 

Pool by summing 

A set of  
sparse binary  
local features 

An aggregated 
feature 

(01010)
2
 

(01001)2 (10010)
2…

(1, 4, 0, 3, 1) 

(01010)
2

(10010)
2
 

(01001)
2
 

An index using 
 landmark local 

features 

a landmark 
local feature 

(a) Training a kSA (pre-processing). 

(b) Sum of Sparse Binary codes (SSB) aggregation. 

(c) fast SSB (fSSB) aggregation. 



Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc. 
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016) 

The SSB aggregation has two hyper-parameters that need to 
be manually chosen, i.e., the number of units n in the hidden 
layer of kSA and the number non-zero elements k of unit 
activation. As we will show in the experimental section, n should 
be large (e.g., n=8,000) and k should be small (e.g., k=3) to 
obtain high retrieval accuracy. Small k is essential for a compact 
sparse binary code. 

2) Training kSA 

Prior to training the kSA, we first normalize the set of local 
features by using PCA-whitening. The set of local features is 
projected onto a lower dimensional linear subspace by using 
PCA, and then whitened so that each pair of dimensions in the 
subspace is uncorrelated. We fix the dimension of the subspace 
d to 64 throughout the experiments. 

The kSA used in the SSB aggregation has a single layer, 
which consists of an input layer, a hidden layer, and an output 
layer (see Fig. 1a). The input layer and the output layer contains 
d units while the hidden layer has n units. Each pair of units 
between two adjacent layers are connected by a weighted edge. 
The encoder associates the input layer with the hidden layer 
while the decoder associates the hidden layer with the output 
layer. The kSA is trained so that it can reconstruct the local 
features with minimal error. We use the following objective 
function for training. 

 2

1 2 22

1
ˆT

i i iE
T

    e dx x W W   (2) 

In the equation above, two matrices We and Wd are weight 
matrix for the encoder and the decoder, respectively, xi is one of 
T training local features, ˆ ix is reconstructed local feature 
generated by kSA of the input xi. x̂  is computed by decoding the 
sparsely encoded local feature h in the hidden layer, i.e., 

dˆ x hW . In (2), the first term is mean squared reconstruction 
error of T training local features, while the second term 
regularizes the training. These two terms are balanced by a 
hyper-parameter λ, which we fix at 0.0001 throughout the 
experiments. We use T=250k local features randomly selected 
from the database for training.  

The two matrices We and Wd are tuned so that the objective 
function is minimized through the training. Optimization of (2) 
is performed by using Stochastic Gradient Descent (SGD) with 
mini-batch. Each mini-batch includes 200 training local features 
randomly chosen from the set of T training local features. To 
adaptively assign a learning rate to each parameter in We and Wd, 
we use AdaGrad algorithm [10] with an initial learning rate = 0.2. 
The optimization is iterated for 50 epochs. 

C. Fast SSB (fSSB) Aggregation 

1) Aggregating Local Features by fSSB 

The feature encoding using kSA (i.e., computing (1)) is time-
consuming when the kSA has a large number (e.g., thousands) 
of units in the hidden layer, even if the process is accelerated by 
using a GPU. To reduce the temporal cost for feature encoding, 
we propose fSSB, which is an approximation of the SSB that 
uses a tree-structured index in the local feature space. The fSSB 
aggregation removes the kSA from the feature encoding step of 
the SSB. 

The tree-structured index is constructed as follows. Firstly, a 
large set of landmark local features is selected. We use L=250k 
landmark local features randomly sampled from the set of local 
features extracted from all the 3D models in the database. Each 
landmark feature is then encoded into a sparse binary code by 
using the method described in Section III-B-1. Each sparse 
binary code is associated with its corresponding landmark 
feature. Also, a kd-tree is built in the d-dimensional local feature 
space to index the set of L landmark features. 

Once the tree-structured index is constructed, encoding of 
local feature can be computed very efficiently. Given a set of 
local features extracted from a 3D model, each local feature is 
vector-quantized into its nearest landmark local feature, and is 
encoded into the sparse binary code associated with the nearest 
landmark. Finding nearest landmarks for the local features can 
be computed quickly by using the kd-tree. After feature encoding, 
pooling is performed identically to the SSB. That is, the set of 
sparse binary codes for the 3D model is aggregated into a single 
feature vector by sum-pooling. The pooled feature vector is 
power-normalized and then L2-normalized for comparison. 

2) Computational Complexity 

Compared to the SSB, the fSSB has an increased spatial 
complexity for it needs to store the index structure on memory. 
However, memory usage of the fSSB is reasonable for practical 
use. Assume that, for example, we use L=250k landmark local 
features, each of which is a d=64 dimensional floating point 
vector. Assume also that we use a kSA with the number of non-
zero elements in the hidden layer k=3. The set of landmark local 
features occupies 250k×64×4byte=64Mbyte. And the set of 
sparse binary codes for the landmarks requires 
250k×3×4byte=3Mbyte. The index structure consumes about 
70Mbyte including the kd-tree. The index fits easily in a main 
memory of a resource-constrained computer.  

Temporal cost of the fSSB for encoding a set of f local 
features is O (f × logL), dominated by the cost of approximate 
nearest neighbor search by using a kd-tree. In comparison, the 
SSB, which uses a kSA having n units in the hidden layer in 
place of the index structure, requires O (f × n) for feature 
encoding by computing (1). Note that time complexity of feature 
encoding for the fSSB is independent of n. We will show, in the 
experiments, that the fSSB aggregation is done in near-constant 
time regardless of n. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

1) Benchmark Databases 

To evaluate efficiency and accuracy of the proposed feature 
aggregation algorithms, we use four benchmark datasets for 
3DMR, that are, the Princeton Shape Benchmark (PSB) [14], the 
Engineering Shape Benchmark (ESB) [15], the SHREC 2011 
Non-Rigid watertight meshes dataset (SH11NR) [28], and the 
SHREC 2014 Large-scale Comprehensive 3D shape retrieval 
dataset (SH14LC) [4]. Fig. 2 shows examples of 3D models 
contained in the benchmark datasets. In Fig. 2, Nm is the number 
of 3D models in the dataset and Nc is the number of semantic 
categories. The PSB and SH14LC contain diverse and rigid 3D 
models of animals, plants, vehicle, furniture, building, etc. The 
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ESB consists of 3D CAD models of mechanical parts. The 
SH11NR has non-rigid 3D models of humans or animals. For 
each of these benchmarks, a 3D model in the dataset is used as 
the query to retrieve the rest of the 3D models in the dataset. 
Retrieval accuracy measured in average precision is averaged 
over all the models in a benchmark to obtain a Mean Average 
Precision (MAP) [%] value for the benchmark. 

To measure computation times for the database pre-
processing and the query processing stages, we use a PC having 
an Intel Core i7-5930K CPU, a GeForce GTX Titan X GPU, and 
32GB DRAM. 

   

(a) PSB (NM =907, NC =92) (b) ESB (NM =867, NC =45) 

 
(c) SH11NR (NM =600, NC =30) (d) SH14LC (NM=8,987, NC=171) 

Figure 2.  Example of 3D models contained in benchmarks datasets. 

2) Local Feature Aggregation Algorithms 

We compare the SSB and the fSSB against six existing 
feature aggregation algorithms, i.e., BF [8], LL [12], FV [7], 
VLAD (VL) [9], SV [22], and DM [19]. To learn the codewords, 
k-means clustering algorithm is used for BF, LL, and VL, while 
Gaussian Mixture Model clustering algorithm is used for FV and 
SV. For sparse coding-based aggregation methods including BF 
and LL, we learn 8k codewords. For higher-order statistics-
based methods including VL, FV, and SV, the number of 
codewords are determined so that dimensionality of aggregated 
feature vector becomes about 8k. For DM, we use 8k local 
features to generate a manifold graph for aggregation. All the 
aggregated feature vectors are power-normalized and then L2-
normalized. We use Cosine similarity for comparison among 
aggregated feature vectors.  

For both SSB and fSSB aggregations, we set the hyper-
parameters n=8k, k=3, and L=250k unless otherwise stated. 
Experimental evaluation of effects these hyper-parameters have 
on retrieval accuracy and efficiency will be presented below.  

3) Local Features 

For the 3DMR experiment, we use six local features, that are; 
Position and Orientation Distribution (POD) [19], Spin Image 
(SI) [1], Local Statistical Feature (LSF) [26], Rotational 
Projection Statistics (RoPS) [24], Dense SIFT (DSIFT) [17], and 
Multi-Orientation One SIFT (MO1SIFT) [18]. They can be 
classified into two groups; local 3D geometric feature including 
POD, SI, LSF, RoPS, and local 2D visual feature including 
DSIFT and MO1SIFT.  

In this paper, we follow the experimental settings by Furuya 
et al. [19]. For local 3D geometric features, i.e., POD, SI, LSF, 
and RoPS, a 3D model is first converted into an oriented point 

set for feature extraction. We sample 3k oriented points from 
surfaces of a 3D model. Then, a local geometric feature is 
computed from a local sphere of interest. Each local sphere has 
random radius and its center is one of the 3k oriented points. 
Each 3D model is thus described by a set of 3k local features. 
For local 2D visual features, i.e., DSIFT and MO1SIFT, a 3D 
model is first converted into a set of 42 depth images by 
rendering the 3D model from 42 viewpoints spaced uniformly in 
solid angle. DSIFT densely extracts a set of 300 SIFT [5] 
features at random positions from a rendered image. A set of 13k 
SIFT features is thus extracted from a 3D model. MO1SIFT 
extracts a SIFT feature per rendered image. For improved 
rotation invariance, each rendered image is rotated, in-plane, to 
16 orientations prior to global SIFT extraction. Each 3D model 
is thus described by a set of 42×16=672 MO1SIFT features.  

B. Experimental Results 

1) Hyper-parameters and Retrieval Accuracy 

In this section, we investigate influences of hyper-parameters 
of kSA used for the fSSB aggregation. We use the PSB dataset 
for this evaluation. Please note that, while this section presents 
results for the fSSB only, results similar to these have been 
observed for the SSB aggregation as well.  

Fig. 3 plots retrieval accuracies of the fSSB against the 
number of units n in the hidden layer of kSA. Another hyper-
parameter for kSA, i.e., the number of non-zero hidden units k, 
is fixed at 3 for the experiment. In Fig. 3, retrieval accuracies 
saturate at around n=5k~10k for most local features. Note that, 
in kSA, more hidden units leads to more computation time for 
feature aggregation. We will evaluate accuracy and efficiency of 
the approximation method used in fSSB in the next section.  

Fig. 4 shows relationship between the number of non-zero 
hidden units k for kSA and retrieval accuracy. Here, the number 
of hidden units is fixed at n=8k. We observe that retrieval 
accuracies have peaks at k=2 or k=3 for most local features for 
the value of n. The DSIFT is an exception with its highest 
retrieval accuracy at k=1. These results suggest that, kSA with 
its k-sparseness, works best with a small k.  

Figure 3.  Number of hidden units and retrieval accuraccy (PSB). 
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Figure 4.  Number of non-zero hidden units and retrieval accuracy (PSB). 

2) Effectiveness of fSSB Aggregation 

We evaluate effectiveness of the fSSB, which is an 
approximation of the SSB aggregation, both in terms of 
computational efficiency and retrieval accuracy.  

Fig. 5 plots feature aggregation time against the number of 
hidden units n for kSA. We use a set of 3k POD features, each 
of which is dimension reduced by PCA to d=64 dimensions, for 
feature aggregation. Fig. 5 indicates that computation time for 
the SSB roughly linearly increases with n. Note that feature 
aggregation of the SSB is accelerated by using a GPU. More 
computation time would be necessary if a CPU is used for the 
SSB aggregation. In comparison, feature aggregation time for 
the fSSB is nearly constant regardless of n. The fSSB replaces 
kSA with a nearest neighbor search that uses an efficient spatial 
index structure to find a landmark feature closest to a given local 
feature to be encoded. For example, when n=8k, the fSSB takes 
about 0.04s for feature aggregation, which is about 10 times 
faster than feature encoding using the SSB aggregation that takes 
about 0.39s. 

Figure 5.  Feature aggregation time per 3D model. 

Fig. 6 plots retrieval accuracies of the fSSB aggregation 
against the number of landmark local features L. Fig. 6 also 
includes plots of retrieval accuracies of the SSB aggregation as 
the base line. We can observe that the fSSB is able to 
approximate the SSB well if a sufficient number (e.g., more than 

200k) of landmark local features are used. Using L=250k 
landmark local features, the fSSB yields retrieval accuracies 
almost equal to those of the SSB aggregation for all the three 
local features in Fig. 6.  

Figure 6.  Number of landmark features and retrieval accuracy (PSB). 

3) Comparison with Other Feature Aggregation Algorithms 

a) Retrieval Accuracy 
Fig. 7 compares retrieval accuracies of eight feature 

aggregation algorithms including the SSB and the fSSB by using 
the POD feature. Horizontal axis of Fig. 7 is the dimensionality 
of aggregated feature vectors. The maximum dimensionality is 
set at 10k for we wanted to contain computational cost of feature 
comparison.  

Figure 7.  Aggregated feature dimensions and retrieval accuracy (PSB). 

Fig. 7 shows that the proposed feature aggregation 
algorithms, i.e., the SSB and the fSSB, significantly outperform 
most of the six previous feature aggregation algorithms we have 
compared against. Among the six, only the DM aggregation 
seems to compete with the SSB and the fSSB if aggregated 
feature dimension n is larger than 5k.  If the comparison is made 
for a smaller aggregated feature dimensionality, the SSB and the 
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fSSB do better than the others. We speculate that the joint 
optimization of codebook learning and feature encoding using 
kSA contributed to the high retrieval accuracy of the SSB and 
the fSSB. In comparison, “greedy” approach to codebook 
learning and feature encoding, which are done independently of 
each other, has limited the accuracies of the six previous feature 
aggregation algorithms.  

The experiment shown in Figure 7 uses the PSB benchmark 
and the POD feature. To assess generality of the proposed 
algorithms against datasets and features, we conducted a 
comprehensive set of experiments by using 4 benchmarks, 7 
feature aggregation algorithms including the fSSB, and 6 local 
features. The results for the PSB, ESB, SH11NR, and SH14LC 
benchmarks are summarized in Table I, II, III, and IV. We set 
the number of dimensions for the aggregated feature vectors to 
roughly 8k for all the feature aggregation algorithms in these 
tables. We can observe that the success of the fSSB aggregation 
depends on local features to be aggregated. For most of the 
benchmarks, for the features POD, MO1SIFT, and RoPS, the 
fSSB yields equal or better retrieval accuracies than the state-of-
the-art feature aggregation algorithms including LL, FV, VL, SV, 
and DM. On the other hand, for the features DSIFT, LSF, and SI, 
retrieval accuracies of the fSSB are less than those of the DM 
aggregation, which is arguably the most accurate feature 
aggregation algorithms for 3DMR [19]. However, overall, the 
fSSB performs about as well or better than the state-of-the-art 
feature aggregation algorithms despite the fact that the fSSB uses 
compact sparse binary representation for its feature encoding. 

TABLE I.  MAP [%] FOR PSB DATASET. 

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 48.0  51.0  55.5  33.0  38.1 40.5 
LL 53.1  57.6  56.5  33.8  41.0 46.4 
FV 50.3  56.4  44.8  33.4  40.8 44.3 
VL 51.8  56.3  43.5  32.7  41.4 42.6 
SV 51.1  54.2  47.6  31.2  42.1 41.5 
DM 56.3  59.1  56.9  39.0  43.1 47.9 

fSSB 56.1  54.5  61.6  33.8  35.0 50.5 

 

TABLE II.  MAP [%] FOR ESB DATASET. 

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 52.1  53.6  49.1 47.1  48.3 47.2 
LL 53.0  56.0  53.8 50.7  50.9 49.1 
FV 53.8  56.0  53.1 49.8  52.3 47.9 
VL 52.7  54.5  49.7 50.1  51.3 47.4 
SV 55.0  54.9  51.1 49.3  53.9 46.4 
DM 55.6  56.5  56.4 55.2  54.9 49.3 

fSSB 57.1  55.2  59.5 52.2  51.2 51.7 

 

TABLE III.  MAP [%] FOR SH11NR DATASET 

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 87.3  94.3  75.7 87.5  85.8 89.0 
LL 94.7  97.0  82.4 93.8  94.2 94.2 
FV 95.2  95.1  70.2 88.3  92.2 94.9 
VL 94.9  95.7  71.8 94.2  94.2 94.3 
SV 95.6  95.7  71.7 92.4  94.0 95.5 
DM 96.6  96.2  80.1 94.2  94.7 94.9 

fSSB 93.2  96.0  86.4 90.9  91.3 90.2 

TABLE IV.  MAP [%] FOR SH14LC DATASET 

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 39.6 38.5 36.5  30.9  32.7 35.8 
LL 44.7 41.7 39.4  31.4  34.6 39.2 
FV 43.3 40.5 32.6  31.9  34.9 37.8 
VL 43.9 39.8 31.3  30.9  34.8 36.0 
SV 43.8 39.8 33.2  31.5  36.0 36.8 
DM 47.4 41.5 40.1  36.2  36.5 40.7 

fSSB 47.1 38.2 41.6  31.5  31.4 42.1 

 

b) Temporal Cost and Spatial Cost 
Table V compares efficiency of several feature aggregation 

algorithms both in terms of computation time and memory 
footprint. We used the PSB dataset and POD feature for the 
experiments. In table V, column “Pre-processing” indicates a 
computation time for codebook learning. The fSSB also includes 
times for encoding landmark local features and building a tree-
structured index in the pre-processing step. “Feature aggregation 
/ 3D model” is a time for aggregating a set of 3k POD features 
extracted from a 3D model. “Codebook” is memory footprint for 
storing the codebook. For SSB, a codebook is equivalent to a 
trained kSA with n=8k hidden units. For fSSB, the codebook is 
the set of 250k landmark local features and its tree-structured 
index. “Encoded features / 3D model” is memory usage for 
encoded local features before pooling, while “Aggregated 
feature / 3D model” is memory footprint for a pooled 
(aggregated) feature vector per 3D model.  

Table V shows that the proposed kSA-based feature 
aggregation algorithms, i.e., SSB and fSSB, takes longer time 
than LL and SV for their pre-processing. Pre-processing time of 
the SSB and fSSB is mostly dominated by training of the kSA. 
As for the feature aggregation step, the fSSB aggregates faster 
than LL and SSB.  

The fSSB requires the largest memory footprint for its 
codebook among all the algorithms listed in Table V, as its 
“codebook” include tree-structured index. However, in practice, 
memory footprint of about 70Mbyte is acceptable as it easily fits 
on memory of an ordinary PCs.  

One of the advantages for the proposed algorithms is 
compactness of the encoded local features. Since the SSB and 
fSSB generates highly sparse, binary representation of local 
features, they require only 0.04Mbyte (40kbyte) to store 3k 
encoded local features of a 3D model. Compared to the LL, 
whose k-sparseness is set to k=15, memory consumption of 
encoded local features for the SSB and fSSB is only about one-
tenth. Compactness of the encoded local features is required in 
certain applications, e.g., part-based 3DMR, in which an 
encoded local features need to be kept and reused many times to 
generate aggregated features for a large number of possibly 
overlapping sub-regions. Memory usage for the aggregated 
feature is almost the same among the aggregation algorithms 
since we set the number of aggregated feature dimensions to 
roughly 8k.  

Table VI shows computation time per query using the 
proposed SSB and fSSB aggregation. We used the SH14LC 
since it contains the largest number (i.e., 8,987) of 3D models 
among the four benchmark datasets we have used in the 
experiments. In the table, column “Feat.” is a computation time 
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for extracting 3k POD features from a query 3D model, “Agg.” 
is a time for aggregating the set of 3k POD features extracted 
from the query, and “Sim.” indicates a time for computing 
similarities among the aggregated feature of the query and the 
aggregated features of the 3D models in the database. Clearly, in 
this case, feature aggregation time of the SSB (0.39s) is a 
bottleneck for retrieval. This bottleneck can be removed by the 
fSSB aggregation, which employs tree-structured index of 
landmark local features for faster encoding, with no loss of 
retrieval accuracy as we showed in Section IV-B-2. 

TABLE V.  COMPARISON OF TEMPORAL AND SPATIAL COST. 

algorithms 

Computation time [s] Memory footprint [Mbyte] 

Pre-
processing 

Feature 
aggregation  
/ 3D model 

Codebook 
Encoded 
features  

/ 3D model 

Aggregated 
feature  

/ 3D model
LL 74.77 0.11 2.56 0.36 0.03 
SV 9.16 0.01 0.06 97.20 0.03 
SSB 649.24 0.39 2.10 0.04 0.03 
fSSB 694.53 0.04 71.02 0.04 0.03 

 

TABLE VI.  COMPUTATION TIME PER QUERY FOR SH14LC DATASET. 

algorithms Feat. Agg. Sim. Total 
SSB 0.15 0.39 0.02 0.56 
fSSB 0.15 0.04 0.02 0.21 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, for efficient and accurate aggregation of local 
features, we proposed the Sum of Sparse Binary codes (SSB) 
aggregation and its faster-to-compute approximation fast SSB 
(fSSB) aggregation. They employ very compact, sparse, binary 
representation to encode local features. Aggregation, or pooling, 
of the encoded features is efficiently performed by summing. 
Accurate feature encoding of the proposed algorithms is 
achieved by using k-Sparse Autoencoder [3] and Angular 
Quantization-based Binary Codes algorithm [23]. Experimental 
evaluations using a whole-based 3D model retrieval scenario 
demonstrated that both SSB and fSSB is memory-efficient. In 
addition, their retrieval accuracies are comparable, or sometimes 
superior, to the existing feature aggregation algorithms including 
Fisher Vector coding [7], Super Vector coding [22], and 
Diffusion-on-Manifold aggregation [19]. The fSSB accelerates 
the SSB aggregation with almost no loss of retrieval accuracy.  

As a future work, we will evaluate the proposed algorithms 
under part-based 3DMR setting that puts the compact sparse 
binary encoding and efficient sum-pooling of the proposed 
feature aggregation algorithms to good use. 

ACKNOWLEDGMENT 

This research is supported by JSPS Grants-in-Aid for 
Scientific Research (C) #26330133. 

REFERENCES 
[1] A.E. Johnson and M. Hebert “Using spin images for efficient object 

recognition in cluttered 3D scenes,” PAMI, 21(5), pp.433–449, 1999. 

[2] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification 
with Deep Convolutional Neural Networks,” Proc. NIPS 2012, pp.1097–
1105, 2012.  

[3] A. Makhzani and B. Frey, “k-Sparse Autoencoders,” arXiv:1312.5663, 
2012. 

[4] B. Li et al., “Large Scale Comprehensive 3D Shape Retrieval,” Proc. EG 
3DOR 2014, pp.131–140, 2014. 

[5] D.G. Lowe, “Distinctive Image Features from Scale-Invariant 
Keypoints,” IJCV, 60(2), pp.91–110, 2004. 

[6] D. Galvez-Lopez and J.D. Tardos, “Real-time loop detection with bags of 
binary words,” Proc. IROS 2011, pp. 51–58, 2011. 

[7] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel 
for large-scale image classification,” Proc. ECCV 2010, Part IV, pp.143–
156, 2010. 

[8] G. Csurka et al., “Visual Categorization with Bags of Keypoints,” Proc. 
ECCV 2004 workshop on Statistical Learning in Computer Vision, pp.59–
74, 2004. 

[9] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local 
descriptors into a compact image representation,” Proc. CVPR 2010, 
pp.3304–3311, 2010. 

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for 
online learning and stochastic optimization,” The Journal of Machine 
Learning Research, 12, pp.2121–2159, 2011. 

[11] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching 
using sparse coding for image classification,” Proc. CVPR 2009, pp.794–
1801, 2009. 

[12] J. Wang et al., “Locality-constrained Linear Coding for Image 
Classification,” Proc. CVPR 2010, pp.3360–3367, 2010. 

[13] L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,” 
Proc. ICCV 2011, pp.2486–2493, 2011. 

[14] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton 
Shape Benchmark,” Proc. SMI 2004, pp.167–178, 2004. 

[15] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani, “Developing an 
engineering shape benchmark for CAD models,” Proc CAD, 38(9), 
pp.939–953, 2006. 

[16] S.M. Prakhya, L. Bingbing, and L. Weisi, “B-SHOT: A binary feature 
descriptor for fast and efficient keypoint matching on 3D point clouds,” 
Proc. IROS 2015, pp.1929–1934, 2015. 

[17] T. Furuya and R. Ohbuchi, “Dense sampling and fast encoding for 3D 
model retrieval using bag-of-visual features,” Proc. ACM CIVR 2009, 
Article No. 26, 2009. 

[18] T. Furuya and R. Ohbuchi, “Fusing Multiple Features for Shape-based 3D 
Model Retrieval,” Proc. BMVC 2014, 2014. 

[19] T. Furuya and R. Ohbuchi, “Diffusion-on-Manifold Aggregation of Local 
Features for Shape-based 3D Model Retrieval,” Proc. ICMR 2015, 
pp.171–178, 2015. 

[20] T. Furuya, S. Kurabe, and R. Ohbuchi, “Randomized sub-volume 
partitioning for part-based 3D model retrieval,” Proc. EG3DOR 2015, pp. 
15–22, 2015. 

[21] T. Matsuda, T. Furuya, and R. Ohbuchi, “Lightweight binary voxel shape 
features for 3D data matching and retrieval,” Proc. BigMM 2015, pp.20–
22, 2015. 

[22] X. Zhou, K. Yu, T. Zhang, and T.S. Huang, “Image Classification using 
Super-Vector Coding of Local Image Descriptors,” Proc. ECCV 2010, 
pp.141–154, 2010. 

[23] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular quantization-
based binary codes for fast similarity search,” Proc. NIPS 2012, 2012. 

[24] Y. Guo et al., “Rotational Projection Statistics for 3D Local Surface 
Description and Object Recognition,” IJCV, 105(1), pp.63–86, 2013. 

[25] Y. Huang, Z. Wu, L. Wang, and T. Tan, “Feature Coding in Image 
Classification, A Comprehensive Study,” PAMI, 36(3), pp.493–506, 
2014.  

[26] Y. Ohkita, Y. Ohishi, T. Furuya, and R. Ohbuchi, “Non-rigid 3D Model 
Retrieval Using Set of Local Statistical Features,” Proc. ICME 2012 
Workshop on Hot Topics in 3D Multimedia, pp.593–598, 2012. 

[27] Y. Uchida and S. Shigeyuki, “Image Retrieval with Fisher Vectors of 
Binary Features,” Proc. ACPR 2013, pp.23–28, 2015. 

[28] Z. Lian et al., “SHREC'11 Track: Shape Retrieval on Non-rigid 3D 
Watertight Meshes,” Proc. EG 3DOR 2011, pp.79–88, 2011

 


