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Abstract 
Digital watermarking embeds a structure called 
watermark into the target data, such as image and 3D 
polygonal models. The watermark can be used, for 
example, to enforce copyright and to detect tampering. 
This paper presents a new robust watermarking method 
that adds watermark into a 3D polygonal mesh in the 
mesh’s spectral domain. The algorithm computes spectra 
of the mesh by using eigenvalue decomposition of a 
Laplacian matrix derived only from connectivity of the 
mesh. Mesh spectra can be obtained by projecting 
coordinates of vertices onto the set of eigenvectors.  A 
watermark is embedded by modifying the magnitude of 
the spectra. Watermarks embedded by using this method 
are resistant to similarity transformation, random noise 
added to vertex coordinates, mesh smoothing, and partial 
resection of the meshes. 

Keywords: Geometric modeling, information security, 
information hiding, graph Laplacian, mesh spectra. 

1. Introduction 
Watermarking adds structures called watermark to 
various target data objects so that information encoded 
in the watermark are added to the target data. The 
watermark must not interfere with the intended purposes 
of the target object (e.g., viewing for a 2D image data 
object) and that the watermark should ideally be 
inseparable from the target object. Embedded watermark 
can be used to enforce copyright, add comments, detect 
tampering, or to identify rightful purchasers of the data. 
Most of the previous research on watermarking has been 
concentrating on watermarking “classical” object data 
types, such as text, 2D still image, 2D movie, or audio 
data. Numerous papers on watermarking these data 
objects have been published (see, for example, a book 
edited by Katzenbeisser, et al. [8]). Recently, an 
increased popularity and importance of three-
dimensional (3D) data objects, such as VRML, MPEG4 
and various 3D geometric CAD data has prompted 

investigation of techniques to watermark 3D models. 
Most of the watermarking algorithms for 3D geometric 
models that has been published so far targeted geometric 
shapes of 3D polygonal meshes  [10, 5, 11, 6, 12, 13, 3, 
17, 14, 16], while a few have targeted parametric curves 
and surfaces that are often found in 3D geometric CAD 
models. Others have targeted movement of 3D models, 
that is, MPEG 4 facial animation parameters [5] or 
attributes of 3D polygonal models [12]. 
In this paper, we propose a watermarking algorithm that 
embeds data into shapes of 3D polygonal meshes. The 
algorithm employs spectral decomposition of 3D 
polygonal mesh shape for watermarking. The watermark 
produced by the algorithm is robust against similarity 
transform (i.e., rotation, translation, and uniform scaling). 
In addition, the watermark can be made resistant against 
such operations as mesh smoothing (“low-pass filtering” 
of 3D shapes), random noise added to vertex coordinates, 
resection of a part of the model, as well as to mesh 
simplification.  
The rest of this paper is structured as follows. In 
Section 2, the definition of the spectral analysis of 
polygonal meshes will be followed by the description of 
our watermarking algorithm based on the analysis. In 
Section 3, we will present experimental results, followed 
by a survey on related work in Section 4. We will 
conclude this paper with summary and future work in 
Section 5.   

2. The Spectral Domain Watermarking Algorithm 
The watermarking algorithm presented in this paper adds 
a watermark to the shape of a given 3D polygonal mesh 
whose shape is defined by its vertex connectivity and 
vertex coordinates. The watermark is added in a 
transformed domain. Here, the transformation is mesh 
spectral analysis. Mesh spectral analysis was first 
employed by Karni and Gotsman [7] for lossy 
compression of vertex coordinates of polygonal meshes. 
Mesh spectra is computed from a Laplacian matrix 
derived from connectivity of a polygonal mesh  [1, 2]. 



 

  

The watermarking method proposed in this paper 
embeds information into the mesh shape by modifying 
its mesh spectral coefficients. An inverse transformation 
converts the watermarked spectral coefficients back into 
original mesh whose vertex coordinates are slightly 
altered. The method is a private watermarking method, 
meaning that the watermark extraction requires both the 
watermarked mesh and the original, non-watermarked 
mesh. The watermark extraction is performed in the 
mesh spectral domain, comparing spectral coefficients of 
the watermarked and original meshes.  

2.1 Spectral Analysis of Polygonal Meshes 
The spectrum of a polygonal mesh is computed from 
connectivity and coordinates of vertices of the mesh. 
Computation of mesh spectra involves eigenvalue 
decomposition of a Laplacian matrix, which is derived 
only from the connectivity of the mesh vertices. The 
decomposition produces a sequence of eigenvalues and a 
corresponding sequence of eigenvectors of the matrix.  
Approximately, smaller eigenvalues correspond to lower 
spatial frequencies, and larger eigenvalues correspond to 
higher spatial frequencies. Eigenvectors and spectral 
coefficients of the smaller eigenvalues represent global 
shape features, while eigenvectors and spectral 
coefficients of the larger eigenvalues represent local or 
detail shape features. Projecting the coordinate of a 
vertex onto a normalized eigenvector produces a mesh 
spectral coefficient of the vertex.   
There are several different definitions for the mesh 
Laplacian matrix [1, 2]. We employed a definition by 
Bollabás [2]. Bollabás calls it a combinatorial Laplacian 
or Kirchhoff matrix. The Kirchhoff matrix K  is defined 
by the following formula; 

 =K D - A  (1) 
D  is a diagonal matrix whose diagonal element 

ii id=D is a degree (or valence) of the vertex i, while A  
is an adjacency matrix of the polygonal mesh whose 
elements ija  are defined as below; 

 
1, if vertices  and  are adjacent;
0, .ij

i j
a

oterwise


= 


 (2) 

Karni and Gotsman [7] used another definition of mesh 
Laplacian = −L I HA  for their mesh compression. In 
their formula, H  is a diagonal matrix whose diagonal 
element 1ii id=H is the reciprocal of the degree of the 
vertex i and A  is the adjacency matrix as the Kirchhoff 
matrix above.  
Compared to L , which is a semi-symmetric matrix, K  
is a real-symmetric matrix so that eigenvalue 
decomposition on K  is somewhat easier to compute. 

Furthermore, our experiments on compressing vertex 
coordinates of polygonal meshes using Karni’s method 
[7] showed that the matrices K  and L  exhibited nearly 
identical properties. We thus decided to use K  for our 
experiments on watermarking.  
A polygonal mesh M having n vertices produces a 
Kirchhoff matrix K  of size n n× , whose eigenvalue 
decomposition produces n eigenvalues iλ and n n-
dimensional eigenvectors iw  (1 )i n≤ ≤ . Projecting 
each component of the vertex coordinate ( , , )i i i ix y z=v  
(1 )i n≤ ≤  separately onto the i-th normalized 
eigenvectors ie  

       (1 )i i i i n= ≤ ≤e w w  (3) 

produces n mesh spectral coefficient vectors 
( ), , ,, ,i s i t i u ir r r=r  (1 )i n≤ ≤ . The subscripts s, t, and u 

denote orthogonal coordinate axes in the mesh-spectral 
domain corresponding to the spatial axes x, y, and z. To 
invert the transformation, multiplying ie  with ir  and 
summing over i recovers original vertex coordinates. 
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2.2 Embedding Watermark 
The watermarking algorithm of this paper embeds 
watermark by modifying mesh spectral coefficients 
derived by using the Kirchhoff matrix. For each spectral 
axis s, t, and u, a mesh spectra is an ordered set of 
numbers, that are, spectral coefficients.  
Various watermarking algorithms have adopted the 
principles of spread spectrum communication to 
modulate ordered sets of numbers for watermarking [8]. 
Properties of spread spectrum communication include 
low spectral power density and robustness against 
additive random noise. Both of these two properties are 
considered advantageous to watermarking, since they 
correspond to low perceptibility and high noise 
resistance of watermarks. Our watermarking algorithm 
presented in this paper also employs a spread-spectrum 
approach similar to that of Hartung et al [5] to modulate 
the sequence of numbers obtained by using the mesh 
spectral analysis. 
In the algorithm, the data to be embedded is an m-
dimensional bit vector ( )1 2, ,..., ma a a=a , in which each 
bit takes values { }0,1 . Each bit ja is duplicated by chip 
rate c  to produce a watermark symbol vector 

1 2( , ,... )mcb b b=b , { }0,1ib ∈  of length m c⋅ ; 

 ,    ( 1)i jb a j c i j c= ⋅ ≤ < + ⋅  (5) 



 

  

Repeatedly embedding the same bit c times increases 
resistance of the watermark against additive random 
noise. Averaging the detected signal by c  times upon 
watermark detection reduces the effect of the additive 
random noise. 
The bit vector ib  is converted to another vector 

1 2( , ,... )mcb b b′ ′ ′ ′=b { }1,1ib′∈ −  by the following simple 
mapping; 

 
1, if 0;

1, if 1.
i

i
i

b
b

b
− =′ =  =

 (6) 

Let us now consider modulating spectral coefficients of 
one of the spectral axes s . Modulation processes for the 
other two spectral axes are identical. Let ,s ir  be the i-th 
spectral coefficient prior to watermarking corresponding 
to the spectral axis s , { }1,1ip ∈ −  be the pseudo-
random number sequence (PRNS) generated from a 
known stego-key wk , and α  ( 0)α >  be the modulation 
amplitude. Watermarked i-th spectral coefficient ,ŝ ir  is 
computed by the following formula; 

 , ,ŝ i s i i ir r b p α′= + ⋅ ⋅  (7) 

The extraction algorithm requires the same stego-key, 
which is a seed for the PRNS used for the embedding, 
for extraction. Key distribution can be achieved by using 
a public-key cryptography, for example.  
Performing the same to t  and u  components of the 
spectrum produces a set of watermarked set of spectral 
coefficients ( ), , ,ˆ ˆ ˆ ˆ, ,i s i t i u ir r r=r . Inverse-transforming the 
set of spectral coefficients back into the domain of 
vertex coordinates ˆ ˆ ˆ ˆ( , , )i i i ix y z=v by using the formula 
(4) produces a watermarked polygonal mesh.  

2.3 Extracting Watermark 
As a private watermark, watermark extraction of the 
algorithm described in this paper is non-blind, that is, the 
extraction requires a cover-mesh (i.e., an original mesh 
without watermark) as well as a stego-mesh (i.e., 
watermarked, and possibly degraded, mesh).  
The extraction starts with realignment of the cover-mesh 
M  and the stego-mesh M̂ . To realign meshes, for each 
mesh, a coarse approximation of its shape is 
reconstructed from the first (lowest-frequency) 5 spectral 
coefficients. Then, a set of eigenvectors is computed 
from a 3 3×  covariance matrix derived from the 
reconstructed shape [4]. A comparison of the two sets of 
eigenvectors realigns the meshes M  and M̂ .   
Each of the realigned meshes is applied with spectral 
decomposition to produce spectral coefficients ,s ir  for 
M  and ,ŝ ir  for M̂ . Multiplying the difference 

, ,ˆ( )s i s ir r−  with the same PRNS as is used for the 
embedding, which is generated from the shared seed wk , 
and summing the result over c times produces 
correlation sum for the spectral axis s . Summing the 
correlation sums over all three of the spectral axes 
produces the overall correlation sum jq ; 
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If the PRNSs for the embedding and extraction are 
synchronized, and if disturbances applied to the vertex 
coordinates of M̂  (e.g., additive random noise) are 
negligible, 

 j iq c bα ′= ⋅ ⋅  (9) 

where jq  takes one of the two values { , }c cα α− . Since 
α  and c are always positive, simply testing for the signs 
of jq  recovers the original message bit sequence ja ,  

 ( )j ja sign q=  (10) 

The string ja  can easily be converted to the original 
message bit sequence ib  by applying an inverse of the 
mapping of the formula (6). 

2.4 Mesh Partitioning 
Our current implementation performs eigenvalue 
decomposition by first applying similarity transformation 
of the matrix using the Housholder method, followed by 
an iterative method. This approach to eigenvalue 
decomposition performs well for the meshes of size up 
to a few hundred vertices. Two problems arise if we try 
to process a larger mesh. First, computational time for 
the eigenvalue decomposition on a typical PC becomes 
more than desirable for typical watermarking 
applications. Second, numerical stability of the 
decomposition becomes increasingly questionable.  
Our approach to watermarking a larger mesh (e.g., of 
size 104-107 vertices) is to partition the mesh into 
smaller sub-meshes of manageable size (e.g., about 500 
vertices) so that watermark embedding and extraction is 
performed individually within each reasonably sized 
sub-mesh. This approach is essentially what Karni and 
Gotsman employed for their polygonal mesh geometry 
compression [7].  
Mesh partitioning has an additional benefit. The 
watermark can be made resistant against resection by 
embedding the same copy of information repeatedly into 
multiple sub-meshes. The watermark can be extracted 
after a partial resection if the remaining mesh contains at 
least one sub-mesh that is not affected by the resection. 



 

  

The untouched sub-mesh can be used for mesh 
realignment and watermark extraction.  
We have implemented a simple mesh-partitioning 
algorithm that can incorporate human intentions. To 
partition a mesh, we first specify “feature vertices” 
manually so that the feature vertices are approximately at 
the center of desired sub-meshes and that the feature 
vertices are distributed roughly evenly on the original 
mesh. Each sub-mesh is then grown around a feature 
vertex by incrementally expanding the sub-mesh region 
around the feature vertices by following connectivity of 
the mesh vertices. The incremental expansion of the sub-
meshes halts when the original mesh is fully partitioned.  
Mesh spectral analysis uses a Laplacian matrix defined 
by vertices (and their connectivity) that belong to a sub-
mesh, ignoring edges connecting vertices on the 
boundaries of sub-meshes. Since watermark embedding 
and extraction requires exactly the same mesh 
partitioning, feature vertices used for the partitioning of 
the original cover-mesh must be saved together with the 
cover mesh to be used for extraction. 

2.5 Watermarking Parameters 

Chip rate c  
In case of watermarking 2D still images or 2D movies, 
the chip rate c can be quite large, since there are at least 
a few tenths of thousands of numbers to be manipulated 
for watermarking. Since many polygonal meshes often 
have as few as a few hundreds vertices, the chip rate c 
can only be a moderate number, e.g., 5 or 10. For 
example, if we were to embed a 32 bit number, the 
maximum chip rate is 7 for the tiger model shown in 
Figure 1 which has 254 vertices.  
Given a number of vertices, a higher chip rate means 
lower data capacity for the watermark. Also, as we will 
discuss in Section 3.3, a higher chip rate increases some 
aspects of robustness while it decreases others.  

Modulation amplitude α  
The modulation amplitude α  is computed as a fraction 
of the largest of the axis-aligned bounding box (AABB) 
of the target mesh. The α  is chosen by the user so that it 
is small enough to preserve appearance of the model 
while large enough to withstand as much disturbances 
(e.g., additive random noise and mesh smoothing) as 
possible.  

Spectrum allocation 
A mesh having n vertices produces n eigenvalues, n 
eigenvectors and 3 sets of n spectral coefficients, 
allowing n bits to be embedded. All of the n spectral 

coefficients are not used for embedding, however. As 
described in Section 2.3, 5 eigenvectors corresponding 
to smallest 5 eigenvalues are used to realign stego- and 
cover- meshes. Thus, at most (n-5) (higher-frequency) 
coefficients are available for embedding watermark 
information.  
Utilization of these (n-5) coefficients depends on which 
one of the robustness properties is to be emphasized. For 
example, in order to increase robustness against random 
noise added to the vertex coordinates, the chip rate c 
needs to be maximized. On the other hand, if we were to 
emphasize robustness against smoothing, we need to use 
only the spectral coefficients corresponding to smaller 
eigenvalues (i.e., lower frequencies.) 

3. Experiments and results 
We implemented the algorithm described above using 
C++, OpenGL graphics API, and fltk (available from 
http://www.fltk.org), which is a graphical user interface 
toolkit for the OpenGL. 

3.1 Watermark Perceptibility 
Figure 1 compares perceptibility of watermark in case of 
the tiger model. Figure1a is a VRML model having 254 
vertices and 504 faces without mesh partitioning.  
Three other figures show meshes watermarked with three 
different combinations of modulation amplitude α  and 
the chip rate c; 0.002α = , 7c = (Figure 1b), 0.005α = , 

1c =  (Figure 1c), and 0.005α = , 7c =  (Figure 1d). 
Change in shape is hardly noticeable at 0.002α = , 

7c = . Shape change is hardly noticeable at 0.005α = , 
1c = , but higher chip rate 7c =  at the same amplitude 

made the shape change perceptible.  
The perceptibility of a watermark depends not only on 
the amplitude α  and the chip rate c, by also to the 
spectral band employed for the watermark. For example, 
modifications of the lower frequency coefficients are 
less noticeable than those of the higher frequency 
coefficients. Perceptibility also depends on such other 
factors as the target mesh size and shape. Furthermore, 
the perceptibility of the watermark embedded in a 3D 
polygonal mesh depends on the way it is viewed. For 
example, the perceptibility of the watermark may be 
affected by the rendering method (e.g., wire-frame or 
shaded surface rendering), camera parameters, lighting 
and pixel interpolation method, photometric properties 
of the mesh (e.g., color, texture, etc.), and many other 
factors. Thus, the evaluation of perceptibility of 
watermarks embedded in the shapes of 3D polygonal 
meshes is likely be more involved than that of 2D still or 
movie images.  



 

 
(a) Before watermarking. (b) 0.002α = , 7c = . 

 
(c) 0.005α = , 1c = . (d)  0.005α = , 7c = . 

Figure 1. Appearances of the “tiger” model (253 vertices, 504 
faces) watermarked with multiple watermark embedding 
amplitudes α  and chip rate c are compared. 

3.2 Mesh Partitioning and Computation time 
Mesh partitioning enables our algorithm to handle 
meshes much larger than possible without the 
partitioning.  
Figure 5a shows a mesh model of bunny3 containing 
2218 vertices and 4432 triangles. In Figure 6a, it is 
partitioned into 6 sub-meshes. The sizes of sub-meshes 
in this example ranged from 334 to 494 vertices. Table 1 
shows the computation time required for watermarking 
meshes both with and without mesh partitioning. Even a 
model with 1197 vertices (bunny2) took more than 30 
minutes to process, which is not very useful. However, 

with partition, the time to process the bunny3 model was 
reduced to less than 7 minutes. (The bunny meshes of 
various complexity found in Table 1 and in Figure 6 are 
created from the bunny mesh obtained from the Stanford 
University by applying a mesh simplification algorithm.) 

Mesh partitioning reduces computation time and 
increases robustness against resection. On the other hand, 
number of embeddable bits, robustness against additive 
random noise, and robustness against mesh smoothing 
are reduced. The number of partitioned meshes must be 
selected with these conflicting factors in mind.  

3.3 Robustness 
We experimentally evaluated the robustness of 
watermarks produced by using our watermarking 
algorithm against various disturbances.  
Figure 5a and 5e show cover-meshes (i.e., the original 
meshes) used for the experiments, the bunny3 mesh 
(2218 vertices) and the distcap mesh (686 vertices). In 
Figure 5b and 5f, these two meshes are watermarked 
with 0.005α =  and c = 10, producing stego-meshes 
with almost unnoticeable changes in shapes. For the 
watermarking, the bunny3 mesh was partitioned into 6 
submeshes of approximately equal size. The smaller 
distcap mesh was watermarked without partitioning.  

Similarity Transformation 
Watermarks embedded by using this method are robust 
against similarity transformation, for the transformation 
can be identified and inverted by using the method 
described in Section 2.3.  
In Figure 6b, partitioned and watermarked bunny3 mesh 
was first subjected to resection of the ears, followed by 
scaling and rotation. The algorithm was able to extract 
the watermark from the resected and transformed mesh.  

Additive Random Noise 
As discussed in Section 2.5, allocation of available 
spectral coefficients depends on several different 
obustness requirements, e.g., robustness against 
dditive random noise and robustness against smoothing. 
n increase in chip rate c makes the watermark more 

esistant to random noise added to vertex coordinates. 
owever, the use of highest-frequency band for 

mbedding that resulted from the high chip rate would 
educe the watermark’s robustness against mesh 
moothing.  
igure 5c and Figure 5g show, respectively, the 
artitioned bunny3 and the (non-partitioned) distcap 
eshes whose vertex coordinates are added with 

niform random noise. The watermarking was embedded 
sing the watermark amplitude factor 0.005α = , while 
r
a
A
r
H
e
r
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u

Table 1. Computation time for watermark embedding by 
using a Pentium III 866MHz PC. 

Models Number of 
sub-meshes  

No. of 
vertices 

No. of 
faces 

Execution 
time 

tiger 1 254 504 20s
bunny1 1 646 1288 5m21s
distcap 1 686 1368 6m19s
bunny2 1 1197 2390 33m16s

tiger 3 254 504 2s
bunny2 4 1197 2390 2m11s
bunny2 3 1197 2390 3m50s
bunny3 6 2218 4432 6m34s
  



 

  

the noise is added using the amplitude factor 0.007α = . 
The watermarks could still be extracted despite the 
visible degradations of quality in both meshes.  
Figure 2 plotted, for the partitioned bunny3 mesh, the bit 
error rate for the chip rate varying from 1 to 10. The 
watermark modulation amplitude and the noise 
amplitude, respectively, are fixed at 0.005α =  and 

0.007α = . As expected, the bit error rates decreased as 
the chip rate increased. Averaging by the chip error rate 
c decreased the effect of additive random noise.  
The bit error rate is defined, in this paper, as the number 
of correctly detected bits divided by the number of bits 
embedded. (The bit error rate of 0.5 means no 
correlation.) For the experiment shown in Figure 2 and 
in Figure 4, we embedded 3 different bit patterns of the 
length 32 bits; all 0, all 1, and random. To compute the 
bit error rate, we repeated, for each parameter (e.g., a 
given chip rate in the case of Figure 2), the embedding-
extraction run 10 times using each of the data pattern. 
For example, obtaining the bit error rate for the chip rate 

2c =  in Figure 2 required 30 embedding-extraction runs. 
The additive random noise was different every run. 

Chip rate v.s. bit error rate after
additive random noise
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Figure 2. An increase in chip rate decreases bit error rate when 
random noise is added to the vertex coordinates. 

Mesh smoothing 
Polygonal meshes may be subjected to smoothing for 
fairing or for destroying watermarks. It may thus be 
important to make the watermark resistant against mesh 
smoothing as far as the smoothing does not degrade 
shape of the mesh too much.  
Figure 3 plots the difference in amplitudes of the mesh 
spectral coefficients before and after an application of 
the Taubin’s smoothing filter [15]. Larger changes in 
amplitudes of coefficients are concentrated in the higher 

“frequency” bands of the spectrum. This seems to imply 
the possibility of watermarks resistant against mesh 
smoothing if we employ only low frequency bands of the 
spectrum for the watermarking.  
Figure 5d and Figure 5h show, respectively, models 
resulted from an application of Taubin’s smoothing filter 
to the watermarked meshes of Figure 5b and Figure 5f. 
The smoothing made the bunny3 model smoother and 
the distcap model deformed. Despite the changes, the 
watermarks embedded into these models could be 
extracted.  
Figure 4 plots the relationship of watermark modulation 
amplitude and bit error rate after mesh smoothing for 
two different chip rates of c = 1 and c = 10. The bit error 
rate fell as the watermark modulation amplitude 
increased. Also the watermark embedded with maximum 
chip rate of 10 is less robust against smoothing for it 
used all the spectral bands available, including the 
higher frequency band that is vulnerable to smoothing.  

Effect of mesh smoothing on spectral coefficients
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Figure 3. Effects of mesh smoothing on spectral coefficients. 

Watermark amplitude v.s. bit error rate
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Figure 4. Extraction bit error rate after the model is subjected 
to the Taubin’s smoothing. 



 

  

   
(a) Original (b) Watermarked. (c) Additive random noise. (d) Mesh smoothing. 

    
(e) Original (f) Watermarked. (g) Additive random noise. (h) Mesh smoothing. 

Figure 5. The watermarks are resistant against additive random noise and mesh smoothing, among other disturbances. The bunny3 
mesh in (a) above that has 2218 vertices was partitioned into 6 sub-meshes for the watermarking and extraction.  

 
(a) The bunny3 mesh 
partitioned.  

(b) Partially resected, 
scaled, and rotated. 

Figure 6. The bunny3 mesh model is partitioned into 6 sub-
meshes (a). Watermark was extracted after partial resection 
followed by similarity transformation (b). 

Mesh resection 
The watermark embedded by using mesh partitioning 
can be made resistant against partial resection of the 
mesh. Figure 6a shows the bunny3 model partitioned 
into 6 sub-meshes. After it is watermarked (Figure 5b), 
its ears are resected, and a similarity transformation is 
applied (Figure 6b). The watermark could still be 
extracted from the model shown in Figure 6b. The 

watermark was extracted by using the sub-mesh near the 
tail of the bunny model, which was not affected by the 
resection.  

Combinations of the Operations Above 
Even if a watermark is robust against any one of the 
operations listed above, combinations of the operations 
could destroy watermark embedded by using the method 
described in this paper.  
For example, in case of the distcap model of Figure 5e, 
similarity transformation alone or one pass of mesh 
smoothing alone left the watermark intact. However, if a 
watermarked model is smoothed and then applied with 
similarity transformation, the watermark could not be 
recovered. In this case, alignment of the cover-mesh and 
the stego-mesh failed during extraction. This is due 
partially to the distcap mesh’s highly symmetric (axis 
symmetric) shape, which made the alignment after shape 
degradation quite difficult. In fact, the result was 
different in the model of the tiger; one application of 
mesh smoothing followed by similarity transformation 
left the watermark intact. Note that if the shape of a 
mesh is extremely symmetric (i.e., a sphere with a 
regular triangulation), mere rotation of the mesh may 
prevent realignment of meshes necessary for proper 
extraction of watermarks. 



 

  

4. Related Work 
The paper by Karni and Gotsman [7] on 3D polygonal 
mesh compression is the only paper known to the 
authors that employed the mesh spectra for the global 
approximation of vertex coordinates of 3D polygonal 
meshes.  
The authors are aware of only one published works by 
Kanai, et al [6] that employed a wavelet transform for 
watermarking 3D polygonal meshes. Their algorithm 
first decomposes a 3D polygonal mesh by using lazy 
wavelets induced on 3D polygonal meshes. They then 
modified wavelet coefficients to embed a watermark. 
Their watermark withstands affine transformation, 
partial resection and is resistant against random noise 
added to vertex coordinates. As a limitation, their 
method requires the mesh to have 1-to-4 subdivision 
connectivity. Our method, on the other hand, is not 
limited to meshes having 1-to-4 subdivision connectivity. 
Praun and Hoppe [14] developed a robust watermarking 
algorithm that modifies target meshes by using ad hoc 
spatial kernels to modify shapes of 3D polygonal meshes. 
Their watermark withstands similarity transformation 
and is robust against random noise added to vertex 
coordinates. It is also resistant to mesh simplification. 
Their method, however, appears to require quite 
complex target mesh since the spatial kernels used to 
modify mesh shapes required rather large support (in 
terms of number of meshes). We speculate that their 
method would find it difficult to embed 40 bit data into a 
small, manually tuned VRML model of having 600 faces. 
(The meshes used in the examples of Praun and Hoppe’s 
paper [14] are of sizes ranging from 13K to 65K 
polygons.) Compared to their method, our method is 
able to embed information into meshes that are much 
less complex than their method would require. Our 
method, on the other hand, currently can’t withstand 
mesh simplification.   

5. Conclusion and Future Work 
We presented a new watermarking algorithm that 
embeds data into shapes of 3D polygonal meshes. The 
algorithm employs mesh spectra as the feature to be 
modified for watermarking. The mesh spectra are 
computed by projecting vertex coordinate of the mesh 
onto eigenvectors of the mesh Laplacian matrix, which is 
defined by using the connectivity of the mesh. The 
method is a private watermark, requiring both an original 
mesh and a watermarked mesh for extraction. 
The watermark produced by the algorithm is robust 
against similarity transform (i.e., rotation, translation, 
and uniform scaling). In addition, the watermark has 
been shown to resist such operations as mesh smoothing 

(“low-pass filtering” of 3D shapes), random noise added 
to vertex coordinates, and resection of a part of the mesh. 
The method also has a relatively high information 
density, being able to embed tens of bits of information 
into a small mesh having only a few hundred vertices.  
Any operation that alters connectivity of meshes could 
destroy watermarks embedded by using the method 
described in this paper. We intend to make our method 
robust against operations that alter connectivity but try to 
preserve shape. Examples of such operations are edge 
flipping (with shape preserving some criteria) and mesh 
simplification. Our proposed approach is to resample the 
geometry of the watermarked and modified (e.g., by 
mesh simplification) mesh by using the connectivity of 
its original. In fact, this is the approach employed by 
Praun and Hoppe [14].  
The algorithm must also be improved so that it can 
handle a larger mesh, e.g., on the order of 10 k to 100 k 
vertices. It may be possible to achieve this by improving 
the mesh-partitioning algorithm.  
In the future, we would like to investigate geometric-
feature based mesh partitioning and watermarking. 
Adapting watermarking parameters to each sub-mesh 
having its own geometric features might allow more 
robust yet less perceptible watermarks. Such partitioning 
could also reduce computational costs of watermarking 
by allowing the embedding algorithm to choose sub-
meshes having salient geometric features for 
watermarking targets. 
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