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Abstract. The recent popularity of digital media such as CD-ROM and the Internet

has prompted exploration of techniques for embedding data, either visibly or

invisibly, into text, image, and audio objects. Applications of such data embedding

include copyright identification, theft deterrence, and inventory.

This paper discusses techniques for embedding data into 3D models. Given

objects consisting of points, lines, (connected) polygons, or curved surfaces, the

algorithms described in this paper produce polygonal models with data embedded

into either their vertex coordinates, their vertex topology (connectivity), or both.

A description of the background and requirements is followed by a discussion of

where, and by what fundamental methods, data can be embedded into 3D polygonal

models. The paper then presents several data-embedding algorithms, with examples,

based on these fundamental methods.

Additional Keywords: 3D graphics, data hiding, digital watermarking,

steganography, geometric modeling, copyright protection.

1. Introduction

The advent of digital media, such as CD-ROMs and the Internet, has made possible
rapid dissemination of various kinds of data objects, including, images, text, movies,
audio data, and recently 3D models. The primary advantage of digital data lie in the ease
with which they can be duplicated, distributed, and modified. These advantages, however,
have prompted unauthorized duplication and distribution of data.

One way of addressing this problem is to add invisible structures, or (digital)
watermark, to the data objects. The structures convey information, such as owner
identifications or copyright notices. Watermarks can be used, for example, to deter theft,
to notify users of how to contact the copyright owner for payment of licensing fees, to
discourage unauthorized copying, or to take inventory. The technology associated with
adding watermarks is called steganography, (digital) watermarking, data embedding, or
fingerprinting. In this paper, the act of adding watermark is called embedding, and
retrieving the information encoded in the watermark for perusal is called extraction.
Following [Pfitzmann96], the information to be embedded is called embedded<datatype>,
the object in which the information is embedded is called cover<datatype>, and the
object with watermark is called stego<datatype>. Suffix “<datatype>” varies with data
types such as image or text. For example, embedding text data into a still image will be
termed as, “embedded-text is embedded into cover-image, producing stego-image”.
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Figure 2. Data are embedded into 3D
polygonal models. Embedded data
travels with the polygonal model.

Data embedding has been studied for cover-data types of still image, movie image,
audio and text data (for example, [Tanaka90, Cox95, Walton95, Berghel96, Braudway96,
O’Ruanaidh96, Zhao96]). To the author’s knowledge, however, no study has been
published on data-embedding techniques for 3D geometrical objects, such as a model
described by using Virtual Reality Modeling Language (VRML) [ISO96].

In the past, the comment and annotation capabilities of scene description formats have
been the primary means for adding information to 3D models. However, these comments
and annotations can be easily removed, either intentionally or unintentionally. For
example, programs for converting between 3D model formats often remove comments
and annotations. As a result, comments and annotations cannot meet most of the
requirements of watermarks.

This paper discusses techniques for embedding data into 3D models, specifically, 3D
polygonal models. Inputs of embedding may include curved surfaces, in addition to
polygonal geometric models. Watermarks are added to polygonal models by altering their
geometry (the coordinates of their vertices) and/or their topology (connectivity of
vertices). Figure 1 shows an example of such embedding into a polygonal model of a cow
using an algorithm described in Section 3.2. The embedded message, “Copyright (C)
COW INC. <CR> Model #12345678 <CR> Contact http://www.cow.org/.”, can be
extracted and displayed by clicking a button while using a browser enhanced with the
extraction capability. The watermark withstands such alterations as Affine transformation
and resection.

Data-embedding techniques for 3D models have the following required characteristics,
whose priorities vary according to the intended applications:

Unobtrusive: The embedding must not interfere with the intended use of a model, such

(a) The original model. (b) Message embedded.

(c) Cut in half. (d) Affine-transformed.

Figure 1. (a) The original model of a cow (5804
triangles). (b) A message is embedded. The
message, which is displayed on demand, survives
(c) resection or (d) affine transformation.



as viewing. One published example of image watermarking [Braudway96] used the
visibility of the watermarks as an advantage, but in most applications, the watermarks
must be unnoticeable in terms of the model’s intended use.

Robust: Robustness is crucial to the success of data embedding. Using conventional
cryptography, data can be made unreadable to third parties [Schneier96]. Making
watermarks indestructible, however, is not a trivial problem. With complete knowledge of
how watermarks are embedded, any watermarks can theoretically bed removed. With
partial knowledge (e.g., the knowledge of the basic algorithm), the removal must be
difficult enough so that it either interferes with the intended use of the models or the
effort of removal is greater than the value of the model.

What kind of modifications should a watermark in a 3D model resistant to? Data
format conversion is a common practice. Floating-point-number representation errors are
often introduced during file format conversions. Models are (geometrically) transformed.
While transformations are sometimes limited to rotation, uniform-scaling, and translation,
more general affine transformations are common. Local deformation is occasionally used
to reshape a model. Topological alterations, such as resection of a desired part of a model,
remeshing, and polygon simplification, may also be performed. Assuming that the degree
of modification is limited so that the utility of the model is not compromised, watermarks
in 3D models should ideally withstand these and other possible alterations, regardless of
whether they are intentional or otherwise.

Space efficient: A data-embedding method should be able to embed a non-trivial amount
of information into models whose complexity and value warrants the effort involved.

It is important to note that these three requirements are at odds. For example, in
general, more robust watermarks are able to carry less amounts of information. Note also
that, depending on applications of watermarks, there could be other requirements, such as
reliable identification of source or intended recipient.

2. Fundamental methods of data embedding

2.1. Objects types in 3D models for embedding

A 3D scene model may contain many types of data objects, such as geometry, vertex
color, images for texture mapping, vertex normal vectors and even Universal Resource
Locator links. We argue that geometry is the best candidate as a target for data embedding
since it is the least likely to be removed. While there are many possible representations of
3D geometry, we chose polygonal models as the output of embedding for the study
reported in this paper (see Figure 2). A “polygonal model” in this paper may include one
or more of the following geometrical primitives: points, lines, polygons, connected
polygons (e.g., an indexed face set), polyhedrons, and connected polyhedrons. Some data
embedding algorithms require topology (connectivity) among points, while others do not.
Topology can be added - for example by Delaunay triangulation [O’rourke94] - to
polygonal models.



As inputs, embedding algorithms in this paper may accept curved surfaces (e.g.,
NURBS patches) in addition to polygonal models. The curved surfaces are tessellated into
polygonal meshes as they are being embedded with stego-messages.

While we do not discuss details in this paper, components of 3D scenes other than
polygonal models of geometry can become targets of data embedding. For example,
various other representations of geometry, such as control points of curved surfaces or
voxels, can be used as targets of embedding. Depending on the intended use of the model,
non-geometrical objects such as per-vertex texture coordinates and per-vertex normal
vectors, and to a lesser degree, per-vertex colors or face colors, are viable candidates for
data embedding. Image texture, movie texture, and audio data are natural targets for data
embedding by using “conventional” data embedding techniques. Note, however, that
many of these non-geometrical components of 3D scenes are in general less suitable for
data embedding since they can be removed or altered more easily than geometry.

2.2. Embedding primitives

There are two kinds of attributes in a polygonal model that can be modified in order
to add watermarks. One is geometry of geometrical primitives (e.g., points or triangles)
and the other is topology of these primitives. Units of modification, either geometrical or
topological, are called embedding primitives in this paper.

2.2.1. Geometrical primitives

Geometrical values - specifically, the coordinates of points and vertices - can be
modified to embed data. Modifications of coordinates change scalar or vector quantities,
some of which are classified below according to the transformations to which they are
invariant. The invariance property is quite useful in constructing data embedding
algorithms that are robust against a given class of transformations.

l Altered by all the transformations listed below
l Coordinates of a point

l Invariant to translation and rotation
l Length of a line
l Area of a polygon

l Invariant to rotation, uniform-scaling, and translation
l Two quantities that define similar triangles (e.g., two angles)

l Invariant to affine transformation
l Ratio of the lengths of two segments of a straight line
l Ratio of the volumes of two polyhedrons

l Invariant to projection transformation
l Cross-ratio of four points on a straight line [Farin96]

Embedding modifies these quantities in such a manner that the modification do not
affect the intended uses (e.g., viewing by a browser) of models. For geometrical
primitives, this usually means that the amount of a coordinate displacement must remain



small. However, this is not always the case. If curved surfaces, instead of polygonal
surfaces, are input to an embedding algorithm, the algorithm could have a large degree-
of-freedom in number and positions of vertices in output polygonal meshes. The
algorithm could exploit this freedom of vertex placement and features of the surfaces (e.g.,
curvatures) to produce robust watermarks.

2.2.2. Topological primitives

Watermarks can be embedded in the topology of a model. Modifications in this class
involve changes in topology, although the geometry might also be changed as a result.
Simple examples of topological embedding primitives include encoding of a binary
symbol by using two alternative ways of triangulating a quadrilateral,  and , or two
different mesh sizes,  and .

2.3. Arranging embedding primitives

A lone embedding primitive usually can not encode meaningful amount of data. By
arranging a set of embedding primitives into an ordered arrangement, a significant
amount of information can be embedded into the arrangement of primitives. Examples of
arrangements are 1D sequences generated by sorting triangles according to their areas,
and 2D arrangements of embedding primitives based on the connectivity of triangles in an
irregularly tessellated triangular mesh. A set of arranged primitives could be used to
encode an ordered sequence of symbols, such as a character string and binary-number
digits, or geometrical patterns, for example, shapes of letters. Note that, conventional
targets of data embedding, such as audio and image data, fortunately have implicit
ordering. For example, a 2D image has pixels arranged in a regular 2D array. To embed
data into 3D polygonal models, however, primitives in the models must be arranged
explicitly by embedding algorithms.

Arrangement of primitives can be achieved by the following two methods:

a. Topological arrangement employs topology (e.g., connectivity of vertices) to
arrange embedding primitives. Topological arrangement requires topology among the
embedding primitives. This arrangement is applicable to both topological and
geometrical primitives. This arrangement can survive almost any geometrical
transformation.
b. Quantitative arrangement sorts primitives into arrangement by using inequality
relations among quantities associated with embedding primitives. This arrangement is
applicable only to geometrical primitives, since it requires quantities for comparison.
In order for the arrangement (and thus the watermark) to survive, the quantity used
must withstand expected disturbances, such as a class of geometrical transformation.

It is often critical to find an initial condition - for example, the first primitive of a
one-dimensional arrangement - in order to start an arrangement. The initial condition
must be invariant to expected disturbances (e.g., affine transformation.); if the initial
condition is changed irrecoverably, watermarks are lost.



Arrangements of embedding primitives can also be classified by their locality into
global, local, and subscript arrangements.

a. Global arrangement arranges a set of all the embedding primitives.
b. Local arrangement subdivides the embedding primitives into disjoint subsets, and
arranges each subset.
c. Subscript arrangement is similar to local arrangement with very small subsets (e.g.,
a few primitives per subset). Each subset in this case is called a macro-embedding-
primitive, which embeds {data-symbol, subscript} pair so that the subscript identifies
data symbol’s position in an arrangement.

In the latter two arrangement methods, a set of primitives are grouped into a subset by
proximity, either topological or quantitative, of their members.

3. Embedding algorithms

In the previous section, we have discussed fundamental methods for embedding data
into 3D polygonal models. These fundamental methods can be combined to generate
practical data-embedding algorithms. This section describes two such algorithms.

Both algorithms are implemented by using a kernel for a non-manifold modeler
[Masuda96]. Using radial edge structure [Weiler86] to represent topological relationships
among vertices, edges, faces, and regions, the modeler efficiently performs such
operations as computation of the spanning tree of vertices on a triangular mesh.

3.1. Triangle similarity quadruple embedding

A pair of dimensionless quantities, for example, {b/a, c/a}, {S/{a*a}, b/c}, or {θ1,θ2}
in Figure 3a, defines a set of similar triangles. One of these pairs can be used as a
primitive to watermark triangular meshes so that the watermarks are robust against
translation, rotation, and uniform-scaling transformations. Combining this primitive with
subscript arrangement and repeated embedding of a message, the watermark becomes
resistant to resection or local deformation of the stego-3D-models.

In order to realize subscript ordering, a quadruple of adjacent triangles that share
edges (Figure 3b) is used as a macro embedding primitive that stores a pair of data
symbols, a marker, and a subscript together. A marker is a special value (or values) that
identifies macro embedding primitives. This algorithm, which is called Triangle
Similarity Quadruple (TSQ) algorithm, embeds a message according to the following
steps.

(1) Find a macro embedding units on the input triangular mesh. In doing so, avoid
triangles that have already been used for the watermark. Avoid triangles that are unfit
for stable embedding, e.g., if its two dimension-less quantities are either too small.

(2) For each macro embedding unit, embed {subscript, mark, data1, data2} quadruple by
displacing vertices by small amount.

(3) Repeat (1) and (2) above until all the data symbols of a message are embedded.



In order to embed multiple copies of a message, steps (1) to (3) are repeated many
times. Each repetition of a message is embedded in a topological proximity.

The TSQ extraction algorithm does not require the original cover-3D-model for
extracting embedded message. The algorithm traverses all the triangles in the model to
find triangles with markers. Each marker identifies a macro-embedding-primitive, which
contains two data symbols and a subscript. The subscript puts the symbol pair at a proper
place in the sequence of extracted message symbols.

Figure 5a shows a model of Beethoven’s bust (4889 triangles, 2655 vertices) in which
six identical copies of a message, each of which consists of 132 bytes, have been
embedded by using the TSQ algorithm. Figure 5b-c shows the result of resection by
arbitrary planes (the first one just happened to cut the model in half at the medial line.) As
shown in Table 1, cutting the model in half left the message intact. After the model has
been roughly quartered 102 bytes out of 132 bytes remained. Note that, since a subscript
arrangement was used, intact characters still tended to be in the correct positions within
the message string.

3.2. Tetrahedral volume ratio embedding

A ratio of volumes of a pair of tetrahedrons is the embedding primitive for the
Tetrahedral Volume Ratio (TVR) embedding algorithm described in this section. The
algorithm is designed to accept triangular meshes as input and embedding primitives are
ordered topologically into a global one-dimensional arrangement to embed a sequence of
symbols. The algorithm does not require cover-3D-model for extraction, and the
watermark survives affine transformation. The TVR algorithm, however, is not robust
with respect to topological modifications such as resection and remeshing.

    (a)       (b)      (c)      (d)
Figure 5. A model of a Beethoven’s bust
(4889 triangles) resected repeatedly.

No. of
triangles

Data remained intact

(a) 4889 6 copies, 132 bytes each

(b) 2443 132/132 bytes

(c) 1192 102/132 bytes

(d) 399 85/132 bytes
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S u b-
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Figure 3. (a) A pair
of dimension-less
quantities defines a
set of similar
triangles. (b) A
macro-embedding-
primitive.

Figure 4. Triangles
in dark gray are the
macro-embedding-
primitives.

Table 1. Data loss due to resection in the
example shown in Figure 5.



The crux of the TVR algorithm is establishing global one-dimensional ordering of
embedding primitives. This is accomplished in accordance with the following steps;

(1) Find a spanning tree of vertices Vt, called vertex tree, on the input triangular mesh M,
given an initial condition Ivt for Vt. Convert Vt into a sequence of triangles Tris,
called a triangle sequence.

(2) Convert Tris into a sequence of tetrahedrons Tets, called a tetrahedron sequence. To
do this, compute a common apex as the centroid of the coordinates of a few triangles
selected from the triangle sequence. The selected triangles are removed from the
triangle sequence so that their coordinates are not modified by embedding.

(3) Convert Tets into a sequence of ratios of volumes Vrs. To do this, a volume of a
tetrahedron (e.g., the first one) in Tets is selected as a common denominator of all the
ratios, and volumes of the remaining tetrahedrons are used for numerators.

(4) Embed a symbol into each ratio by displacing vertices of numerator-tetrahedrons. The
vertex displacements for the current symbol must not interfere with modifications of
the previously embedded symbols. (In Figure 8, triangles that are used for embedding,
which are colored dark gray, do not share edges because of this constraint.)

We now explain details of the first step, starting with the method to create a triangle
sequence, and later come back to explain how to find an initial condition Ivt.

Generating vertex tree Vt from an input triangular mesh requires that the input mesh
is an orientable manifold. To generate Vt, traverse vertices from a given initial vertex in
the initial traverse direction, starting with the Vt initialized to empty. At each vertex, by
scanning the edges in counter-clockwise order, find an edge that is not a member of Vt
and does not loop back to any of the vertices covered by Vt. If such an edge is found, add
it to Vt. Figure 6 shows an example of a vertex tree, in which vertex 1 is the initial vertex.

The vertex tree Vt is converted into the triangle sequence Tris as a set of edges Tbe,
called a Triangle Bounding Edge (TBE) set is constructed. The Tbe is initialized to a set
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numbered), a triangle
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Figure 7. Volume of a
tetrahedron a-b-c-d, which is
subtended by two triangles
a-d-c and b-c-d that are
adjacent to the edge c-d, is
computed. (Two arrows
indicate possible alternative
initial traverse directions
given an initial edge c-d.)

Figure 8. Triangles used
for embedding by the
TVR algorithm are shown
in dark gray.



of edges that connect vertices in the Vt. To add an edge to the Tbe, vertices are traversed
according to the Vt, starting from the root. At each vertex, all the edges adjacent to the
vertex are scanned clockwise, and the scanned edge is added to the Tbe if it is not a
member of the Tbe. A new triangle is added to the Tris, which started as an empty
sequence, if all three edges of the triangle are in the Tbe for the first time, and the triangle
is not already in the Tris. In the example shown in Figure 6, edges (except the initial
entries of the Tbe) are marked by alphabets in the order of addition to the Tbe using
alphabetical ordering. In the figure, members of the Tris are marked by numbers in
circles.

The algorithm selects an initial edge, instead of an initial vertex and an initial traverse
direction, using the method described below. Using an initial edge as initial condition
allows two possible alternatives to start traverse of vertices to construct a vertex tree. This
ambiguity is resolved by a trial-and-error method. The algorithm extracts sequence of
symbols by using both alternatives, and choose the direction that yielded correct
predetermined lead-in symbol sequence.

To select an initial edge, the algorithm computes, for every edge in the model, the
volume of the tetrahedron subtended by the two triangles that are adjacent to the edge
(Figure 7). The algorithm selects, as the initial edge, the edge for which tetrahedron’s
volume is the largest. (Note that these tetrahedrons are different from the ones used to
embed symbols.) Since the initial edge with the largest volume may be incorrect due to
noise and other reasons, the TVR algorithm employs the trial-and-error method again.
The algorithm tries multiple candidate edges until it finds the correct lead-in sequence.

The TVR algorithm can be made resistant to resection and local deformation by using
a local or subscript arrangement method combined with repeated embedding of a message.
Examples shown in Figure 1 used a strengthened version of the TVR algorithm by using a
local arrangement and repeated embedding of a message.

4. Summary and Future Work

We have applied the concept of data embedding to 3D polygonal models. While data-
embedding techniques have previously been studied for text, image, and audio data
objects, to the author’s knowledge, our work is the first to study data embedding into 3D
geometrical models.

After describing the background and requirements, we argued that geometry is the
best data type in a 3D model for embedding. We then chose polygonal models as targets
of embedding for this study. We presented fundamental methods for embedding data into
polygonal models, namely, geometrical and topological modification primitives and
methods for introducing ordering into a set of modification primitives. Finally, we
presented two data-embedding algorithms and gave examples of their execution, thus
demonstrating that data embedding into 3D polygonal models is a practical technique.

Much work in this area remains to be done. Our embedding algorithms are meant to
be examples of simply embedding data into 3D polygonal models. Ideas such as spread
spectrum communication [Cox96, Smith96], scrambling of symbol sequences by pseudo-



random number sequence, and others may prove valuable in order to improve security,
reliability, and robustness of embedding algorithm. We would also like to investigate data
embedding into targets other than polygonal models, for example, control parameters of
curved surfaces. In doing so, we need to understand requirements of applications other
than viewing; for example, a manufacturing CAD system should have different criteria
for unobtrusiveness than a simple browser of 3D polygonal models.   
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