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Abstract 

In this paper, we propose a method for shape-similarity 

search of 3D polygonal-mesh models. The system accepts 

triangular meshes, but tolerates degenerated polygons, 

disconnected component, and other anomalies. As the 

feature vector, the method uses a combination of three 

vectors, (1) the moment of inertia, (2) the average distance 

of surface from the axis, and (3) the variance of distance of 

the surface from the axis. Values in each vector are 

discretely parameterized along each of the three principal 

axes of inertia of the model. We employed the Euclidean 

distance and the elastic-matching distance as the measures 

of distance between pairs of feature vectors. Experiments 

showed that the proposed shape features and distance 

measures perform fairly well in retrieving models having 

similar shape from a database of VRML models. 

Keywords: content-based search and retrieval, geometric 

modeling, polygonal mesh, principal axes, elastic matching. 

1.  Introduction  

With the recent increase in the number of three-

dimensional (3D) geometric models, both on the Internet 

and in the local storage media at movie studios and 

automobile manufacturers, development of the technology 

for effective content-based search and retrieval of three-

dimensional (3D) models has become an important issue. 

Content-based search and retrieval of text, audio and image 

data has been actively studied for many years. In case of 

3D geometric models, however, investigation into content-

based search has gained attention only recently.  

A 3D model could be searched by textual annotation by 

using a conventional text-based search engine. This 

approach wouldn’t work in many of the application 

scenarios. The annotations added by human beings depend 

on culture, language, age, sex, and other factors. It is thus 

necessary to have a content-based search and retrieval 

systems for 3D models that are based on the features 

intrinsic to the 3D models, most important of which is the 

shape [Paquet97, Suzuki98, Keim99, Regli00, Suzuki00, 

McWherter01, Osada01, Novotni01, Hilaga01, Vranic01, 

Corney02, Mukai02].  

A typical method for shape similarity search of 3D 

geometric models consists of three steps, (1) the 

computation of a set of shape features from a given model, 

(2) the computation of distance among pairs of shape 

features, and (3) the retrieval of the model based on the 

distance values, e.g., k-nearest neighbors.  

One of the issues that need consideration is the shape 

representation(s) that the system intends to accept. There 

are wide variety of 3D shape representations, such as solids 

bounded by parametric curved surfaces or polygons, voxel 

enumeration, sum of implicit functions, or VRML-like 

“polygon-soup”, to name a few. There is no single 3D 

shape representation or format that could serve as a 

greatest common denominator to all 3D shape 

representations. Only a small subset of the shape 

representation pairs is compatible enough so that they can 

be converted back and forth with reasonable approximation. 

For example, a solid model can be converted into a voxel 

representation with reasonable approximation. However, a 

VRML model, which in general does not define a solid, 

can be converted to neither voxel nor “watertight” meshes. 

Two-dimensional (2D) images, on the other hand, has 2D 

array of pixels as the greatest common denominator of 2D 

image representations. 

Many 3D shape similarity comparison algorithms, for 

example, those by Hilaga [Hilaga01] and Vranic 

[Vranic01], assume as its input a solid bounded by a 

polygonal mesh. A majority of recent mechanical CAD 

models define solids bounded by curved surfaces, and are 

very well defined. Regli [Regli00], McWherter 

[McWherter01], Corney [Corney02], and Mukai 

[Mukai02] are the examples of shape similarity search 

methods directed toward geometrical CAD models. Keim 

et al. [Keim99] dealt with the voxel enumeration 
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representation. These are relatively well-defined shape 

representations for they represent solid. 

We aim at a shape similarity search system that can 

handle VRML-like models. To search for models 

represented as VRML models, one must deal with an ill-

defined shape definition often referred to as “polygon 

soup”. A polygon soup defines model that gives a visual 

impression of 3D shapes by using a collection of polygonal 

meshes, independent polygons, line fragments, and points. 

It does not define “proper” 3D objects, i.e., solids. While 

triangular meshes are the primary target, the methods by 

Osada et al. [Osada01] and Elad et al. [Elad01] allow 

degeneracies in the meshes, such as zero-area triangle and 

disconnected components. The algorithm described in this 

paper also targets the same class of shape representation as 

the methods by [Osada01] or Elad et al. [Elad01]. 

Given a model defined using a shape representation, a 

typical shape similarity search system extracts a succinct 

shape description or feature for shape similarity (or 

dissimilarity) comparison. Most of the shape features 

employed so far are of geometrical nature [Paquet97, 

Suzuki98, Keim99, Suzuki00, Osada01, Novotni01, 

Vranic01]. One of the first studies on shape similarity 

search published by Eric Paquet et al. [Paquet97] 

employed two kinds of geometrical features and various 

photometric properties for similarity measurement. 

Photometric properties included color, reflectance, and 

texture. The first geometric feature is the histograms of 

angles between the surface normal vectors and the first two 

of the principal axes. The second geometric feature is a set 

of statistics computed from “cords”. A cord is a vector 

from the center of mass of the model to the center of mass 

of a triangle. If the shape is solid, i.e., if an inside-outside 

test can be performed, the model can be converted to a 

voxel-based representation for feature extraction and 

distance computation [Novotni01].  Or, the shape may be 

given in a voxel representation to start with [Keim99]. 

Hilaga et al. [Hilaga01] employed topology as the primary 

shape feature in its shape similarity query. Their 

topological feature is based on the Reeb graph. However, 

unlike the traditional Reeb graph, Hilaga’s topological 

feature can be computed independent of the location and 

orientation of the shape. Using Hilaga’s method, shapes 

having different topology, for example, a torus and a 

sphere, can be distinguished clearly. It could also recognize 

a pair of geometrically different but topologically similar 

shapes, e.g., human figures having either bent or straight 

elbows. Note that Hilaga’s method can’t compare a 3D 

model that consists of more than one (topologically) 

disconnected components, e.g., two detached spheres, for 

his topological analysis can’t be performed on such a 

model. 

Given a pair of shape features, similarity, or more 

commonly, dissimilarity or distance between the two 

features are computed so that the distance among pairs of 

objects can be ranked. The best way to compute distance is 

yet to be found, given a wide variety of shape features and 

the difficult nature of the comparison. Relatively simple 

distance measures include Euclidean distance, Manhattan 

distance, and Hausdorff distance. In the field of content-

based image search and retrieval, many more distance 

measures have been studied [Veltkamp01]. Another 

possible approach is to employ a trained classifier, e.g., a 

neural network or a Support-Vector Machine (SVM) 

[Elad01] to find the models close to the queried shape. 

The method to pose a query by itself is a difficult 

problem for a 3D shape similarity search. The most 

obvious way is to present an example 3D model (or a set of 

example models) and tell the system to find shapes similar 

to it. This approach is probably sufficient for many 

applications. Another approach could be to manually draw 

an example shape to be searched. It is relatively easy to 

draw a 2D figure, or a set of 2D figures (e.g., orthographic 

projections) of the 3D shape sought for. But a projection or 

projections of 3D shape onto 2D contour would introduce 

ambiguity into the query. Furthermore, drawing is not an 

easy task for many people. It is also possible to draw 3D 

shapes directly, for example, by using a 3D shape sketch 

tool similar to the Teddy [Igarashi99]. However, drawing in 

3D is tougher than drawing in 2D for most of the people. 

And drawing topologically complex 3D shapes, such as 

those having holes and branches can be quite difficult. For 

the system described in this paper, we have settled for the 

easiest method, that is, querying by using a 3D model given 

a priori as the example.  

As the distance computed and the models retrieved, one 

finds another issue to be solved, the issue of subjectivity in 

shape similarity comparison. Experiments using our proof-

of-concept system showed that the models the system chose 

as the closest to the query presented are not necessarily the 

models the user wanted. This discrepancy in part stems 

from the subjective nature of shape similarity decision. To 

accommodate such subjectivity, Suzuki et al. employed, in 

their pioneering work on 3D shape similarity search, multi-

dimensional scaling [Suzuki98, Suzuki00] so that 

subjective keywords used in the query and the shape 

features computed from the 3D shapes are strongly 

correlated. Another approach is to employ a learning 

classifier such as the SVM for a human directed search 

[Elad00]. The SVM is a binary classifier that creates and 

uses a nonlinear hyper-plane with maximum margins to the 

training samples of the given pair of classes [Burges98, 

Vapnik98, Vapnik99]. Elad et al. computed, after pose 

normalization, statistical moments of points distributed on 

mesh surfaces for their feature vector. They fed the feature 

vector to an SVM to compute the dissimilarity. We also 

experimented with the SVM [Ibato02] by combining the 

pose-normalization free shape feature D2 defined by Osada 
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et al. [Osada01] with the SVM. 

In this paper, we propose and evaluate a set of shape 

features and a pair of shape dissimilarity measures for a 

shape similarity search system for 3D shapes defined as 

polygonal meshes. The shape features we propose are three 

statistics discretely parameterized along the principal axes 

of inertia of the model. To compute the inertial axes as well 

as the statistics, we assumed the triangular faces to have 

uniformly distributed mass, and approximated it by using a 

Monte-Carlo approach. As the dissimilarity measure 

between a pair of feature vectors, we experimented with the 

simple Euclidean distance and the elastic matching 

distance that took advantage of the dynamic programming 

for efficient computation. Experiments showed that our 

proposed methods have promising characteristics. While 

the proof-of-concept system is not yet ready for real-world 

applications, the components we have developed could be 

useful in a future shape-similarity search and retrieval 

system.  

2.  Shape similarity search algorithm 

Our shape similarity search system assumes, as its inputs, 

3D polygonal meshes. An entry in the database stores a 3D 

model along with a pre-calculated feature vector for the 

model. Currently, the database itself is organized as a 

simple array and has no indexing and other methods to 

accelerate search and/or retrieval.  

As the query interface, we adopted the query-by-

example approach. A user presents the system with an 

example 3D shape and asks the system to retrieve its k-

nearest shapes.  

The system first normalizes the location and orientation 

of the model using the center of mass and the principal 

axes of inertia of the model. The computations of the 

center of mass and the inertial moment are performed by 

assuming that the each polygonal surface has a uniform 

density, and approximating it by using a Monte-Carlo 

approach.  

As the shape feature, our method employs three 

statistics that are discretely parameterized along the 

principal axes of inertia the model. To compute statistics 

parameterized along an inertial axis, the model is 

subdivided into slabs along the axis. Then, for each slab, 

compute; (1) the moment of inertia about the axis, (2) the 

average distance to the surfaces from the axis, and (3) the 

variance of distance to the surfaces from the axis. 

A dissimilarity value among a pair of feature vectors is 

computed using two methods, the Euclidean distance and 

the elastic-matching distance. The latter is intended to 

accommodate certain local deformation of model’s shape, 

e.g., elongation of the torso part of a horse model.  

Details of each step of our shape similarity search 

method will be explained below.  

2.1  Pose normalization 

Our method first normalizes the size and orientation of 

the model prior to extracting shape features. To normalize 

orientation, we compute principal axes of inertia. 

Gottschalk et al. assumed unit point mass located at each 

vertex and computed the principal axes of inertia 

[Gottschalk94]. The principal axes computed using this 

method depends of the tessellation of the mesh. In our 

approach, mass is assumed to be uniformly distributed on 

the surface of the mesh. We approximated it by placing a 

number of point masses at a random location on each 

triangle. The number of points is proportional to the area of 

the triangle. Using the point mass on the surface, the 

covariance matrix C  can be computed using the formula; 

 ( ) ( )( )
1

1
n

pq i M i M

i

c p p q q
n

=

= = − −∑C  (1) 

where { }zyxqp ,,, ∈ . Three eigenvectors of the 

covariance matrix C  are the principal axes of inertia of the 

model. We name the axes α , β , and γ  in the decreasing 

order of the magnitude of the eigenvalues associated with 

each axis. We resolve the issue of symmetry of the 

principal axes by using the distribution of points (i.e., 

mass) about the center of mass the model.  

To generate points on triangles, we adopted the method 

by Osada et al. [Osada01]. Using Osada’s method, given 

the coordinates of the vertices of the triangle 
1
t , 

2
t , and 

3
t  and a pair of pseudo-random number sequences (PRNS) 

1
r  and 

2
r , the coordinate of the point P  is computed as 
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Figure 1. The block diagram of our shape-similarity search 
algorithm.  
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follows. 

( ) ( ) ( )1 1 1 2 2 1 2 3
1 1r r r r r= − + − + ⋅P t t t . (2) 

Actually, instead of the PRNS 
1
r  and 

2
r , we used a low-

discrepancy sequence or quasi-random number sequence 

(QRNS) Sobol [William92] for a more stable and lower-

error alignment of the model’s orientation. Figure 2 shows 

the results of an experiments that compared the angular 

alignment error (in degrees) using the PRNS (the drand48() 

library function) and the Sobol QRNS with the formulae 

(1) and (2). The error figure is the average of three angular 

errors, in degree, of the three axes α , β , and γ  over 10 

experimental runs using the bunny model of Figure 4. It 

can be seen that the Sobol QRNS consistently 

outperformed the drand48() PRNS.  

The point masses generated on the triangles are also 

used to compute statistics to be used as shape features, 

which will be explained below. 

2.2  Parameterized statistics 

Our shape features are three vectors of statistical values 

that are discretely parameterized along one of the principal 

axes of inertia. The statistics are, (1) the moment of inertia 

about the axis, (2) the average distance to surfaces from the 

axis, and (3) the variance of distance to surfaces from the 

axis. The algorithm computes 9 vectors in total; three 

statistics along each of the three the principal axes. The 

dissimilarity (or distance) computation uses a vector that is 

a concatenation of these 9 vectors.  

To compute a feature vector discretely parameterized 

along an axis, the model is segmented into l equal thickness 

slabs along the axis by (l-1) parallel, equal interval planes 

perpendicular to the axis (See Figure 3). The ith 

component of the (l-1)-dimensional feature vector is 

computed from the ith analysis window, which is a pair of 

adjacent intervals at the positions i and (i+1). If we have l-

slabs, there are (l-1) analysis windows and the feature 

vector is (l-1)-dimensional. This overlap of analysis 

windows makes the feature vector somewhat more robust 

against slight alignment errors or minor geometric 

distortions along the axis.  

A Monte-Carlo approach is used again in computing the 

statistics; the points generated on the surfaces of the mesh 

for the pose normalization (Section 2.1) are used again for 

the computation of the statistics.  

Let 
, , ,

, ,
i i iα β γm m m  be the inertial moment about the 

axes α , β , and γ , respectively, of the i-th (1 1i l≤ ≤ − ) 

analysis window (i.e., a pair of adacent intervals at 

positions i and (i+1)). Similarly, let 
, , ,

, ,
i i iα β γa a a  and 

, , ,

, ,
i i iα β γd d d ,be the average and variance of the distance of 

surfaces from the axis α , β , and γ , respectively, of the i-

th (1 1i l≤ ≤ − ) analysis window. The feature vector F for 

the model M becomes; 

 ( )
,1 ,2 , 1

,1 ,2 , 1

,1 ,2 , 1

, , ,

, , ,

, , ,

p p p p l

p p p p p l

p p p p l

m m m

a a a

d d d

−

−

−

   
   

= = =   
   
   

m

F F a

d

�

�

�

 (3) 

where { }, ,p α β γ∈  indicates the axis.   

For the slab i along the axis p, the three components of 

the vector F, that are, the moment 
ip

m
,

, the average 

distance of points from the axis 
,p i

a , and the variance of 

distances of points from the axis 
,p i

d  are computed by the 

following formulae. In the formulae, 
,p i

d  is the distance to 

the point j on the surface from the axis p, and n is the 

number of points in the slab i. 

 2

,

1

n

p i j

j

m mr

=

=∑  (4) 

 
,

1

1
n

p i j

j

a r

n
=

= ∑  (5) 
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Figure 2. The average angular error after pose 

normalization computed using the pseudo-random number 

sequence (PRNS) and quasi-random number sequence 

(QRNS).  
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Figure 3. Computation of the moment parameterized along 

the (most-) principal axis α . 
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 ( )
2

, ,

1

1

1

n

p i j p i

j

d r a
n

=

= −

−

∑  (6) 

We then normalize the magnitude of the feature vector F 

so that 1
p p p
= = =m a d . This process is repeated for 

each of the three axes α , β , and γ .   

Figure 4 and Figure 5 show an example of a set of 

feature vectors parameterized along the principal axis of 

inertia α  using the number of analysis windows l=15. 

 

 

(a) The bunny model (641 

vertices). 

(b) Moment inertia of the 

point masses about the axis. 

  

(c) Variance of distance of 

the points from the axis. 

(d) Average distance of the 

points from the axis. 

Figure 4. Examples of the statistics parameterized along 
the axis α . The number of analysis windows (l-1)=15. 
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Figure 5. Plots of the three parameterized statistics for the 

bunny model used in Figure 4. 

2.3  Dissimilarity computation 

Similarity, or, more appropriately, dissimilarity among a 

pair of model is computed as the distance between their 

feature vectors. We employed two distance measures, the 

Euclidean distance and the elastic matching computed 

efficiently by using dynamic programming.  

The dissimilarity ( , )D X Y  is computed by summing the 

distance values for all of the principal axes of inertia. 

 ( )( )
{ }

1

22

, ,

( , ) ,
p p

p

D d

α β γ∈

 
=   
 
∑X Y X Y  (7) 

Note that the statistics may be weighted when 

computing the dissimilarity. Weighting can be done by the 

statistics, or by the principal axis. For example, 

dissimilarity values may be computed without using the 

standard deviation of the distance , ,α β γd d d , using 
, ,α β γm m m  and γβα aaa ,,  only. Doing so will retrieve 

models whose overall shape are similar to the queried 

shape, paying less attention to the minor protrusions or dips 

such as noise or antennas of an ant that would increase the 

standard deviation.  

 

Euclidean distance. Orientations of the models affect the 

distance value computed among a pair of models. If the 

principal axes of a two identical (or similar) models are 

parallel but one of the axes is pointing 180 deg. away from 

the other (Figure 6), the computed distance value will be 

much larger than when both axes were pointing the same 

direction. (Note that Figure 6 is for illustration purposes 

only. This problem occur only for models that are much 

more symmetrical.) To avoid this problem, we compute 

two distance values for both of the cases and take the 

Model A 

  

Model B 

  

 Before pose 

normalization. 

After pose 

normalization. 

Figure 6. An example of principal axes that are parallel 

but pointing 180 deg. away from each other after pose 

normalization.  
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minimum of the two.  

The Euclidean distance ( , )
euc p p

d X Y  between two 

feature vectors X  and Y  are defined as below. 

 ( )
( )

( )

1
1

2 2

, ,

1

1
1

2 2

, ,

1

1

1
, min

1

1

l

p i p i

i

euc p p
l

p i p l i

i

l
d

l

−

=

−

−

=

 
− 

− =  
 −
 − 

∑

∑

X Y

X Y

X Y

, (8) 

where { }, ,p α β γ∈  are the axes of parameterization and l 

is the number of intervals. 

 

Elastic-matching distance. Euclidean distance is very 

“rigid” and could result in a larger-then-wanted distance 

value in some cases. For example, if the torso of an animal 

model is somewhat longer than the other animal model 

with identical head and tail parts, simple Euclidean 

distance measure will give a large distance value. Figure 7 

shows a pair of models that are similar by a part of one of 

the model has been enlarged. (The bunny-bighead model 

was created by enlarging the head part of the bunny 

model.) 

To partially compensate for this effect, we employed the 

elastic-matching distance computed by using dynamic 

programming. In the formulae below, { }, ,p α β γ∈  are the 

axes of parameterization, l is the number of intervals, and 

1k l= −  is the number of analysis windows. 

 ( ), 1 , 1

1
( , ) ,

2
p p p l p ld g

k
− −

=X Y X Y  (9) 

( )

( ) ( )

( ) ( )

( ) ( )

, , 1 , ,

, , , 1 , 1 , ,

, 1 , , ,

, ,

, min , 2 ,

, ,

p k p k p k p k

p k p k p k p k p k p k

p k p k p k p k

g g

g g g

g g

−

− −

−

 +∆
 
 = + ∆
 
 +∆ 

X Y X Y

X Y X Y X Y

X Y X Y

(10) 

 ( ) ( )
1

2 2

, , , ,
,

p i p j p i p j
g∆ = −X Y X Y  (11) 

In the field of speech recognition, prior to the advent of 

Hidden Markov Model-based methods, the elastic-

matching distance was the standard in comparing a pair of 

phoneme sequences. 

As is with the Euclidean distance, the distance values 

depend on the two possible orientation of the model. Note 

also that the elastic-matching distance is asymmetric; 

distance from model X to Y is not necessarily the same as 

the distance from the model Y to X. Our algorithm thus 

computes four distance values, i.e., two elastic distance 

values for each of the two orientation configurations, and 

chooses the smallest of them for the dissmilarity value.  
 

 
bunny bunny-bighead 

Figure 7. The bunny and the bunny-bighead models.  

3.  Experiments and results 

We implemented the proof-of-concept system using 

C++ on a Linux operating system. For the experiment, we 

used 262 VRML models we have collected from the 

Internet. For the experiments presented below, we 

generated 20,000 points on each model to normalize pose 

of the model and calculate the feature vector F.  

3.1  Shape features and distance measures 

The first set of experiments compared distance measures 

using 6 models shown in Figure 8. Figure 8a to Figure 8d 

are variations of bunny model. The models in Figure 8b 

and Figure 8c are generated from (a) by locally enlarging a 

part of the model of Figure 8a. The model in Figure 8d has 

a shape basically similar to the one in Figure 8a, but has 

much higher polygon count and a part of the model is cut 

off. Similarly, the model of Figure 8f is created by locally 

scaling the original model of Figure 8e.  

 

   
(a) 641 vertices (b) 641 vertices  (c) 641 vertices 

   
(d) 2127 vertices (e) 254 vertices (f) 254 vertices  

Figure 8. Models used to evaluate distance measures. The 

results are shown in Table 1, Table 2, and Table 3.  

Table 1 shows the dissimilarity values computed using 

Euclidean distance while Table 2 shows the dissimilarity 

values computed using the elastic-matching distance. In 

both Table 1 and Table 2, the number of analysis windows 
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is 15. Bold letters in both of the tables indicate lower 

dissimilarity values. Note that a direct comparison of 

values between Table 1 and Table 2 is meaningless for the 

dissimilarity computation methods are different.  

In each of Table 1 and Table 2, the dissimilarity values 

mostly conform to our expectation. Dissimilarity values are 

smaller if the comparison is within the same group, i.e., 

either the bunny group or the tiger group.) Dissimilarity 

values are higher if the comparison is between the groups, 

i.e., comparing one of the bunnies with one of the tigers.  

Table 3 shows the dissimilarity values for the same set 

of models using 127 analysis windows, causing each one of 

the analysis windows to become narrow. In this case, 

dissimilarity values show some anomalies; the tiger group 

and the bunny group are not clearly separated. This is due 

to the fact that a narrow analysis window has relatively few 

points, around 150 on average, introducing noise into the 

shape feature vectors.  

 

 

Table 1. Euclidean distance, number of analysis windows 

15. 

 (a) (b) (c) (d) (e) (f) 

(a) 0 0.199 0.101 0.146 0.263 0.292 

(b) 0.199 0 0.223 0.213 0.303 0.299 

(c) 0.101 0.223 0 0.151 0.261 0.275 

(d) 0.146 0.213 0.151 0 0.266 0.279 

(e) 0.263 0.303 0.261 0.266 0 0.138 

(f) 0.292 0.299 0.275 0.279 0.138 0 

Table 2. Elastic-matching distance, number of analysis 

windows 15. 

 (a) (b) (c) (d) (e) (f) 

(a) 0 0.152 0.071 0.124 0.165 0.190 

(b) 0.152 0 0.162 0.157 0.216 0.211 

(c) 0.071 0.162 0 0.114 0.179 0.195 

(d) 0.124 0.157 0.114 0 0.186 0.196 

(e) 0.165 0.216 0.179 0.186 0 0.084 

(f) 0.190 0.211 0.195 0.196 0.084 0 

Table 3. Elastic matching distance, number of analysis 

windows 127. 

 (a) (b) (c) (d) (e) (f) 

(a) 0 0.041 0.030 0.036 0.047 0.040 

(b) 0.041 0 0.042 0.048 0.043 0.043 

(c) 0.030 0.042 0 0.038 0.038 0.046 

(d) 0.036 0.048 0.038 0 0.031 0.039 

(e) 0.047 0.043 0.038 0.031 0 0.032 

(f) 0.040 0.043 0.046 0.039 0.032 0 
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Figure 9. Distance to self computed using various numbers 

of analysis windows. 

Figure 9 shows the plot of dissimilarity value of a model 

to itself computed using 8 different numbers of analysis 

windows. For the computation, elastic matching 

dissimilarity value is used. (Euclid distance is not defined 

for a pair of vectors having different dimensions.) Ideally, 

all the dissimilarity values should be zero. However, due to 

the noise discussed above, positive non-zero dissimilarity 

values occur. Of the combinations, 64 analysis windows 

appear to have the lowest dissimilarity value to self. Note 

that if the number of analysis windows is too small, 

sensitivity of the measure to the shape difference will 

decrease. As a compromise, we chose to use 64 analysis 

windows for the experiments that followed. 

3.2  Shape similarity-based search  

In this experiment, we tried to retrieve models close in 

shape to each of the 4 models shown in Figure 10. For each 

model presented as an example, the system retrieved 8 

models having the lowest dissimilarity values in the 

database. We compared two dissimilarity measure based on 

Euclidean and elastic matching distances. In this 

experiments, all the three statistics have the equal weight. 

As mentioned, the search was performed on the database 

containing 261 (loosely defined) mesh models.  

The results of the experiments are shown in Figure 11 

through to Figure 14. In all of the cases, models having 

shapes more or less close to the query model were retrieved. 

The shape feature parameterized along principal axes 

appears to work well for the shapes having some form of 

rotational symmetry. But for other models, such as a curly 
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Chinese-dragon model, or a human figure in a contorted 

body configuration, the shape feature proposed in this 

paper did not perform well.   

The Euclidean and elastic-matching dissimilarity 

measures produced results that are similar but not identical. 

Query results of Figure 12a and Figure 12b illustrate well 

the difference between the two dissimilarity measures. 

Given a chess piece, the search using the elastic-matching 

distance retrieved models having wide ends and a narrow 

waist, with little regard to the overall “proportion”. For 

example, the chess piece (query) and the light stand with a 

long thin middle part came out close. As expected, the 

elastic matching effectively skipped the middle part by its 

“elasticity”, trying to match the flaring shape features at 

ends. The Euclidean distance, on the other hand, retrieved 

shapes whose overall proportions are closer to the original 

chess piece, e.g., bolts and screws.  

3.3 Computation time 

Computation time required to search 8 closest models 

out of a database containing 261 models using our method 

is tabulated in Table 4. Most of the time is spent on 

computing the feature vector of the query model, while 

very little time is spent on linearly matching all the 

candidates. (As mentioned before, no indexing structure or 

hierarchical search scheme is implemented.)  

4.  Summary and conclusion 

In this paper, we proposed and evaluated several key 

components for a shape similarity search and retrieval 

system. The system expects, as inputs, VRML-like 3D 

mesh models. Our method is tolerant so it accepts models 

having geometrical degeneracies or multiple disconnected 

components, for example. As shape features, the method 

employs three statistics that are discretely parameterized 

along the principal axes of inertia of the model. The 

method first normalizes the poses of the models by using 

the principal axes of inertia of the model. The three 

statistics are the moment of inertia, the average distance 

from the surfaces to the axis, and the variance of the 

distance from the surface to the axis. Both the pose 

normalization and shape feature computation assumes that 

the polygonal surfaces to have uniform density, and 

approximates it by using a quasi-Monte Carlo approach. 

For dissimilarity computation, we experimented with two 

methods, the simple Euclidean distance and an elastic 

matching algorithm that is implemented using dynamic 

programming. A set of experiments showed that our shape 

feature and dissimilarity computation methods are 

promising candidates for inclusion in our future shape 

similarity search system. 

Obviously, there are many things to be done in the field 

of shape similarity search.  

The foremost on the list of issues is the further 

development of shape features. As the demand for the 

shape similarity search is diverse, the authors think that not 

one but a set of multiple shape features must be recruited 

for an effective shape similarity search. We are interested 

in the shape features that won’t require pose-normalization. 

We are also interested in shape features that could capture 

topology of the shape and are applicable to not-so-well-

defined shape definitions.  

The system will also require some mechanisms, e.g., a 

learning-based mechanism a la Elad et al. [Elad01], to 

accommodate a user’s preference and taste in retrieving 

shapes the user wants. We intend to work on this aspect of 

the problem.  

As the last note, in this field of research must find a set 

of standard data and performance evaluation method so 

that we can objectively compare the shape similarity search 

algorithms we develop. This is much more difficult to 

accomplish than a similar task in the field of image content 

based search and retrieval, due in part to the diverse 3D 

shape representations.  

  
(a) Bunny (641 vertices) (b) Chess (391 vertices) 

  
(c) AARAM (86 vertices) (d) Ant (486 vertices) 

Figure 10. Models queried in the experiments. 

Table 4. Time to compute and rank dissimilarity values for 

all the 261 models in a database for the queried model. 

Search and retrieval time Number of 
analysis 
windows Euclidean distance Elastic matching 

15 0 s 0 s 

31 0 s 1 s 

63 1 s 2 s 

127 3 s 3 s 

255 6 s 8 s 

511 13 s 16 s 

1023 25 s 32 s 

2047 51 s 64 s 

 



Accepted for publication in the proceedings of the Pacific Graphics 2002, Beijing, China, October 9-11, 2002. 

 9/10 

Acknowledgements 

This research has been funded in part by the grant 

No. 12680432 from the Ministry of Education, Culture, 

Sports, Sciences, and Technology of Japan, and by the 

grant from the Okawa Foundation for Information and 

Telecommunications. We thank Prof. Shigeo Takahashi for 

discussion and providing us with the software collection 

gmtools on which our prototype system is based.  

References 

[Burges98] C. Burges, A Tutorial on Support Vector Machines for 
Pattern Recognision, Data Mining and Knowledge Discovery, 2, 
pp. 1-47, 1998. 

[Corney02] J. Corney, H. Rea, D. Clark, John Pritchard, M. 
Breaks, R. MacLeod, Coarse Filter for Shape Matching, IEEE 
CG&A, pp. 65-73, May/June, 2002. 

[Elad00] M. Elad, A. Tal, S. Ar. Directed Search in A 3D Objects 
Database Using SVM, HP Laboratories Israel Technical Report, 
HPL-2000-20 (R.1), August, 2000. 

[Gottschalk96] Gottschalk, S., Lin, M.C., Manocha, D., 
OBBTree: A Hierarchical Structure for Rapid Interference 
Detection, Proc. SIGGRAPH ’96, pp. 171-180, 1996. 

[Hilaga01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. 
Topology Matching for Fully Automatic Similarity Estimation of 
3D Shapes. Proc. SIGGRAPH 2001, pp. 203-212, Los Angeles, 
USA. 2001. 

[Ibato02] Masatoshi Ibato, Tomo Otagiri, Ryutarou Ohbuchi, 
Shape-similarity Search of Three-Dimensional Models Based on 
Subjective Measures, IPSJ SIG report on Graphics&CAD, Vol. 
2002, No. 16 (2002-CG-106), pp. 25-30, February, 2002. 

[Igarashi99] Takeo Igarashi, Hidehiko Tanaka, Satoshi Matusoka, 
Teddy: A Sketching Interface for 3D Freeform Design, Proc. 
SIGGRAPH ’99, pp. 409-416, 1999. 

[Keim99] D. Keim, Efficient Geometry-based Similarity Search 
of 3D Spatial Databases, Proc. ACM SIGMOD Int. Conf. On 
Management of Data, pp. 419-430, Philadelphia, PA., 1999.  

[McWherter01] D. McWherter, M. Peabody, W. Regli, A. 
Shokoufandeh, Transformation Invariant Shape Similarity 
Comparison of Solid Models, Proc. ASME DETC ‘2001, 
September 2002, Pittsburgh, Pennsylvania.  

[Mukai02] S. Mukai, S. Furukawa, M. Kuroda, An Algorithm for 
Deciding Similarities of 3-D Objects, Proc. ACM Symposium on 
Solid Modeling and Applications 2002, Saarbrücken, Germany, 
June 2002. 

[Novotni01] M. Novotni, R. Klein. A Geometric Approach to 3D 
Object Comparison. Proc. Int’l Conf. on Shape Modeling and 
Applications 2001, pp. 167-175, Genova, Italy, May, 2001. 

[Osada01] Osada, T. Funkhouser, B. Chazelle, D. Dobkin. 
Matching 3D Models with Shape Distributions. Proc. Int’l Conf. 
on Shape Modeling and Applications 2001, pp. 154-166, Genova, 
Italy, May, 2001. 

[Paquet97] E. Paquet and M. Rioux, Nefertiti: a Query by 
Content Software for Three-Dimensional Databases Management, 
Proc. Int’l Conf. on Recent Advances in 3-D Digital Imaging and 
Modeling, pp. 345-352, Ottawa, Canada, May 12-15, 1997. 

[Paquet00] E. Paquet, A. Murching, T. Naveen, A. Tabatabai, M. 
Roux. Description of shape information for 2-D and 3-D objects. 
Signal Processing: Image Communication, 16:103-122, 2000. 

[Regli00] W. Regli, V. Cicirello, Managing Digital Libraries for 
Computer-Aided Design, Computer Aided Design, pp. 110-132, 
Vol. 32, No. 2, 2000. 

[Suzuki98] M. T. Suzuki, T. Kato, H. Tsukune. 3D Object 
Retrieval based on subject measures, Proc. 9th Int’l Conf. and 
Workshop on Database and Expert Systems Applications 
(DEXA98), pp. 850-856, IEEE-PR08353, Vienna, Austria, Aug. 
1998. 

[Suzuki00] M. T. Suzuki, T. Kato, N. Otsu. A similarity retrieval 
of 3D polygonal models using rotation invariant shape 
descriptors. IEEE Int. Conf. on Systems, Man, and Cybernetics 
(SMC2000), Nashville, Tennessee, pp. 2946-2952, 2000. 

[Vapnik98] V. N. Vapnik. Statistical Learning Theory. Wiley, 
1998. 

[Vapnik99] V. N. Vapnik. The Nature of Statistical Learning 
Theory, Second Edition. Springer, 1999. 

[Veltkamp01] R. C. Veltkamp. Shape Matching: Similarity 
Measures and Algorithms, invited talk, Proc. Int’l Conf. on Shape 
Modeling and Applications 2001, pp. 188-197, Genova, Italy, 
May, 2001. 

[Vranić01] D. V. Vranić, D. Saupe, and J. Richter. Tools for 3D-
object retrieval: Karhunen-Loeve Transform and spherical 
harmonics. Proc. of the IEEE 2001 Workshop on Multimedia 
Signal Processing, Cannes, France, pp. 293-298, October 2001. 



 

  

   

 

  
Query 1 2 3  Query 1 2 3 

    

 

    
4 5 6 7  4 5 6 7 

Figure 11a. Euclidean distance, 63 analysis windows.  Figure 11b. Elastic matching, 63 analysis windows.  
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Figure 12a. Euclidean distance, 63 analysis windows.  Figure 12b. Elastic matching, 63 analysis windows.  
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Figure 13a. Euclidean distance, 63 analysis windows.  Figure 13b. Elastic matching, 63 analysis windows.  
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Figure 14a. Euclidean distance, 63 analysis windows.  Figure 14b. Elastic matching, 63 analysis windows.  
 


