
Ryutarou Ohbuchi, Jun Kobayashi, Unsupervised Learning from a Corpus for Shape-Based 3D Model Retrieval, accepted, ACM MIR 2006, 
Santa Barbara, CA, U.S.A., Oct. 2006 

 1 

Unsupervised Learning from a Corpus  
for Shape-Based 3D Model Retrieval 

 
Ryutarou Ohbuchi 

University of Yamanashi 
4-3-11 Kofu-shi, Yamanashi-ken 

400-8511 Japan 
+55-220-8570 

ohbuchi at yamanashi dot ac dot jp 

Jun Kobayashi 
University of Yamanashi 

4-3-11 Kofu-shi, Yamanashi-ken 
400-8511 Japan 
+55-220-8570 

g05mk014 at ccn dot yamanashi dot ac dot jp 
 

ABSTRACT 
Arguably the most important issues in shape-based 3D model 
retrieval are methods to extract powerful yet compact shape 
features and methods to properly and promptly compare the shape 
features. In this paper, we explore a method to improve feature 
distance computation by employing unsupervised learning of the 
subspace of 3D shape features from a corpus. We employ an 
algorithm called Laplacian Eigenmaps proposed by Belkin, et al. 
to learn a manifold spanned by shape features of 3D models in the 
corpus. The learned manifold is approximated by an RBF network, 
onto which shape features are projected. Distances among shape 
features can then be computed effectively on the learned manifold. 
We combine this learning-based distance-computation method 
with a method to extract multiresolution shape features proposed 
by Ohbuchi, et al. Our experimental evaluation showed that the 
proposed method could significantly improve retrieval 
performance. Learning alone improved performance of two shape 
features we tried by about 5%. A combination of learning and 
multiresolution shape feature allowed about 10% gain in 
performance. As an example, the trained, multiresolution version 
of the SPRH gained 10% over the original single resolution, 
untrained SPRH shape feature.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.3.5 [Computational Geometry and Object Modeling]: Surface 
based 3D shape models. I.4.8 [Scene Analysis]: Object 
recognition. I.2.6 [Learning]: Induction.  

General Terms 
Algorithms, Performance, Experimentation, Measurement. 

Keywords 
Shape-based 3D model retrieval, content-based retrieval, manifold 
learning. 

1. INTRODUCTION 
An increased popularity of 3D models, from games on 

cellular phones to CAD models for automobile parts, has 
prompted research into effective reuse of 3D models through 
shape-based retrieval of 3D models [25, 13]. While a number of 
shape comparison methods have been proposed, the retrieval 
performance has not been satisfactory. There are many possible 
reasons for this. For one, the shape feature may be inadequate; the 
feature might not capture shape features that are relevant. Or, it 
could be the inadequacy of similarity, or dissimilarity (distance) 
computation method. Even if the feature contains salient 
information, the shape dissimilarity measure may not be using it 
effectively. Added factors are both inter-personal and intra-
personal variability of shape similarity criteria. My shape 
similarity judgment may be different from yours. Or, my 
judgment today may be different from that of yesterday.   

In this paper, we explore a method to improve distance 
computation among shape feature vectors. Given a set of n-
dimensional feature vectors (points in n ), we assume that the 
feature vectors spans a m-dimensional ( m n≤ ) non-linear 
subspace of the n . We employ unsupervised learning to 
estimate the non-linear subspace. Specifically, we use the 
Laplacian Eigenmaps proposed by Belkin, et al [3] for the 
learning. Once such a subspace could be learned, n-dimensional 
feature vectors of 3D models could be projected onto the subspace 
so that a distance among a pair of feature vectors can be 
computed as a geodesic on the subspace. Our experimental 
evaluation showed that learning from a corpus of 3D shape 
models does improve retrieval performance. Retrieval 
performances of both AAD [19] and SPRH [28] shape features, 
measured in R-precision, increased by more than 5% by learning 
from a 4,000 model 3D model corpus. A combination of 
multiresolution shape feature extraction approach by Ohbuchi et 
al [18] and the learning produced about 10% increase in 
performance compared to the original (single-resolution) shape 
features. As an example, the trained, multiresolution (MR) 
version of the SPRH surpassed the performance of the Light Field 
Descriptor by Chen et al. [7]. 

This paper is organized as follows. In the following section, 
we will review learning applied to shape-based retrieval of 3D 
models. We will describe, in Section 3, our retrieval algorithm 
based on manifold learning and multiresolution shape features. 
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Experiments and their results are described in Section 4, followed, 
in Section 5, by conclusion and future work. 

2. PREVIOUS WORK 
Learning based approach to similarity retrieval can be 

classified into on-line learning and off-line learning. The on-line 
learning approach tries to learn human intentions interactively, 
e.g., through iterative relevance feedback or by interactive 
grouping of examples. An advantage of this approach is its 
capability to adapt to personal preference or even to changes in 
personal preference over time or occasion. The off-line learning 
approach learns from a prescribed training database prior to actual 
retrieval. The learning may be unsupervised to learn the structure 
of subspace on which the measured features exist. Or, the learning 
may be supervised, e.g., by using a pre-categorized database.  

Relatively small number of work exploiting learning has so 
far been published for shape-based 3D model retrieval. Interactive 
relevance feedback, a form of on-line interactive learning, has 
been explored by several researchers for 3D model retreival [9, 1, 
14, 16]. Elad et al. is among the first to apply Support Vector 
Machines (SVM) learning in an on-line learning setting to 
improve 3D model retrieval [8]. Leifman et al. [14] performed 
Kernel Principal Component Analysis (Kernel PCA) for an 
unsupervised learning of a feature subspace before applying a 
relevance feedback technique that employs Biased Discriminant 
Analysis (BDA) or Linear Discriminant Analysis (LDA) on the 
learned subspace. Novotni et al. [16] compared several learning 
methods, SVM, BDA, and Kernel-BDA, for their retrieval 
performance in a relevance feedback setting. Unlike relevance 
feedback, unsupervised off-line learning has seen very little 
attention in 3D model retrieval. The Kernel-PCA employed by 
Leifman et al. [14] is an example. The purity proposed by Bustos 
et al. [5] can also be considered as a weak form of unsupervised 
off-line learning. Purity is an estimate of the performance of a 
shape descriptor determined by using a pre-classified training 
database. Bustos used the purity to weight distance obtained from 
multiple shape descriptors.  

Classical methods for unsupervised learning of subspace 
includes PCA and MDS, both of which are quite effective if the 
feature points lie on or near a linear subspace of the input space. 
However, if the subspace is non-linear, these methods do not 
work well. Many non-linear methods have been proposed for 
unsupervised learning of subspace; Self-Organizing Map (SOM) 
and Kernel-PCA are some of the well-known examples [10]. 
Recently, a class of geometrically inspired non-linear methods, 
called “manifold learning” has been proposed for learning the m-
manifold of measured feature vectors. Some of the examples of 
manifold learning algorithms are Isomap [26], Locally Linear 
Embedding (LLE) [23], and Laplacian Eigenmaps (LE) [3]. 
Manifold learning has been applied to many problems, including 
motion analysis, multimedia data retrieval [11], and others. A 
property (drawback) of LE, LLE, and Isomap is that these 
mapping are defined only for the feature vectors in the training set. 
To query a 3D model outside of the training set, however, its 
feature vector must have an image on the manifold. In a 2D image 
retrieval setting, He et al [11] solved this problem by using Radial 
Basis Function (RBF) network [6, 10] for a continuous 
approximation of the manifold. The work presented in this paper 

is essentially He’s method applied to shape-based 3D model 
retrieval with some modifications.  

3. METHOD 
Basic approach is similar to the 2D image retrieval proposed 

by He, et al. in [11]. He’s method learns the manifold of 2D 
image features in the training set by using the Laplacian 
Eigenmaps (LE) by Belkin, et al. [3] and approximate the 
manifold by using a Radial Basis Function (RBF) network. We 
combine this learning based framework for similarity comparison 
with a multiresolution approach to feature extraction for 3D 
models proposed by Ohbuchi, et al. [18], and add a database 
subsampling step to contain computational cost. 

We first describe the method for a single resolution shape 
feature. We then extend the approach to deal with multiresolution 
shape features in Section 3.5. The proposed method (using a 
single resolution shape feature) can be divided into two phases; 
the learning phase and the retrieval phase (See Figure 1). Each 
phase consists of the following steps: 

The learning phase: 

(1) Extract shape feature vector: Extract n-dimensional feature 
vectors from the K models in the training database (i.e., 
corpus).  

(2) Select training samples: To reduce computational costs, 
subsample the training set down to L ( L K≤ ) features 
vectors.  

(3) Learn manifold: Perform unsupervised learning of the m-
manifold ( m n≤ ) spanned by the n-dimensional training 
samples by using Laplacian Eigenmaps by Belkin, et al. [3]. 

(4) Approximate the manifold: Construct a continuous 
approximation g  of the manifold by using the RBF network 
[5].  

(5) Project features of the models in the database: Project 
features of all the models in the database onto the m-
manifold using the approximation, and store the results 
together with the corresponding 3D models.  

The retrieval phase: 

(1) Extract shape feature vector: Extract an n-dimensional 
feature vector from the query model.  

(2) Map the feature onto the manifold: Map the n-dimensional 
feature vector onto the approximated m-manifold g . 

(3) Compute distance on the manifold: Compute distances 
from the query model to all the models in the database on g .  

(4) Retrieve and present the top p matches: Retrieve the 
models in the database having the p-smallest distances from 
the query model. 

3.1 Shape feature 
For the experiments, we chose the AAD by Ohbuchi et al. 

[19] and the SPRH by Wahl, et al. [28] as the basic shape features 
for the experiments described in this paper. We call these single-
resolution (SR) versions of the feature SR-AAD and SR-SPRH, 
respectively. (Multiresolution shape features and their integration 
with the learning framework will be described in Section 3.4.)  

Both AAD and SPRH are global shape features that are 
inherently invariant to rigid body transformation. They are 
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extensions of the D2 by Osada et al. [21]. The D2 is a 1D 
histogram of a distance computed between a pair of points 
generated at random locations on the surface of the 3D models to 
be compared. The AAD is a 2D joint histogram of a distance and 
an angle formed by the normal orientations of a pair of points, 
while the SPRH is a 4D joint histogram of three angles and a 
distance. Any shape feature can be used in the proposed learning 
framework provided that the feature produce feature vector.  
Some shape comparison methods do not produce feature vectors, 
and thus the proposed learning framework can’t be applied. For 
example, the LFD [6], which involves combinatorial method to 
find a distance among a pair of models, can’t be used with the 
proposed learning approach.  

 
Figure 1. The learning phase (left) and the retrieval phase (right) 
of the proposed method. 

3.2 Training sample selection 
Learning a manifold by using LE could be expensive both in 

time and in space. A naïve method for the eigendecomposition 
used for the LE costs 2( )O n  space and 3( )O n time. The RBF 
network regression also costs significant amount of spatial and 
temporal computational costs. To reduce these costs, we tried to 
estimate an approximate manifold by using a sampled subset of 
the corpus. We tried several subsampling methods, namely: 
(1) Pseudo-random sequence in C++ library, (2) Sobol’s quasi-
random sequence [22], (3) Niederreiter’s quasi-random sequence 
[4], and (4) Max-min approach proposed by Liu, et al. [15]. In 
Monte-Carlo methods, quasi-random sequences are known to 
reduce variance. The max-min approach by Liu, et al try to 
quickly approximate the “outermost shape” of the feature point 

distribution by concentrating samples at points that are well 
spaced yet farthest from each other.  

3.3 Manifold learning and approximation 
Belkin’s LE performs estimation of an m-manifold by 

following the steps below; 

(1) Construct an adjacency graph: A feature vector of a model 
in the training database is a point in the n-dimensional 
feature space nU = . Construct an mesh G  by connecting 
k-nearest points using Euclidian distance in U.  

(2) Create mesh Laplacian matrix for G : Create a mesh 
Laplacian matrix L D W= − , in which W  is an adjacency 
matrix for G ,  

1, if vertices  and  are adjacent;
0, otherwise.ij

i j
w ⎧

= ⎨
⎩

 

and D  is the diagonal matrix satisfying the following 
equation. 

ii jij
D w= ∑  

(3) Perform an Eigenanalysis of L : Find eigenvalues iλ  
(1 )i n≤ ≤  and eigenvectors if  (1 )i n≤ ≤  of L  by solving 
the generalized eigenproblem L Dλ=f f . 

(4) Find a manifold g: Sort eigenvectors in an ascending order. 
The least m eigenvectors (but excluding the first eigenvector 

0f )  defines mapping ( )1: ( ),..., ( )i mi iϕ →x f f  that maps a 
point n

i U∈ =x  onto m-manifold g.  

Note that g is defined only for the points in the training set. 
To project a feature vector (e.g, a query) not in the training 
samples onto g, He et al. [11] approximated g by using RBF 
network. We used an implementation of Chen’s RBF algorithm 
[6] included in the Neural Network Toolkit of the MatLab for the 
approximation. 

3.4 Distance computation 
We used Cosine distance for distance computations, for both 

learned and not-learned versions of the AAD and SPRH shape 
features. Cosine distance is computed simply as the inner product 
of a pair of normalized feature vectors. In addition, for 
comparison, we used Kullback-Leibler divergence (KLD) [28] to 
compute distance for the SPRH shape feature without learning.  

Cosine distance was selected from four distance measures, 
L1, L2, Cosine, and KLD, after experimental evaluation of their 
performances.  

In the case of AAD, our experiment showed that the Cosine 
distance and KLD performed identically, outperforming both L1 
norm and L2 norm. (The original paper [19] uses L2 norm.)  

In the case of SPRH, the Wahl et al. used KLD [28], and that 
the KLD outperformed three other distance measures we 
experimented. (See Table 1 for the comparison among KLD and 
Cosine distance.) However, KLD can’t be used if a feature vector 
contains negative values, which is the case for learned feature 
vectors. We thus used the second best, the Cosine distance, for the 
SPRH in all the experiments that follows. For comparison, we 
included the results for SPRH using KLD for the cases without 
learning.  

g  
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Table 1. Distance measure and performance of the SPRH. 

Feature Distance 
measure RP 11A 

KLD 37.4 40.1SR-SPRH 
Cosine 35.6 38.4

3.5 Exploiting multiresolution shape features 
The multiresolution (MR) feature extraction method 

proposed by Ohbuchi et al. [18, 20] is known to improve 
performance of some of the shape comparison methods. The 
multiresolution approach may be able to extract more shape 
feature from a model. Also, the multiresolution approach may 
conform better to the human perception and/or cognition in 
comparing 3D shapes. The approach by Ohbuchi et al. first 
creates a set of 3D MR shape features. Once a set of MR models 
is obtained, appropriate (single resolution) shape feature is 
computed at each of the multiple resolution levels to produce a set 
of multi-resolution shape feature vectors. An advantage of this 
multiresolution (MR) representation is that it can be computed for 
polygon soup models or even for point set models (by skipping 
the step 1 below.) Briefly, the method computes a set of 
multiresolution shape feature as below (see Figure 2);  

(1) Compute a multiresolution representation: The surface-
based input model is converted into a point-based model by 
Monte-Carlo sampling of the surfaces of the model. A set of 
L-1 scale values αι, i=1…L-1 is computed based on the size 
of the model. The set of scale values are used to normalize 
size among shape models. Then, compute L-1 3D alpha 
shapes from the point set model by using the L-1 scale values 
αι. Of L resolution levels, coarser (L-1) levels are computed 
by using the 3D alpha shapes [8]. The finest resolution level 
L uses the original polygon soup model.  

(2) Compute multiresolution shape feature set: Apply a shape 
feature extraction method x to a model at each resolution 
level of the MR, creating a set of multiresolution shape 
features MR-x. 

Figure 3 shows an example of the MR representation for a 
surface-based 3D model of a biplane.  

Given the MR representation, learning based approach 
described above can be applied in two different ways.  

(1) Learning features at each resolution level: In the learning 
phase, learn a manifold at each of the L-level MR 
representation. In the retrieval phase, a distance is calculated 
at each of the L levels of MR representation. Then L distance 
values are combined into a single overall distance. 
Combination can be performed, for example, by using fixed-
weight linear-combination or by using purity [5]. 

(2) Learning features as a multiresolution feature set: 
Concatenate L feature vectors from the L resolution levels 
into a big feature vector, and learn a manifold from the 
concatenated vector. Distance among a pair of models is 
computed using the learned manifold. 

In the experiments described in this paper, we chose to apply 
the former approach. Principal reason for this choice is the high 
computational and spatial cost of the latter approach.  

Distances of a pair of MR-shape features are combined using 
a fixed weight linear combination. In the experiments described in 
this paper, the weights are fixed at 1.0 across the resolution levels.  

In the following, a single resolution shape features are 
prefixed with “SR”, and a multiresolution shape features are 
prefixed with “MR”. Also, learned shape feature are prefixed with 
“L”. In addition, postfix “C” or “K” may accompany these 
acronyms indicating distance computation methods; “C” for 
Cosine distance or “K” for KLD. Thus, for example, “SR-SPRH-
K” stands for the “single-resolution SPRH using KLD”, while “L-
MR-AAD-C” stands for the “learned multi-resolution AAD using 
Cosine distance”. 

 
Figure 2.  Computing a MR-x multiresolution shape feature set. 
(This example shows 2D histogram of the AAD [19] shape 
feature x.) 

 
Original model. 

 
Point sampled model 

(2,048points) 

Level 1(α1) 
 

Level 2(α2) Level 3(α3) 

Level 4(α4) 
 

Level 5(α5) Level 6(≅orig.)

Figure 3. An example of MR representation for the surface-based 
model of a biplane. A feature per level is computed for the set for 
shape comparison.  
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4. EXPERIMENTS AND RESULTS 
We implemented the learning algorithm in Matlab (Release 

12.1). Others, such as, feature extraction, distance computation, 
retrieval and results evaluation are implemented in C++. 

We use 3D model databases for two purposes; 
(1) unsupervised learning, and (2) performance evaluation.  For 
learning, we used the union of the training set of the Princeton 
Shape Benchmark (PSB) [24] database containing 907 models and 
the National Taiwan University 3D Model Database (NTU) ver. 1  
[17] containing 10,911 models. As our method uses unlabeled 
samples for learning, we ignored the category attached to the PSB 
training set. (The NTU database does not have any category or 
labeling.) We sampled the union, containing 11,818 models by 
using one of the four sampling strategies described in Section 3.2. 
For evaluation, we used the test set of the PSB that contains 907 
models classified into 92 “base” categories. We used this 
categorization as the ground truth for the following experiments. 
For the performance evaluation, we picked a model from the test 
database of size K as the query, and ranked all the other (K-1) 
models in an ascending order of the distance computed. 

As quantitative measures of performance, we used R-
precision (RP) and 11 point average precision (11P) figures and 
the precision-recall plot [2]. The R-precision is the ratio, in 
percentile, of the models retrieved from the desired class kC  (i.e., 
the same class as the query) in the top R retrievals, in which R is 
the size of the class kC . In computing the R-precision, we did 
not count the query q  among the retrieved model, i.e., the 
numerator, which is divided by 1kC − . (Note that RP is similar 
but different from the First Tier used in the SHREC 2006 
benchmark [27].) The 11-point average 11A is the average of 
precision values taken at 11 equally spaced recall values {0.0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. An 11P average precision 
value can be considered as a summary of a recall-precision plot, 
which emphasizes overall performance. The RP and 11P values 
presented below are a mean over all the K=907 queries. As a 
reference of performance, we included the performance figure 
obtained by using Light Field Descriptor (LFD) by Chen, et al. 
[7] in some of the results.  

Several parameters of the LE and the RBF need to be fixed. 
We performed some preliminary experiments to determine the 
number of neighborhood k for the mesh construction and the 
spread σ  of the RBF (a Gaussian function) for the RBF network 
approximation. For the SR-AAD and MR-AAD, we chose 

12k =  and 0.6σ = , after experiments that varied k in the range 
[8, 20] and σ  in the range [0.4, 1.0]. For the SR-SPRH and MR-
SPRH, we chose 40k =  and 1.2σ = , after experiments that 
varied k in the range [12, 50] and σ  in the range [0.2, 1.4]. 

4.1 Sub-sampling methods and performance 
We compared four sub-sampling schemes for their retrieval 

performance by varying the number of learned samples. The 
experiment was done by using the SR-AAD and SR-SPRH shape 
features.  

Figure 4 shows the results. While the Max-Min farthest point 
sampling scheme [15] performs the best at a fewer number of 
samples (e.g., 500~1000 samples), other sampling schemes 
produce better results with a larger number of samples (>1500 
samples). At the largest number of training samples tested, the 
Niederreiter’s sequence and the Sobol’s sequence performed the 

best, closely followed by the pseudo-random number sequence. 
The performance difference between the Niederreiter’s sequence 
and the Sobol’s sequence was negligible. Note that we used the 
default parameters for the Niederreiter’s sequence [4], whose 
results might have been different if we were to use a different set 
of parameters. In the experiments that follow, we will use the 
Niederreiter’s sequence for subsampling unless otherwise stated. 
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(a) R-precision (RP) values for the SR-AAD feature by using four 
subsampling schemes. Dotted line shows the RP value for the 
original SR-AAD feature.  
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(b) R-precision (RP) values for the SR-SPRH shape feature 
obtained by using four subsampling schemes. Dotted line shows  
the RP value for the original SPRH shape feature (i.e., SR-SPRH-
KLD), and the broken line shows the RP value for the SR-SPRH 
using Cosine distance.  

Figure 4. Database subsampling schemes and performance. For 
AAD (a) and for SPRH (b), plots of R-precision at different 
number of training samples L are shown for four subsampling 
schemes.  

4.2 Manifold dimension vs. retrieval 
performance 

We performed experiments to determine the relationship 
between the dimension m of the manifold and the retrieval 
performance. The original SR-AAD feature has 256 dimensions 
[19] and the original SR-SPRH has 625 dimensions [28].  
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Figure 5 shows, for SR-AAD and SR-SPRH, changes in 
retrieval performance due to the number of dimension m of the 
manifold. In the case of the AAD, the retrieval performance of the 
trained version (L-SR-AAD-C) increased with the number of 
dimensions. The performance of the trained version (solid line 
with markers) surpasses that of the original at about m=40, a 
dimension significantly smaller than the original 256. In other 
words, for SR-AAD-C, m=40 or 1/5 of the size of original vector, 
is sufficient to achieve the performance level equal or better than 
the original. In the case of the SPRH, the performance of the 
learned version L-SR-SPRH-C (using Cosine distance) topped out 
at about 200 dimensions. Compared to the untrained original 
using KLD (SR-SPRH-K), the trained version is only marginally 
better at about m>200. If compared to the untrained SPRH using 
Cosine distance (SR-SPRH-C), however, the trained version 
performed significantly better. Interestingly, as we will discuss in 
Section 4.3, L-MR-SPRH-C, the learned MR-version of the 
SPRH using Cosine distance behaves differently; it somehow 
achieves significant performance gain of about 5% over the 
untrained MR-SPRH-K using KLD. 

In terms of dimension reduction, the method could not find 
clear low-dimensional manifold, in both SR-AAD and SR-SPRH 
features. This is not very surprising, as 3D shapes most likely 
won’t have a clear low-dimensional manifold of fixed dimension. 
(As opposed to, for example, human animation data constrained 
physically by skeletal structure, etc.)  
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(a) Trained L-SR-AAD feature (solid line) and the original AAD 
without learning (broken line).  
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(b) Trained L-SR-SPRH-C feature using Cosine distance (solid 
line) and the original SPRH using both KLD (SR-SPRH-K) and 
Cosine distance (SR-SPRH-C).  

Figure 5. Dimensionality of feature vectors after dimension 
reduction vs. retrieval performance measured in RP figure [%]. 

Based on the experiment, dimensions of manifold m for each 
shape feature to be used for the experiments in Section 4.3 were 
picked. When in doubt, we tried err on the side of having more 
dimension, disregarding computational costs. For L-SR-AAD and 
for each resolution level of L-MR-AAD, m=220 (< n=256) is used. 
For L-SR-SPRH and for each resolution level of L-MR-SPRH (at 
each resolution level), m=500 (< n=625) is used. (While the 
assessment based only on Figure 4(b) suggests the dimension of 
about 200 for the SR-SPRH, other figures such as 11Pwere taken 
into consideration.) 

4.3 Number of samples vs. retrieval 
performance 

Figure 6 shows the change in retrieval performance due to 
learning for the SR-AAD, MR-AAD, SR-SPRH, and MR-SPRH 
shape features. Table 2 shows a summary of performance 
evaluation results. Overall, the manifold learning increased the 
performance by about 5%, and the multiresolution method added 
another 5%, for an overall increase of about 10% for both AAD 
and SPRH. As a result of the combined improvement, the 
performance of the SPRH measured in RP increased from 37.4% 
to 47.7%, surpassing that of our benchmark Light Field 
Descriptor [7]. 

Notice in Figure 6 that the performances of every shape 
feature drop well below the original (i.e., untrained) versions. 
This can be explained as follows; the manifold estimated using a 
small number of samples are so warped that the distance 
computation suffered, compared even to the original space. As the 
number of samples increase, the learning captures the shape of the 
manifold enough to produce equal or better results. Please note 
that, considering the number of dimensions for the features, 
training samples size L is very small. Consider the SR-AAD 
feature having 256 dimensions. A set of 256 uniformly distributed 
samples means, on average, only one sample are taken per 
dimension.  

In both Table 2 and Figure 6, the numbers of learned models 
are limited to either 4000 or 5000 in spite of the corpus size of 
11,818. This limitation is due to the large memory consumption 
of the RBF network regression algorithm we used, and also to the 
memory limitation of the MatLab we used. 

Table 2. A summary of retrieval performance showing the effect 
of learning.. 

Base
feature

MR/
SR Train? Feature 

name L RP 
[%] 

11P 
[%] 

No SR-AAD - 33.5 36.3SR
Yes L-SR-AAD 4000 37.1 39.5
No MR-AAD - 40.3 43.9

AAD
MR Yes L-MR-AAD 4000 43.9 46.8

No SR-SPRH-K - 37.4 40.1
No SR-SPRH-C - 35.6 38.4SR
Yes L-SR-SPRH 5000 37.8 38.7
No MR-SPRH - 42.5 45.7

SPRH

MR Yes L-MR-SPRH 5000 47.5 50.1
LFD - - - - 45.9 49.3

 
SR: Single Resolution MR: Multi Resolution 
L: Number of training samples. 
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(a) Number of learned models and retrieval performance for the 
SR-AAD shape descriptor.  
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(b) Number of learned models and retrieval performance for the 
SR-SPRH shape descriptor.  
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(c) Number of learned models and the performance for the MR-
AAD shape descriptor. 
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(d) Number of learned models and the performance for the MR-
SPRH shape descriptor. 

Figure 6.  Size of the learned models L vs. retrieval performance for the four shape features. All the training sets are sampled by using 
Niederreiter’s sequence. 

4.4 Retrieval example 
Figure 7 shows examples of retrieval by using the model of 

an office chair (#801) in the PSB test set as a query. The model 
belongs to the category that contains total of 20 models.  

The interface displays the query model at the top left corner, 
in addition to the 20 retrieval results in the 4-rows by 5-columns 
matrix format. The top left position of the 4 by 5 matrix displays 
the best match, which is almost always the query itself. (Note that, 
some shape comparison method might return a model other than 
itself as the top match.) Thus, up to 19 “true” retrieval results can 
be displayed in this “first page”. In the image, those in the correct 
category (office chair) are marked by solid rectangle, indicating 
“highly relevant”, results. Those marked by broken line are 

“relevant” results, indicating models that are close to the models 
in the correct category.  

It can be seen that both unsupervised learning (L-) and 
multiresolution shape feature extraction (MR-) produced 
performance gain. The combination of the two approaches (L-
MR-xxx) produced the best results for both AAD and SPRH shape 
features. For the MR feature extraction, the untrained 
(multiresolution) MR-AAD (Figure 7(e)) retrieved 10 out of 20 
office chair models in the top 19 retrievals, compared to 8 models 
for the untrained (single resolution) SR-AAD (Figure 7(a)). 
Unsupervised learning improved performance as well; those with 
learning (on the right hand side of the Figure 7) performed better 
than their counterparts without learning (on the left hand side of 
the Figure 7.). For example, trained L-MR-SPRH retrieved 12 out 
of 20 office chair models (Figure 7(h)), compared to only 8 office 
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chair models for the untrained MR-SPRH (Figure 7(g)). Notice 
also that the relevant results (“near misses”) increased 
significantly by learning across features, often displacing such 
irrelevant retrievals as trucks, houses, and computer monitors. For 
example, while MR-SPRH (Figure 7(g)) contained 12 relevant 
retrievals (R=12/20) in the top 19, L-MR-SPRH (Figure 7(h)) 
contained 18 relevant retrievals (R=18/20) in the top 19.  

4.5 SHREC 2006 benchmark results 
We did not enter the SHREC 2006 3D shape retrieval contest 

[27], but we performed the benchmark as specified in the contest 
using the method described in this paper. The SHREC 2006 uses 
the 1,814 models of both training and test sets of the PSB as the 
test database. The 30 query models are not included in the test 
database. We learned the manifold by sampling a union of the 
PSB (1,814 models) and the NTU (10,911 models) as described in 
Section 4.1 using the Niederreiter’s quasi-random sequence. The 
sizes of training sets are 5,000 for AAD and 4,500 for the SPRH.  

Excerpts of benchmark results are shown in Table 3. The 
table includes, for reference, the top two performers from the 
SHREC 2006 results. The performance of the learned, MR version 
of the SPRH would have placed at the second or third place 
overall if we were to enter the contest. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed and evaluated a method for shape 

similarity based retrieval of 3D models that employs unsupervised 
learning of a 3D shape corpus (i.e., a collection of 3D shape 
models). Our motivation was to improve distance computation 
among shape features that are suspected to lie on a non-linear m-
dimensional ( m n≤ ) subspace of the n-dimensional vector space 
spanned by the feature vectors. The proposed method learns the 
non-linear subspace, or manifold, spanned by the training samples, 
i.e., shape feature vectors of 3D model corpus, by using the 
Laplacian Eigenmaps [3]. The manifold is approximated by RBF 
network [6], onto which the feature vectors having high dimension 
are projected. The distance computation among shape features are 
then performed on the manifold. We combined this learning 
approach with the multiresolution shape feature extraction method 
proposed by Ohbuchi et al. [18].  

The experimental evaluation showed that our proposed 
method significantly improved shape-based 3D model retrieval 
performance. For example, the learning improved retrieval 
performances of both AAD [19] and SPRH [28] shape features by 
about 5%, measured in R-precision. Combined with the 
multiresolution approach, both AAD and SPRH gained about 10% 
in R-precision, rivaling one of the best performing shape 
comparison method Light Field Descriptor by Chen, et al [7].  

Probably the most significant issue with the proposed method 
is the computational cost, both spatial and temporal, of the 
learning phase. As stated before, a naïve method for the 
eigendecomposition used for the manifold estimation costs 2( )O n  
space and 3( )O n time. The RBF network regression, currently the 
limiting factor in increasing the training set size, also costs 
significant amount of spatial and temporal computational. Thus, 
one of the foremost issues is to reduce computational costs of 
eigendecomposition and RBF network approximation. Note that 
the computational cost of the retrieval phase is not particularly 
expensive. It only requires projection of the shape feature vector 

of the query model onto the manifold, followed by cosine distance 
computations.)  

Our experiments on the relation of subspace dimension and 
retrieval performance found no clear dimension of the subspace. 
This is not very surprising, as shape features for 3D shapes won’t 
span a well-defined low-dimensional subspace of a low dimension. 
It is unclear if some other non-linear unsupervised learning 
algorithms, such as LLE and Isomap, might be able to do better in 
discovering the subspace for improved retrieval performance. We 
definitely would like to experiment with these other learning 
algorithms.  

ACKNOWLEDGMENTS 
This research has been funded by the Ministry of Education, 
Culture, Sports, Sciences, and Technology of Japan (No. 
17500066 and No. 18300068).  

REFERENCES 
[1] I. Atmosukarto, W.K. Leow, Z. Huang, Feature Combination 

and Relevance Feedback for 3D Model Retrieval, Proc. 
MMM 2005, pp. 334-339, (2005). 

[2] R. Baeza-Yates, B. Ribiero-Neto, Modern information 
retrieval, Addison-Wesley (1999). 

[3] M. Belkin, P. Niyogi, Laplacian eigenmaps for 
dimensionality reduction and data representation, Neural 
Computation 15, pp. 1373–1396, (2003). 

[4] P. Bratley, B. L. Fox, H. Niederreiter, Algorithm 738: 
Programs to Generate Niederreiter's Low-discrepancy 
Sequences, ACM TOMS Algorithm 738.  

[5] B. Bustos, D. Keim, D. Saupe, T. Schreck, D. Vranić, 
Automatic Selection and Combination of Descriptors for 
Effective 3D Similarity Search, Proc. IEEE MCBAR'04, 
pp. 514-521, (2004). 

[6] Chen, S., C.F.N. Cowan, P. M. Grant, Orthogonal Least 
Squares Learning Algorithm for Radial Basis Function 
Networks, IEEE Trans. on Neural Networks, 2(2), pp. 302-
309, (1991) 

[7] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, M. Ouhyoung, On 
Visual Similarity Based 3D Model Retrieval, Computer 
Graphics Forum, 22(3), pp. 223-232, (2003). 

[8] H. Edelsbrunner, E. P. Mücke, Three-dimensional Alpha 
Shapes, ACM TOG, 13(1), pp. 43-72, (1994). 

[9] M. Elad, A. Tal, S. Ar., Content based retrieval of vrml 
objects – an iterative and interactive approach, Proc. EG 
Multimedia 39, pp. 97-108, (2001). 

[10] S. Haykin, Neural network a comprehensive foundation, 
Second Edition, Prentice Hall, 842pages, (1999). 

[11] Xiaofei He, Wei-Ying Ma, Hong-jiang Zhang: Learning an 
Image Manifold for Retrieval, Proc. ACM Multimedia 2004, 
pp. 17-23 (2004). 

[12] Iyer, N., Kalyanaraman, Y., Lou, K., Jayanti, S., Ramani, K., 
A Reconfigurable, Intelligent 3D Engineering Shape Search 
System Part I: Shape Representation, Proc. ASME DETC '03, 
23rd CIE Conf. (2003). 

[13] M. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, K. Ramani, 
Three Dimensional Shape Searching: State-of-the-art Review 



Ryutarou Ohbuchi, Jun Kobayashi, Unsupervised Learning from a Corpus for Shape-Based 3D Model Retrieval, accepted, ACM MIR 2006, 
Santa Barbara, CA, U.S.A., Oct. 2006 

 9 

and Future Trends, Computer Aided Design, 5(15), pp. 509-
530, (2005). 

[14] G. Leifman, R. Meir, A. Tal, Semantic-oriented 3d shape 
retrieval using relevance feedback, The Visual Computer 
(Pacific Graphics), 21(8-10), pp. 865-875, October 2005. 

[15] Rong Liu, Varun Jain, Hao Zhang, Sub-sampling for 
Efficient Spectral Mesh Processing, Proc. CGI 2006, LNCS 
4035, pp. 172-184, Springer-Verlag, (2006). 

[16] M. Novotni, G.-J. Park, R. Wessel, R. Klein Evaluation of 
Kernel Based Methods for Relevance Feedback in 3D Shape 
Retrieval, Proc. The Fourth International Workshop on 
Content-Based Multimedia Indexing (CBMI'05), (2005). 

[17] NTU 3D Model Database ver.1  
 http://3d.csie.ntu.edu.tw/ 

[18] R. Ohbuchi, T. Takei, Shape-Similarity Comparison of 3D 
Shapes Using Alpha Shapes, Proc. PG 2003, pp. 293-302, 
(2003). 

[19] Ryutarou Ohbuchi, Takahiro Minamitani, Tsuyoshi Takei, 
Shape-similarity search of 3D models by using enhanced 
shape functions, International Journal of Computer 
Applications in Technology (IJCAT), 23(3/4/5), pp. 70-85, 
(2005). 

[20] Ryutarou Ohbuchi, Yushin Hata, Combining Multiresolution 
Shape Descriptors for 3D Model Retrieval, Proc WSCG 2006 
(2006).  

[21] R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape 
Distributions, ACM TOG, 21(4), pp. 807-832, (2002).  

[22] W. H. Press et al., Numerical Recipes in C-The Art of 
Scientific Programming, 2nd Ed., Cambridge University 
Press, Cambridge, UK, 1992. 

[23] S.T. Roweis, L.K. Saul, Nonlinear Dimensionality Reduction 
by Locally Linear Embedding, Science, 290(5500), pp. 2323-
2326, (2000). 

[24] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The 
Princeton Shape Benchmark, Proc. SMI ‘04, pp. 167-178, 
(2004). 
http://shape.cs.princeton.edu/search.html 

[25] J. Tangelder, R. C. Veltkamp, A Survey of Content Based 3D 
Shape Retrieval Methods, Proc. SMI '04, pp. 145-156. 

[26] J. B. Tanenbaum, V. de Silva, J.C. Langford, A Global 
Geometric Framework for Nonlinaer Dimensionality 
Reduction, Science, 290(5500), pp. 2319-2323, (2000).  

[27] R. C. Veltkamp, R. Ruijsenaars, Michela Spagnuolo, R. Van 
Zwol, F. ter Haar, SHREC2006 3D Shape Retrieval Contest, 
Utrecht University Dept. Information and Computing 
Sciences Technical Report UU-CS-2006-030 (ISSN: 0924-
3275)  
http://give-lab.cs.uu.nl/shrec/shrec2006/index.html 

[28] E. Wahl, U. Hillenbrand, G. Hirzinger, Surflet-Pair-Relation 
Histograms: A Statistical 3D-Shape Representation for Rapid 
Classification, Proc. 3DIM 2003, pp. 474-481, (2003).  

Table 3. An excerpt of performance figures obtained by using the SHREC 2006 benchmark [27].  

Train? SR/ 
MR 

Feature 
name AP-HR AP-R FT-HR

[%] 
FT-R 
[%] DAR NCG 

@25 
NDCG
@25 

SR-SR-AAD-C 0.2374 0.2603 24.55 26.48 0.3364 0.3405 0.3771
SR-SPRH-K 0.2886 0.3179 26.68 31.77 0.3990 0.3920 0.4384

SR 

SR-SPRH-C 0.2656 0.2892 25.03 28.48 0.3650 0.3577 0.4038
MR-AAD-C 0.3322 0.3246 31.02 31.38 0.4320 0.4386 0.4793
MR-SPRH-K 0.3761 0.3552 34.93 32.84 0.4631 0.4519 0.5101

No 

MR 

MR-SPRH-C 0.3585 0.3416 33.42 33.38 0.4344 0.4362 0.4856
L-SR-AAD-C 0.2748 0.2795 29.81 28.31 0.3669 0.3962 0.4285SR 
L-SR-SPRH-C 0.2979 0.2837 30.85 30.31 0.3884 0.4117 0.4428
L-MR-AAD-C 0.3789 0.3564 36.58 34.35 0.4687 0.4720 0.5194

Yes 

MR 
L-MR-SPRH-C 0.4539 0.4105 43.12 39.98 0.5276 0.5379 0.5871

Makadia, (run 2) 0.4869 0.4364 44.77 40.55 0.5499 0.5498 0.5906SHREC
2006 Dars, (run 1) 0.4475 0.3952 42.75 37.03 0.5242 0.5246 0.5791

 
AP-HR: Mean Average Precision (highly relevant) AP-HR: Mean Average Precision (relevant) 
FT_HR: Mean First Tier (Highly Relevant) FT_R: Mean First Tier (Relevant) 
DAR: Mean Dynamic Average Recall  
NCG @25: Mean Normalized Cumulated Gain @25 NDCG @25: Mean Normlized Discounted Cumulated Gain @25 
* Prefix “L-” indicates “learned” version of the shape feature. 
* AAD-C was trained by using 5,000 samples, and SPRH-C was trained by using 4,500 samples.  
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(a) SR-AAD, HR=8/20, R=11/20. 

 
(b) L-SR-AAD. HR=10/20, R=15/20. 

 
 (c) SR-SPRH, HR=8/20, R=12/20. 

 
(d) L-SR-SPRH, HR=9/20, R=13/20. 

 
(e) MR-AAD, HR=10/20, R=15/20. 

 
(f) L-MR-AAD, HR=14/20, R=19/20. 

 
(g) MR-SPRH, HR=8/20, R=12/20. 

 
(h) L-MR-SPRH, HR=12/20, R=18/20. 

Figure 7. Examples of query using an office chair model. Learning clearly improved the retrieval results in this example 

   

    

 

 

   

 

   

 


