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ABSTRACT 
Aggregating a set of local features has been used widely to realize 
recognition or retrieval of multimedia data including 2D images 
and 3D models. A number of feature aggregation algorithms (e.g., 
Bag-of-Features [5], Locality-constrained Linear coding [26], or 
Fisher Vector coding [23]) have been proposed. They first learn a 
codebook, or a set of codewords, by clustering the local features 
and then encode these local features by using the learned codebook. 
Despite the great success of these feature aggregation algorithms, 
we argue that they are not necessarily optimal in terms of accuracy 
since their codebook learning and feature encoding are computed 
separately. In this paper, we propose two novel feature aggregation 
algorithms based on k-Sparse Autoencoder (kSA) [20] that realize 
more accurate local feature aggregation. Our proposed algorithms, 
called Database-adaptive kSA (DkSA) aggregation and Per-data-
adaptive kSA (PkSA) aggregation, jointly optimize codebook 
learning and feature encoding. In addition, the kSA-based feature 
encoding enhances saliency of local features due to k-sparseness 
constraints and non-negativity constraints. Of the two proposed 
algorithms, the PkSA aggregation exploits reconstruction error of a 
local feature derived from the kSA for more accurate aggregated 
feature. Experimental evaluation using a shape-based 3D model 
retrieval scenario showed that the retrieval accuracy of our 
proposed algorithms are superior to the existing feature aggregation 
algorithms we have compared against.  
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1. INTRODUCTION 
Aggregation of local features is an important technological 
component for effective and efficient comparison among 
multimedia data objects, including 2D images, 3D models, etc. 
Recently, for the task of classification or retrieval of 2D images, 
“end-to-end” deep learning has achieved higher accuracy than the 
conventional approach which combines hand-crafted local features 

and their aggregation. On the other hand, recent studies (e.g., [10]) 
have shown that aggregating features derived from a deep neural 
network is also effective for 2D image retrieval. Also, for shape-
based 3D model retrieval (3DMR) on which we focus in this paper, 
extracting local features from a 3D model and aggregating them per 
3D model remains as one of the most promising approaches. We 
thus think that improving feature aggregation is still quite 
meaningful for progress of multimedia information retrieval. 

Goal of local feature aggregation is to generate a feature vector that 
reflects, as well as possible, distribution of local features in their 
feature space.  Feature aggregation generally consists of two steps, 
i.e., encoding and pooling. A set of codewords are chosen, typically, 
by clustering the set of local features. A local feature is encoded by 
using codewords around the feature and statistics associated with 
the codewords. Such statistics as density, mean, and/or variance, 
can be used for the encoding. For pooling, encoded local features 
are accumulated into a single feature per 3D model. For efficient 
inter-feature comparison, aggregated feature better be compact. 

Many algorithms for feature aggregation have been proposed [12]. 
They can be roughly classified into two groups; sparse coding (SC)-
based approach and higher-order statistics (HS)-based approach. 
The SC-based approach (e.g., [5][19][26]) sparsely encodes a local 
feature by using weighted linear sum of its neighboring codewords. 
Locality-constrained Linear (LL) coding [26] is one of the most 
representative SC-based methods. Bag-of-Features (BF) [5] is a 
special case of the SC-based approach in which a local feature is 
assigned to its nearest single codeword by vector quantization. On 
the other hand, the HS-based approach (e.g., [14][23][27]) tries to 
encode local features by using higher-order statistics around the 
codewords. Fisher Vector (FV) coding [23] employs mean and 
variance of local features around the codeword. Vector of Locally 
Aggregated Descriptor (VLAD) [14] approximates the FV by using 
only mean around the codeword. 

These feature aggregation algorithms described above have been 
successfully utilized for recognition or retrieval of 2D images or 3D 
models. However, they are not necessarily optimal in terms of 
accuracy since the codebook learning and the feature encoding 
steps are processed separately. That is, as a pre-processing, a 
codebook (i.e., a set of codewords) is first learned by clustering the 
set of local features. Then, each local feature is encoded by using 
the learned codebook. This “greedy” framework is adopted by most 
of the feature aggregation algorithms including BF, LL1, FV, 
VLAD, and Triangular Encoding (TE) [4]. The greedy approach 
could reduce expressive power of the aggregated features.  
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1 Although joint optimization framework is proposed in [26], LL is typically 
used along with a codebook learned by k-means clustering in the literature.  
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In this paper, aiming for more accurate aggregation of local features, 
we propose a pair of novel SC-based feature aggregation algorithms. 
The algorithm is based on k-Sparse Autoencoder (kSA) proposed 
by Makhzani et al. [20]. A kSA-based feature aggregation can be 
more accurate than the existing ones for two reasons. Firstly,  kSA 
can jointly optimize codebook learning and feature encoding as 
kSA is trained by alternating encoding of local features and 
updating of codewords (i.e., updating of connection weights of kSA 
neurons) so that reconstruction error of the local features is 
minimized. Similar joint optimization framework is employed by 
Sparse Autoencoder (SA) [21] and KSVD [2], which are popular 
sparse coding algorithms. Secondly, feature encoding by kSA could 
enhance saliency of local features since the kSA has two constraints 
considered to aid accurate feature encoding, that are, k-sparseness 
and non-negativity. K-sparseness constrains feature encoding to use 
a small number (k) of codewords correlated to the local feature. 
Non-negativity forces coefficients weighting the codewords to be 
non-negative. Several state-of-the-art SC-based algorithms, e.g., 
LL coding and Localized Soft-assignment (LS) coding [19], 
showed these constraints improve accuracy of encoded features. 

 Our two kSA-based feature aggregation algorithms are called 
Database-adaptive kSA (DkSA) aggregation and Per-data-adaptive 
kSA (PkSA) aggregation. DkSA (Figure 1b) is a straight-forward 
approach for feature aggregation using kSA. As a pre-processing 
(Figure 1a), kSA is trained by using numerous and diverse local 
features sampled from the database (hence database-adaptive). 
After training, each of a set local features extracted from a 3D 
model is encoded by using the database-adapted kSA. The set of 
encoded local features are accumulated into a single feature vector 
per 3D model by sum-pooling for efficient comparison. PkSA 
(Figure 1c), on the other hand, aims at generating aggregated 
features more expressive than DkSA by exploiting reconstruction 
error of local features derived from the kSA. kSA is first trained in 
the same manner as DkSA (Figure 1a). Then, the database-adapted 
kSA is additionally trained, or fine-tuned, by using a set of local 
features extracted from each 3D model (hence per-data-adaptive). 
An aggregated feature for the 3D model is a set of displacements of 

parameters, or weights, caused by the fine-tuning. Table 1 
compares characteristics of SC-based feature aggregation 
algorithms we will evaluate in the experimental section. The DkSA 
and the PkSA have potential to yield expressive aggregated features 
since both of them satisfy all the criteria essential for accurate 
feature aggregation, i.e., joint optimization of codebook and feature 
encoding, k-sparse constraint, and non-negative constraint. 
Exploiting reconstruction error of local features for PkSA is novel 
for the group of SC-based feature aggregation algorithms. 

Experimental evaluation under a 3DMR scenario shows that the 
proposed kSA-based feature aggregation algorithms significantly 
outperform existing SC-based and HS-based counterparts.  

Contributions of this paper can be summarized as follows. 

 Proposition of two k-Sparse Autoencoder based feature 
aggregation algorithms, that are, DkSA and PkSA, for more 
accurate aggregation of local features. 

 Quantitative evaluation of DkSA and PkSA using multiple 
local features and multiple benchmark datasets for 3DMR.  

2. PROPOSED ALGORITHM 
2.1 Database-adaptive kSA Aggregation 
As with the previous feature aggregation methods, DkSA (Figure 
1b) aggregation consists of two processing steps, that are, encoding 
and pooling of local features. At the encoding stage, a set of local 
features extracted from a 3D model is first normalized by using 
ZCA-whitening [3] so that local features have zero means and all 
the pair of dimensions are uncorrelated. Then, each whitened local 
feature is fed into the trained kSA to obtain unit activations in the 
hidden layer. Feature encoding is performed as h = σ(y) = σ(xWe), 
where h is an encoded local feature (or unit activation in the hidden 
layer), x is a input (whitened) local feature, We is a weight matrix 
for encoder, and σ is a non-linear activation function. By using 
hidden layer with n units, d-dimensional local feature x is encoded 
into n-dimensional feature (n > d). Note that our kSA includes bias 
terms for both encoder and decoder, although the bias term is 
omitted from the equation for notation simplicity.  

Activation function σ strongly influences saliency of encoded local 
features. Our activation function consists of Rectified Linear Units 
(ReLU) [16] and k-largest value selection. Specifically, yi, which is 
i-th element of y, is first rectified by using ReLU, i.e., 
zi =max(0, yi). ReLU ensures non-negativity of feature encoding. 
Then, k largest elements in {zi | i = 1, …, n} are kept while the rest 
is set to 0.  

At the pooling stage, the set of encoded local features is aggregated 
into a single feature vector per 3D model by summing. Therefore, 
the number of dimensions for aggregated feature is also n. Finally, 

Table 1. Comparison of sparse coding-based feature 
aggregation algorithms. 

algorithms k-sparseness non-negativity 

joint 
optimization 
of codebook 
and encoding 

exploiting 
reconstruction 

error 

SA [21] No Yes Yes No 
TE [4] No Yes No No 

KSVD [2] Yes No Yes No 
LL [26] Yes Yes No1 No 

DkSA (ours) Yes Yes Yes No 
PkSA (ours) Yes Yes Yes Yes 
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Figure 1. Overview of the proposed feature aggregation algorithms using k-Sparse Autoencoder. 
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the aggregated feature vector is normalized by using power 
normalization followed by L2 normalization as with [23]. Cosine 
similarity is used to compare a pair of DkSA-aggregated features.  

DkSA has two hyper-parameters that require manual tuning, i.e., 
the number of units in the hidden layer n and the number of non-
zero elements in the hidden layer k. In the experiments, n is 
typically set to 8,000 and small k (e.g.,k=3) is used.  

Training of the kSA is performed as follows. The kSA is trained by 
minimizing mean squared reconstruction error of local features. We 
use T=250k local features randomly sampled from the database for 
training. We use Stochastic Gradient Descent (SGD) with mini-
batch. Each mini-batch contains 200 local features randomly 
selected from the set of T training local features. To adaptively 
assign a learning rate to each parameter (i.e., each connection 
weight between neurons), we use AdaGrad algorithm [6] with an 
initial learning rate = 0.2. Training is regularized with weight decay 
coefficient λ = 10–4. The optimization is iterated for 50 epochs.  

2.2 Per-data-adaptive kSA Aggregation 
PkSA (Figure 1c) aims at generating more accurate aggregated 
features than DkSA by exploiting reconstruction error of local 
features. For pre-processing, kSA is trained in the same manner as 
DkSA except for the initial learning rate = 0.05 for AdaGrad. We 
use this initial learning rate since it yielded slightly higher retrieval 
accuracy in the preliminary experiments. 

To aggregate a set of local features extracted from a 3D model M, 
the database-adapted kSA is additionally trained, or fine-tuned, by 
using the local features of the 3D model M. The kSA parameters 
We for encoder and Wd for decoder are fine-tuned to reconstruct 
the local features of the 3D model M well. Then, we compute 
displacement, or differential, of parameters due to fine-tuning as 
ΔWd = W*d – Wd, where W*d and Wd indicate weight matrices of 
the decoder after and before fine-tuning, respectively. The 
displacement matrix ΔWd is then vectorized to form a PkSA-
aggregated feature for the 3D model M. The PkSA-aggregated 
feature vector has D=(n+1)×d dimensions where “+1” means that 
our kSA has bias terms. We can also use parameter displacement of 
the encoder, i.e., ΔWe = W*e − We, for aggregation. However, 
preliminary experiments showed that decoder displacement ΔWd 
consistently outperformed encoder displacement ΔWe.  

Note that fine-tuning for PkSA aggregation is performed per 3D 
model. That is, the database-adapted kSA is duplicated for each 3D 
model, and each duplicated kSA is fine-tuned by using the set of 
local features extracted from the 3D model. For fine-tuning, we 
employ Steepest Descent (SD) algorithm; all the local features of 
the 3D model are used to compute gradients of the parameters. We 
use SD instead of SGD (with mini-batch) so as to exclude 
randomness from the result of fine-tuning. We use AdaGrad with 
initial learning rate = 0.05 and fine-tuning is iterated for 50 epochs. 

Since PkSA aggregation produces higher-dimensional aggregated 
feature vectors than DkSA aggregation, we perform dimension 
reduction of the PkSA-aggregated features for efficient inter-
feature comparison. We use Sparse Random Projection (SRP) [1] 
algorithm to compress the PkSA-aggregated features down to 8,000 
dimensions. Preliminary experiments showed that the SRP down to 
8,000 dimensions did not degrade retrieval accuracy. Comparison 
among the dimension-reduced PkSA-aggregated feature vectors is 
done in a manner identical to that of DkSA; aggregated features are 
power-normalized and then L2-normalized for Cosine similarity.  

PkSA has the same hyper-parameters as DkSA, i.e., the number of 
units in the hidden layer n and the number of non-zero elements in 

the hidden layer k. In the experiments, n is to 500 and k is set to 
around 10, which is slightly larger than k for DkSA.  

3. EXPERIMENTS AND RESULTS 
3.1 Experimental Setup 
To validate efficacy of the proposed feature aggregation algorithms, 
we use four benchmark databases for 3DMR; the Princeton Shape 
Benchmark (PSB) [24], the Engineering Shape Benchmark (ESB) 
[13], the SHREC 2011 Non-Rigid watertight meshes dataset 
(SH11NR) [17], and the SHREC 2014 Large-scale Comprehensive 
3D shape retrieval dataset (SH14LC) [18]. For all the benchmarks, 
one of 3D models in the database is used as a query and remaining 
3D models are used as retrieval targets. We use Mean Average 
Precision (MAP) [%] as an index of retrieval accuracy. Since 
optimization of the proposed algorithms using SGD have 
randomness, all the experiments for DkSA and PkSA are performed 
three times and their average MAP are reported. Table 2 
summarizes the number of non-zero units k used for DkSA and 
PkSA aggregation. For another hyper-parameter, i.e., the number of 
hidden units, we use n=8,000 for DkSA and n=500 for PkSA unless 
otherwise stated.  

Table 2. Number of non-zero units k used for experiments. 

 POD LSF SI RoPS DSIFT MO1SIFT
DkSA 3 3 3 3 1 3 
PkSA 20 10 10 20 5 20 

We compare the proposed feature aggregation algorithms against 
six existing feature aggregation algorithms, i.e., BF [5], LL [26], 
FV [23], VLAD (VL) [14], SV [27], and DM [9]. We also apply 
three sparse coding algorithms to local feature aggregation, i.e., 
Sparse Autoencoder (SA) [21], Triangular Encoding (TE) [4], and 
KSVD [2]. For sparse coding-based aggregation methods including 
BF, LL, SA, TE, and KSVD, we learn 8k codewords. On the other 
hand, for higher-order statistics-based methods including VL, FV, 
and SV, the number of codewords are determined so that 
dimensionality of aggregated feature vector becomes about 300k. 
For DM, we use 250k local features to generate a manifold graph 
for aggregation. All the aggregated feature vectors are power-
normalized and are then L2-normalized. We use Cosine similarity 
for comparison among feature vectors.  

We use six local features for 3DMR, i.e., Position and Orientation 
Distribution (POD) [9], Spin Image (SI) [15], Local Statistical 
Feature (LSF) [22], Rotational Projection Statistics (RoPS) [10], 
Dense SIFT (DSIFT) [7], and Multi-Orientation One SIFT 
(MO1SIFT) [8]. They are classified into two groups; local 3D 
geometric feature including POD, SI, LSF, RoPS, and local 2D 
visual feature including DSIFT and MO1SIFT. Each local feature 
extraction method has hyper-parameters, e.g., the number of local 
features per 3D model or the number of rendering views. In this 
paper, we follow the experimental settings by Furuya et al. [9].  

3.2 Experimental Results 
3.2.1 Comparison with Other Feature Aggregation 
Algorithms 
Table 3 compares the proposed feature aggregation algorithms 
against the other feature aggregation algorithms for the PSB dataset. 
Part of the table is due to [9]. Table 3 shows our kSA-based feature 
aggregation algorithms outperform the existing SC-based methods, 
i.e., BF, SA, TE, KSVD, and LL. We try to explain the results by 
using Table 1. TE has non-negativity but it lacks k-sparseness for 
feature encoding. KSVD has k-sparseness (we used k=5 for the 
experiment) and it learns codebook and feature encoding jointly. 
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However, feature encoding by KSVD could produce negative 
coefficients. LL has both k-sparseness (we used k=15) and non-
negativity. But feature encoding would be not optimal because it 
uses a codebook learned by k-means clustering. In comparison, the 
DkSA and PkSA satisfy both k-sparseness and non-negativity of 
feature encoding. Also, DkSA and PkSA jointly optimize codebook 
learning and feature encoding. PkSA outperforms DkSA for five 
out of six features in Table 3 as the former exploits reconstruction 
error of local features for aggregation.  

Table 3 also shows DkSA and PkSA outperform the state-of-the-art 
HS-based aggregation methods for most cases. Joint optimization 
framework of the proposed algorithms would produce more 
accurate aggregated features than the “greedy” approach adopted 
by the HS-based methods in Table 3.  

Table 3. Comparison of MAP [%] (PSB dataset). 

 POD DSIFT MO1SIFT LSF SI RoPS 
BF 47.8  54.0  51.9 33.0  38.1 40.5 
SA 37.2 46.9 42.3  
TE 40.2 45.5 41.3  

KSVD 50.0 55.7 57.4  
LL 53.1  57.6  56.5 33.8  41.0 46.4 
FV 52.9  61.7  54.2 36.7  44.9 46.3 
VL 52.9  60.9  50.6 38.3  45.5 42.7 
SV 55.3  63.8  53.2 40.2  49.6 48.4 
DM 60.1  64.7  61.1 41.4  47.3 50.4 

DkSA 57.1 56.7 63.7 35.3 37.4 52.1
PkSA 61.5 63.8 62.7 43.0 48.8 55.1

Figure 2 plots retrieval accuracies against the number of 
dimensions for aggregated features. We extracted POD features 
from the 3D models. Both DkSA and PkSA show higher retrieval 
accuracy than the state-of-the-art feature aggregation methods 
including LL, VL, FV, and SV. Also, PkSA significantly 
outperforms the DM which is one of the most accurate feature 
aggregation algorithm for 3DMR [9]. 

Figure 2. Comparison of feature aggregation methods (PSB). 

In the experiments above, we used the only one benchmark 
database, i.e., the PSB. Table 4 shows generalization capability of 
the proposed algorithms for a variety of 3D model databases 
described in Section 3.1. We use POD local feature for the 
experiment. Table 4 shows the PkSA aggregation performs well, 
but not always the best, among the previous state-of-the-art feature 
aggregation algorithms. 

3.2.2 Efficiency 
We evaluate efficiency of the proposed kSA-based feature 
aggregation algorithms. We use a PC having two Intel Xeon E5-
2650V2 CPUs, 256GB DRAM, and a GeForce GTX 980 GPU. 

Implementations of VL and SV are based on the VLFeat library 
[25]. They employ parallel computing on the multi-core CPUs for  

 

 

both codebook learning and feature encoding. Computations of 
DkSA and PkSA are accelerated by using a GPU. We use our own 
implementations based on the CUDA library for DkSA and PkSA.  

Table 5 compares efficiency of feature aggregation algorithms. In 
the table, pre-processing for VL and SV mean learning a codebook 
with 3k codewords. Meanwhile, pre-processing for DkSA and 
PkSA includes whitening of local features and training kSA. 
Number of hidden units n for DkSA and PkSA are set to 8k and 500 
respectively. As for feature aggregation, we measured computation 
time for aggregating 3k POD features per 3D model. DkSA and 
PkSA are slower than VL and SV in aggregating local features. 
PkSA is the slowest among the four algorithms since it requires 
fine-tuning of kSA for aggregation. However, by the help of GPU, 
computation time of aggregation for both DkSA and PkSA are 
within 1 second, which is acceptable for 3DMR.  

Querying a 3D model database by using the proposed algorithms is 
also efficient. We measured computation time per query for the 
SH14LC database which includes 8,987 3D models. A retrieval 
consists of three processes, i.e., extracting local features from the 
given query 3D model, aggregating the local features of the query, 
and computing similarities among the query and the 3D models in 
the database. 3DMR using DkSA took 0.61s per query and 3DMR 
using PkSA took 1.12s per query.  

 

4. CONCLUSION AND FUTURE WORK 
In this paper, for more accurate aggregation of local features, we 
proposed two novel feature aggregation algorithms DkSA and 
PkSA that employ k-Sparse Autoencoder (kSA). These algorithms 
jointly optimize codebook learning and feature encoding. Also, 
feature encoding using the kSA can enhance saliency of local 
features due to two constraints, i.e., k-sparseness and non-
negativity, on unit activation in the hidden layer of the kSA. 
Furthermore, PkSA aggregation exploits reconstruction error of 
local features per data object for better retrieval accuracy. 

Quantitative evaluation using multiple local features and multiple 
benchmarks for 3DMR showed that our proposed algorithms 
perform equal or better than existing state-of-the-art feature 
aggregation algorithms. As a future work, we will evaluate 
effectiveness of the kSA-based aggregation under 2D image 
retrieval or recognition setting. 
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Table 4. Comparison of MAP [%] (POD feature). 

algorithms PSB ESB SH11NR SH14LC 
BF 47.8 52.1  87.3 39.6 
LL 53.1 53.0  94.7 44.7 
FV 52.9 54.4  96.7 44.8 
VL 52.9 49.8  95.9 44.0 
SV 55.3 54.0  96.5 45.3 
DM 60.1 57.2  95.8 50.7 

DkSA 57.1 57.4 96.0 47.7
PkSA 61.5 59.4 96.4 50.9

Table 5. Computation time [s] for feature aggregation. 

algorithms pre-processing feature aggregation per 3D model 
VL 41.5 0.04
SV 342.6 0.08

DkSA 798.6 0.29
PkSA 226.9 0.75
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