

Watermarking 3D Polygonal Meshes in the Mesh Spectral Domain

1Ryutarou Ohbuchi
ohbuchi@acm.org

2Shigeo Takahashi
takahashis@acm.org

1Takahiko Miyazawa
k7184@kki.yamanashi.ac.jp

 1Akio Mukaiyama
k7186@kki.yamanashi.ac.jp

1 Computer Science Department, Yamanashi University, 4-3-11 Takeda, Yamanashi-shi, Japan.
2 The University of Tokyo, Graduate School of Arts and Sciences, Department of General Systems Studies.

Abstract
Digital watermarking embeds a structure called
watermark into the target data, such as image and 3D
polygonal models. The watermark can be used, for
example, to enforce copyright and to detect tampering.
This paper presents a new robust watermarking method
that adds watermark into a 3D polygonal mesh in the
mesh’s spectral domain. The algorithm computes spectra
of the mesh by using eigenvalue decomposition of a
Laplacian matrix derived only from connectivity of the
mesh. Mesh spectra can be obtained by projecting
coordinates of vertices onto the set of eigenvectors. A
watermark is embedded by modifying the magnitude of
the spectra. Watermarks embedded by using this method
are resistant to similarity transformation, random noise
added to vertex coordinates, mesh smoothing, and partial
resection of the meshes.

Keywords: Geometric modeling, information security,
information hiding, graph Laplacian, mesh spectra.

1. Introduction
Watermarking adds structures called watermark to
various target data objects so that information encoded
in the watermark are added to the target data. The
watermark must not interfere with the intended purposes
of the target object (e.g., viewing for a 2D image data
object) and that the watermark should ideally be
inseparable from the target object. Embedded watermark
can be used to enforce copyright, add comments, detect
tampering, or to identify rightful purchasers of the data.
Most of the previous research on watermarking has been
concentrating on watermarking “classical” object data
types, such as text, 2D still image, 2D movie, or audio
data. Numerous papers on watermarking these data
objects have been published (see, for example, a book
edited by Katzenbeisser, et al. [8]). Recently, an
increased popularity and importance of three-
dimensional (3D) data objects, such as VRML, MPEG4
and various 3D geometric CAD data has prompted

investigation of techniques to watermark 3D models.
Most of the watermarking algorithms for 3D geometric
models that has been published so far targeted geometric
shapes of 3D polygonal meshes [10, 5, 11, 6, 12, 13, 3,
17, 14, 16], while a few have targeted parametric curves
and surfaces that are often found in 3D geometric CAD
models. Others have targeted movement of 3D models,
that is, MPEG 4 facial animation parameters [5] or
attributes of 3D polygonal models [12].
In this paper, we propose a watermarking algorithm that
embeds data into shapes of 3D polygonal meshes. The
algorithm employs spectral decomposition of 3D
polygonal mesh shape for watermarking. The watermark
produced by the algorithm is robust against similarity
transform (i.e., rotation, translation, and uniform scaling).
In addition, the watermark can be made resistant against
such operations as mesh smoothing (“low-pass filtering”
of 3D shapes), random noise added to vertex coordinates,
resection of a part of the model, as well as to mesh
simplification.
The rest of this paper is structured as follows. In
Section 2, the definition of the spectral analysis of
polygonal meshes will be followed by the description of
our watermarking algorithm based on the analysis. In
Section 3, we will present experimental results, followed
by a survey on related work in Section 4. We will
conclude this paper with summary and future work in
Section 5.

2. The Spectral Domain Watermarking Algorithm
The watermarking algorithm presented in this paper adds
a watermark to the shape of a given 3D polygonal mesh
whose shape is defined by its vertex connectivity and
vertex coordinates. The watermark is added in a
transformed domain. Here, the transformation is mesh
spectral analysis. Mesh spectral analysis was first
employed by Karni and Gotsman [7] for lossy
compression of vertex coordinates of polygonal meshes.
Mesh spectra is computed from a Laplacian matrix
derived from connectivity of a polygonal mesh [1, 2].

The watermarking method proposed in this paper
embeds information into the mesh shape by modifying
its mesh spectral coefficients. An inverse transformation
converts the watermarked spectral coefficients back into
original mesh whose vertex coordinates are slightly
altered. The method is a private watermarking method,
meaning that the watermark extraction requires both the
watermarked mesh and the original, non-watermarked
mesh. The watermark extraction is performed in the
mesh spectral domain, comparing spectral coefficients of
the watermarked and original meshes.

2.1 Spectral Analysis of Polygonal Meshes
The spectrum of a polygonal mesh is computed from
connectivity and coordinates of vertices of the mesh.
Computation of mesh spectra involves eigenvalue
decomposition of a Laplacian matrix, which is derived
only from the connectivity of the mesh vertices. The
decomposition produces a sequence of eigenvalues and a
corresponding sequence of eigenvectors of the matrix.
Approximately, smaller eigenvalues correspond to lower
spatial frequencies, and larger eigenvalues correspond to
higher spatial frequencies. Eigenvectors and spectral
coefficients of the smaller eigenvalues represent global
shape features, while eigenvectors and spectral
coefficients of the larger eigenvalues represent local or
detail shape features. Projecting the coordinate of a
vertex onto a normalized eigenvector produces a mesh
spectral coefficient of the vertex.
There are several different definitions for the mesh
Laplacian matrix [1, 2]. We employed a definition by
Bollabás [2]. Bollabás calls it a combinatorial Laplacian
or Kirchhoff matrix. The Kirchhoff matrix K is defined
by the following formula;

 =K D - A (1)
D is a diagonal matrix whose diagonal element

ii id=D is a degree (or valence) of the vertex i, while A
is an adjacency matrix of the polygonal mesh whose
elements ija are defined as below;

1, if vertices and are adjacent;
0, .ij

i j
a

oterwise

=

 (2)

Karni and Gotsman [7] used another definition of mesh
Laplacian = −L I HA for their mesh compression. In
their formula, H is a diagonal matrix whose diagonal
element 1ii id=H is the reciprocal of the degree of the
vertex i and A is the adjacency matrix as the Kirchhoff
matrix above.
Compared to L , which is a semi-symmetric matrix, K
is a real-symmetric matrix so that eigenvalue
decomposition on K is somewhat easier to compute.

Furthermore, our experiments on compressing vertex
coordinates of polygonal meshes using Karni’s method
[7] showed that the matrices K and L exhibited nearly
identical properties. We thus decided to use K for our
experiments on watermarking.
A polygonal mesh M having n vertices produces a
Kirchhoff matrix K of size n n× , whose eigenvalue
decomposition produces n eigenvalues iλ and n n-
dimensional eigenvectors iw (1)i n≤ ≤ . Projecting
each component of the vertex coordinate (, ,)i i i ix y z=v
(1)i n≤ ≤ separately onto the i-th normalized
eigenvectors ie

 (1)i i i i n= ≤ ≤e w w (3)

produces n mesh spectral coefficient vectors
(), , ,, ,i s i t i u ir r r=r (1)i n≤ ≤ . The subscripts s, t, and u

denote orthogonal coordinate axes in the mesh-spectral
domain corresponding to the spatial axes x, y, and z. To
invert the transformation, multiplying ie with ir and
summing over i recovers original vertex coordinates.

()
()
()

1 2 ,1 1 ,2 2 ,

1 2 ,1 1 ,2 2 ,

1 2 ,1 1 ,2 2 ,

, ,..., ,

, ,..., ,

, ,..., .

T
n s s s n n

T
n t t t n n

T
n u u u n n

x x x r r r

y y y r r r

z z z r r r

= + + +

= + + +

= + + +

e e e

e e e

e e e

 (4)

2.2 Embedding Watermark
The watermarking algorithm of this paper embeds
watermark by modifying mesh spectral coefficients
derived by using the Kirchhoff matrix. For each spectral
axis s, t, and u, a mesh spectra is an ordered set of
numbers, that are, spectral coefficients.
Various watermarking algorithms have adopted the
principles of spread spectrum communication to
modulate ordered sets of numbers for watermarking [8].
Properties of spread spectrum communication include
low spectral power density and robustness against
additive random noise. Both of these two properties are
considered advantageous to watermarking, since they
correspond to low perceptibility and high noise
resistance of watermarks. Our watermarking algorithm
presented in this paper also employs a spread-spectrum
approach similar to that of Hartung et al [5] to modulate
the sequence of numbers obtained by using the mesh
spectral analysis.
In the algorithm, the data to be embedded is an m-
dimensional bit vector ()1 2, ,..., ma a a=a , in which each
bit takes values { }0,1 . Each bit ja is duplicated by chip
rate c to produce a watermark symbol vector

1 2(, ,...)mcb b b=b , { }0,1ib ∈ of length m c⋅ ;

 , (1)i jb a j c i j c= ⋅ ≤ < + ⋅ (5)

Repeatedly embedding the same bit c times increases
resistance of the watermark against additive random
noise. Averaging the detected signal by c times upon
watermark detection reduces the effect of the additive
random noise.
The bit vector ib is converted to another vector

1 2(, ,...)mcb b b′ ′ ′ ′=b { }1,1ib′∈ − by the following simple
mapping;

1, if 0;

1, if 1.
i

i
i

b
b

b
− =′ = =

 (6)

Let us now consider modulating spectral coefficients of
one of the spectral axes s . Modulation processes for the
other two spectral axes are identical. Let ,s ir be the i-th
spectral coefficient prior to watermarking corresponding
to the spectral axis s , { }1,1ip ∈ − be the pseudo-
random number sequence (PRNS) generated from a
known stego-key wk , and α (0)α > be the modulation
amplitude. Watermarked i-th spectral coefficient ,ŝ ir is
computed by the following formula;

 , ,ŝ i s i i ir r b p α′= + ⋅ ⋅ (7)

The extraction algorithm requires the same stego-key,
which is a seed for the PRNS used for the embedding,
for extraction. Key distribution can be achieved by using
a public-key cryptography, for example.
Performing the same to t and u components of the
spectrum produces a set of watermarked set of spectral
coefficients (), , ,ˆ ˆ ˆ ˆ, ,i s i t i u ir r r=r . Inverse-transforming the
set of spectral coefficients back into the domain of
vertex coordinates ˆ ˆ ˆ ˆ(, ,)i i i ix y z=v by using the formula
(4) produces a watermarked polygonal mesh.

2.3 Extracting Watermark
As a private watermark, watermark extraction of the
algorithm described in this paper is non-blind, that is, the
extraction requires a cover-mesh (i.e., an original mesh
without watermark) as well as a stego-mesh (i.e.,
watermarked, and possibly degraded, mesh).
The extraction starts with realignment of the cover-mesh
M and the stego-mesh M̂ . To realign meshes, for each
mesh, a coarse approximation of its shape is
reconstructed from the first (lowest-frequency) 5 spectral
coefficients. Then, a set of eigenvectors is computed
from a 3 3× covariance matrix derived from the
reconstructed shape [4]. A comparison of the two sets of
eigenvectors realigns the meshes M and M̂ .
Each of the realigned meshes is applied with spectral
decomposition to produce spectral coefficients ,s ir for
M and ,ŝ ir for M̂ . Multiplying the difference

, ,ˆ()s i s ir r− with the same PRNS as is used for the
embedding, which is generated from the shared seed wk ,
and summing the result over c times produces
correlation sum for the spectral axis s . Summing the
correlation sums over all three of the spectral axes
produces the overall correlation sum jq ;

(1) 1

, ,
{ , , }

(1) 1
2

{ , , }

1 ˆ()
3

1
3

j c

j l i l i i
l s t u i j c

j c

i i
l s t u i j c

q r r p

b pα

+ ⋅ −

∈ = ⋅

+ ⋅ −

∈ = ⋅

= − ⋅

′= ⋅ ⋅

∑ ∑

∑ ∑
 (8)

If the PRNSs for the embedding and extraction are
synchronized, and if disturbances applied to the vertex
coordinates of M̂ (e.g., additive random noise) are
negligible,

 j iq c bα ′= ⋅ ⋅ (9)

where jq takes one of the two values { , }c cα α− . Since
α and c are always positive, simply testing for the signs
of jq recovers the original message bit sequence ja ,

 ()j ja sign q= (10)

The string ja can easily be converted to the original
message bit sequence ib by applying an inverse of the
mapping of the formula (6).

2.4 Mesh Partitioning
Our current implementation performs eigenvalue
decomposition by first applying similarity transformation
of the matrix using the Housholder method, followed by
an iterative method. This approach to eigenvalue
decomposition performs well for the meshes of size up
to a few hundred vertices. Two problems arise if we try
to process a larger mesh. First, computational time for
the eigenvalue decomposition on a typical PC becomes
more than desirable for typical watermarking
applications. Second, numerical stability of the
decomposition becomes increasingly questionable.
Our approach to watermarking a larger mesh (e.g., of
size 104-107 vertices) is to partition the mesh into
smaller sub-meshes of manageable size (e.g., about 500
vertices) so that watermark embedding and extraction is
performed individually within each reasonably sized
sub-mesh. This approach is essentially what Karni and
Gotsman employed for their polygonal mesh geometry
compression [7].
Mesh partitioning has an additional benefit. The
watermark can be made resistant against resection by
embedding the same copy of information repeatedly into
multiple sub-meshes. The watermark can be extracted
after a partial resection if the remaining mesh contains at
least one sub-mesh that is not affected by the resection.

The untouched sub-mesh can be used for mesh
realignment and watermark extraction.
We have implemented a simple mesh-partitioning
algorithm that can incorporate human intentions. To
partition a mesh, we first specify “feature vertices”
manually so that the feature vertices are approximately at
the center of desired sub-meshes and that the feature
vertices are distributed roughly evenly on the original
mesh. Each sub-mesh is then grown around a feature
vertex by incrementally expanding the sub-mesh region
around the feature vertices by following connectivity of
the mesh vertices. The incremental expansion of the sub-
meshes halts when the original mesh is fully partitioned.
Mesh spectral analysis uses a Laplacian matrix defined
by vertices (and their connectivity) that belong to a sub-
mesh, ignoring edges connecting vertices on the
boundaries of sub-meshes. Since watermark embedding
and extraction requires exactly the same mesh
partitioning, feature vertices used for the partitioning of
the original cover-mesh must be saved together with the
cover mesh to be used for extraction.

2.5 Watermarking Parameters

Chip rate c
In case of watermarking 2D still images or 2D movies,
the chip rate c can be quite large, since there are at least
a few tenths of thousands of numbers to be manipulated
for watermarking. Since many polygonal meshes often
have as few as a few hundreds vertices, the chip rate c
can only be a moderate number, e.g., 5 or 10. For
example, if we were to embed a 32 bit number, the
maximum chip rate is 7 for the tiger model shown in
Figure 1 which has 254 vertices.
Given a number of vertices, a higher chip rate means
lower data capacity for the watermark. Also, as we will
discuss in Section 3.3, a higher chip rate increases some
aspects of robustness while it decreases others.

Modulation amplitude α
The modulation amplitude α is computed as a fraction
of the largest of the axis-aligned bounding box (AABB)
of the target mesh. The α is chosen by the user so that it
is small enough to preserve appearance of the model
while large enough to withstand as much disturbances
(e.g., additive random noise and mesh smoothing) as
possible.

Spectrum allocation
A mesh having n vertices produces n eigenvalues, n
eigenvectors and 3 sets of n spectral coefficients,
allowing n bits to be embedded. All of the n spectral

coefficients are not used for embedding, however. As
described in Section 2.3, 5 eigenvectors corresponding
to smallest 5 eigenvalues are used to realign stego- and
cover- meshes. Thus, at most (n-5) (higher-frequency)
coefficients are available for embedding watermark
information.
Utilization of these (n-5) coefficients depends on which
one of the robustness properties is to be emphasized. For
example, in order to increase robustness against random
noise added to the vertex coordinates, the chip rate c
needs to be maximized. On the other hand, if we were to
emphasize robustness against smoothing, we need to use
only the spectral coefficients corresponding to smaller
eigenvalues (i.e., lower frequencies.)

3. Experiments and results
We implemented the algorithm described above using
C++, OpenGL graphics API, and fltk (available from
http://www.fltk.org), which is a graphical user interface
toolkit for the OpenGL.

3.1 Watermark Perceptibility
Figure 1 compares perceptibility of watermark in case of
the tiger model. Figure1a is a VRML model having 254
vertices and 504 faces without mesh partitioning.
Three other figures show meshes watermarked with three
different combinations of modulation amplitude α and
the chip rate c; 0.002α = , 7c = (Figure 1b), 0.005α = ,

1c = (Figure 1c), and 0.005α = , 7c = (Figure 1d).
Change in shape is hardly noticeable at 0.002α = ,

7c = . Shape change is hardly noticeable at 0.005α = ,
1c = , but higher chip rate 7c = at the same amplitude

made the shape change perceptible.
The perceptibility of a watermark depends not only on
the amplitude α and the chip rate c, by also to the
spectral band employed for the watermark. For example,
modifications of the lower frequency coefficients are
less noticeable than those of the higher frequency
coefficients. Perceptibility also depends on such other
factors as the target mesh size and shape. Furthermore,
the perceptibility of the watermark embedded in a 3D
polygonal mesh depends on the way it is viewed. For
example, the perceptibility of the watermark may be
affected by the rendering method (e.g., wire-frame or
shaded surface rendering), camera parameters, lighting
and pixel interpolation method, photometric properties
of the mesh (e.g., color, texture, etc.), and many other
factors. Thus, the evaluation of perceptibility of
watermarks embedded in the shapes of 3D polygonal
meshes is likely be more involved than that of 2D still or
movie images.

(a) Before watermarking. (b) 0.002α = , 7c = .

(c) 0.005α = , 1c = . (d) 0.005α = , 7c = .

Figure 1. Appearances of the “tiger” model (253 vertices, 504
faces) watermarked with multiple watermark embedding
amplitudes α and chip rate c are compared.

3.2 Mesh Partitioning and Computation time
Mesh partitioning enables our algorithm to handle
meshes much larger than possible without the
partitioning.
Figure 5a shows a mesh model of bunny3 containing
2218 vertices and 4432 triangles. In Figure 6a, it is
partitioned into 6 sub-meshes. The sizes of sub-meshes
in this example ranged from 334 to 494 vertices. Table 1
shows the computation time required for watermarking
meshes both with and without mesh partitioning. Even a
model with 1197 vertices (bunny2) took more than 30
minutes to process, which is not very useful. However,

with partition, the time to process the bunny3 model was
reduced to less than 7 minutes. (The bunny meshes of
various complexity found in Table 1 and in Figure 6 are
created from the bunny mesh obtained from the Stanford
University by applying a mesh simplification algorithm.)

Mesh partitioning reduces computation time and
increases robustness against resection. On the other hand,
number of embeddable bits, robustness against additive
random noise, and robustness against mesh smoothing
are reduced. The number of partitioned meshes must be
selected with these conflicting factors in mind.

3.3 Robustness
We experimentally evaluated the robustness of
watermarks produced by using our watermarking
algorithm against various disturbances.
Figure 5a and 5e show cover-meshes (i.e., the original
meshes) used for the experiments, the bunny3 mesh
(2218 vertices) and the distcap mesh (686 vertices). In
Figure 5b and 5f, these two meshes are watermarked
with 0.005α = and c = 10, producing stego-meshes
with almost unnoticeable changes in shapes. For the
watermarking, the bunny3 mesh was partitioned into 6
submeshes of approximately equal size. The smaller
distcap mesh was watermarked without partitioning.

Similarity Transformation
Watermarks embedded by using this method are robust
against similarity transformation, for the transformation
can be identified and inverted by using the method
described in Section 2.3.
In Figure 6b, partitioned and watermarked bunny3 mesh
was first subjected to resection of the ears, followed by
scaling and rotation. The algorithm was able to extract
the watermark from the resected and transformed mesh.

Additive Random Noise
As discussed in Section 2.5, allocation of available
spectral coefficients depends on several different
obustness requirements, e.g., robustness against
dditive random noise and robustness against smoothing.
n increase in chip rate c makes the watermark more

esistant to random noise added to vertex coordinates.
owever, the use of highest-frequency band for

mbedding that resulted from the high chip rate would
educe the watermark’s robustness against mesh
moothing.
igure 5c and Figure 5g show, respectively, the
artitioned bunny3 and the (non-partitioned) distcap
eshes whose vertex coordinates are added with

niform random noise. The watermarking was embedded
sing the watermark amplitude factor 0.005α = , while
r
a
A
r
H
e
r
s
F
p
m
u
u

Table 1. Computation time for watermark embedding by
using a Pentium III 866MHz PC.

Models Number of
sub-meshes

No. of
vertices

No. of
faces

Execution
time

tiger 1 254 504 20s
bunny1 1 646 1288 5m21s
distcap 1 686 1368 6m19s
bunny2 1 1197 2390 33m16s

tiger 3 254 504 2s
bunny2 4 1197 2390 2m11s
bunny2 3 1197 2390 3m50s
bunny3 6 2218 4432 6m34s

the noise is added using the amplitude factor 0.007α = .
The watermarks could still be extracted despite the
visible degradations of quality in both meshes.
Figure 2 plotted, for the partitioned bunny3 mesh, the bit
error rate for the chip rate varying from 1 to 10. The
watermark modulation amplitude and the noise
amplitude, respectively, are fixed at 0.005α = and

0.007α = . As expected, the bit error rates decreased as
the chip rate increased. Averaging by the chip error rate
c decreased the effect of additive random noise.
The bit error rate is defined, in this paper, as the number
of correctly detected bits divided by the number of bits
embedded. (The bit error rate of 0.5 means no
correlation.) For the experiment shown in Figure 2 and
in Figure 4, we embedded 3 different bit patterns of the
length 32 bits; all 0, all 1, and random. To compute the
bit error rate, we repeated, for each parameter (e.g., a
given chip rate in the case of Figure 2), the embedding-
extraction run 10 times using each of the data pattern.
For example, obtaining the bit error rate for the chip rate

2c = in Figure 2 required 30 embedding-extraction runs.
The additive random noise was different every run.

Chip rate v.s. bit error rate after
additive random noise

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10
 Chip rate

B
it

er
ro

r r
at

e

Figure 2. An increase in chip rate decreases bit error rate when
random noise is added to the vertex coordinates.

Mesh smoothing
Polygonal meshes may be subjected to smoothing for
fairing or for destroying watermarks. It may thus be
important to make the watermark resistant against mesh
smoothing as far as the smoothing does not degrade
shape of the mesh too much.
Figure 3 plots the difference in amplitudes of the mesh
spectral coefficients before and after an application of
the Taubin’s smoothing filter [15]. Larger changes in
amplitudes of coefficients are concentrated in the higher

“frequency” bands of the spectrum. This seems to imply
the possibility of watermarks resistant against mesh
smoothing if we employ only low frequency bands of the
spectrum for the watermarking.
Figure 5d and Figure 5h show, respectively, models
resulted from an application of Taubin’s smoothing filter
to the watermarked meshes of Figure 5b and Figure 5f.
The smoothing made the bunny3 model smoother and
the distcap model deformed. Despite the changes, the
watermarks embedded into these models could be
extracted.
Figure 4 plots the relationship of watermark modulation
amplitude and bit error rate after mesh smoothing for
two different chip rates of c = 1 and c = 10. The bit error
rate fell as the watermark modulation amplitude
increased. Also the watermark embedded with maximum
chip rate of 10 is less robust against smoothing for it
used all the spectral bands available, including the
higher frequency band that is vulnerable to smoothing.

Effect of mesh smoothing on spectral coefficients

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1 21 41 61 81 101 121 141 161 181 201 221 241

Eigenvalue index

C
ha

ng
e

in
 sp

ec
tra

l c
oe

ffi
ci

en
t

m
ag

ni
tu

de
.

x

ｙ

ｚ

Figure 3. Effects of mesh smoothing on spectral coefficients.

Watermark amplitude v.s. bit error rate

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.002 0.004 0.006 0.008 0.01
Watermark amplitude

B
it

er
ro

r r
at

e

Chip rate c=10

Chip rate c=1

Figure 4. Extraction bit error rate after the model is subjected
to the Taubin’s smoothing.

(a) Original (b) Watermarked. (c) Additive random noise. (d) Mesh smoothing.

(e) Original (f) Watermarked. (g) Additive random noise. (h) Mesh smoothing.

Figure 5. The watermarks are resistant against additive random noise and mesh smoothing, among other disturbances. The bunny3
mesh in (a) above that has 2218 vertices was partitioned into 6 sub-meshes for the watermarking and extraction.

(a) The bunny3 mesh
partitioned.

(b) Partially resected,
scaled, and rotated.

Figure 6. The bunny3 mesh model is partitioned into 6 sub-
meshes (a). Watermark was extracted after partial resection
followed by similarity transformation (b).

Mesh resection
The watermark embedded by using mesh partitioning
can be made resistant against partial resection of the
mesh. Figure 6a shows the bunny3 model partitioned
into 6 sub-meshes. After it is watermarked (Figure 5b),
its ears are resected, and a similarity transformation is
applied (Figure 6b). The watermark could still be
extracted from the model shown in Figure 6b. The

watermark was extracted by using the sub-mesh near the
tail of the bunny model, which was not affected by the
resection.

Combinations of the Operations Above
Even if a watermark is robust against any one of the
operations listed above, combinations of the operations
could destroy watermark embedded by using the method
described in this paper.
For example, in case of the distcap model of Figure 5e,
similarity transformation alone or one pass of mesh
smoothing alone left the watermark intact. However, if a
watermarked model is smoothed and then applied with
similarity transformation, the watermark could not be
recovered. In this case, alignment of the cover-mesh and
the stego-mesh failed during extraction. This is due
partially to the distcap mesh’s highly symmetric (axis
symmetric) shape, which made the alignment after shape
degradation quite difficult. In fact, the result was
different in the model of the tiger; one application of
mesh smoothing followed by similarity transformation
left the watermark intact. Note that if the shape of a
mesh is extremely symmetric (i.e., a sphere with a
regular triangulation), mere rotation of the mesh may
prevent realignment of meshes necessary for proper
extraction of watermarks.

4. Related Work
The paper by Karni and Gotsman [7] on 3D polygonal
mesh compression is the only paper known to the
authors that employed the mesh spectra for the global
approximation of vertex coordinates of 3D polygonal
meshes.
The authors are aware of only one published works by
Kanai, et al [6] that employed a wavelet transform for
watermarking 3D polygonal meshes. Their algorithm
first decomposes a 3D polygonal mesh by using lazy
wavelets induced on 3D polygonal meshes. They then
modified wavelet coefficients to embed a watermark.
Their watermark withstands affine transformation,
partial resection and is resistant against random noise
added to vertex coordinates. As a limitation, their
method requires the mesh to have 1-to-4 subdivision
connectivity. Our method, on the other hand, is not
limited to meshes having 1-to-4 subdivision connectivity.
Praun and Hoppe [14] developed a robust watermarking
algorithm that modifies target meshes by using ad hoc
spatial kernels to modify shapes of 3D polygonal meshes.
Their watermark withstands similarity transformation
and is robust against random noise added to vertex
coordinates. It is also resistant to mesh simplification.
Their method, however, appears to require quite
complex target mesh since the spatial kernels used to
modify mesh shapes required rather large support (in
terms of number of meshes). We speculate that their
method would find it difficult to embed 40 bit data into a
small, manually tuned VRML model of having 600 faces.
(The meshes used in the examples of Praun and Hoppe’s
paper [14] are of sizes ranging from 13K to 65K
polygons.) Compared to their method, our method is
able to embed information into meshes that are much
less complex than their method would require. Our
method, on the other hand, currently can’t withstand
mesh simplification.

5. Conclusion and Future Work
We presented a new watermarking algorithm that
embeds data into shapes of 3D polygonal meshes. The
algorithm employs mesh spectra as the feature to be
modified for watermarking. The mesh spectra are
computed by projecting vertex coordinate of the mesh
onto eigenvectors of the mesh Laplacian matrix, which is
defined by using the connectivity of the mesh. The
method is a private watermark, requiring both an original
mesh and a watermarked mesh for extraction.
The watermark produced by the algorithm is robust
against similarity transform (i.e., rotation, translation,
and uniform scaling). In addition, the watermark has
been shown to resist such operations as mesh smoothing

(“low-pass filtering” of 3D shapes), random noise added
to vertex coordinates, and resection of a part of the mesh.
The method also has a relatively high information
density, being able to embed tens of bits of information
into a small mesh having only a few hundred vertices.
Any operation that alters connectivity of meshes could
destroy watermarks embedded by using the method
described in this paper. We intend to make our method
robust against operations that alter connectivity but try to
preserve shape. Examples of such operations are edge
flipping (with shape preserving some criteria) and mesh
simplification. Our proposed approach is to resample the
geometry of the watermarked and modified (e.g., by
mesh simplification) mesh by using the connectivity of
its original. In fact, this is the approach employed by
Praun and Hoppe [14].
The algorithm must also be improved so that it can
handle a larger mesh, e.g., on the order of 10 k to 100 k
vertices. It may be possible to achieve this by improving
the mesh-partitioning algorithm.
In the future, we would like to investigate geometric-
feature based mesh partitioning and watermarking.
Adapting watermarking parameters to each sub-mesh
having its own geometric features might allow more
robust yet less perceptible watermarks. Such partitioning
could also reduce computational costs of watermarking
by allowing the embedding algorithm to choose sub-
meshes having salient geometric features for
watermarking targets.

Acknowledgements
Mesh data of the rabbit model is obtained from Stanford
University, and that of the tiger head is obtained from
Avalon archive at Viewpoint Datalabs. The first author
is supported in part by grants from the Ministry of
Education, Culture, Sports, Science and Technology
(MECSST) of Japan (Grant No. 12680432), the
Nakayama Hayao Foundation, and the Million, Inc. The
second author is supported in part by grants from the
MESSC of Japan (Grant No. 12780185) and from the
Kayamori Foundation of Information Science
Advancement.

References
[1] N. Biggs, Algebraic Graph Theory (2nd Ed.).

Cambridge University Press, 1993.
[2] B. Bollobás, Modern Graph Theory, Springer, 1998.
[3] O. Benedens, Geometry-Based Watermarking of 3D

Models, IEEE CG&A, pp. 46-55, January/February
1999.

[4] Gottschalk, S., Lin, M.C., Manocha, D., OBBTree:
A Hierarchical Structure for Rapid Interference

Detection, Proc. SIGGRAPH ’96, pp. 171-180,
1996.

[5] F. Hartung, P. Eisert, and B. Girod, Digital
Watermarking of MPEG-4 Facial Animation
Parameters, Computer and Graphics, Vol. 22, No. 4,
pp. 425-435, Elsevier, 1998.

[6] S. Kanai, H. Date, and T. Kishinami, Digital
Watermarking for 3D Polygons using
Multiresolution Wavelet Decomposition, Proc. Sixth
IFIP WG 5.2 GEO-6, pp. 296-307, Tokyo, Japan,
December 1998.
(http://minf.coin.eng.hokudai.ac.jp/members/kanai/
wm1-geo6.pdf)

[7] Zachi Karni, Craig Gotsman, Spectral Compression
of Mesh Geometry, Proc. SIGGRAPH 2000,
pp. 279-286, July 2000, New Orleans, U.S.A.

[8] S. Katzenbeisser, F. A. P. Petitcolas, Digital
Watermarking, Artech House, London, 2000.

[9] G. Karypis and V. Kumar, MeTis: A Software
Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-reducing
Orderings of Sparse Matrices. Version 4.0, Univ. of
Minnesota, Dept. of Comp. Sci., 1998. Available at:
http://wwwusers.cs.umn.edu/~karypis/metis/metis.ht
ml

[10] R. Ohbuchi, H. Masuda, and M. Aono,
Watermarking Three-Dimensional Polygonal

Models, Proc. ACM Multimedia ’97, pp. 261-272,
Seattle, Washington, USA, November 1997.

[11] R. Ohbuchi, H. Masuda, and M. Aono,
Watermarking Three-Dimensional Polygonal
Models Through Geometric and Topological
Modifications, pp. 551-560, IEEE JSAC, May 1998.

[12] R. Ohbuchi, H. Masuda, and M. Aono, Geometrical
and Non-geometrical Targets for Data Embedding
in Three-Dimensional Polygonal Models, Computer
Communications, Vol. 21, pp. 1344-1354, Elsevier,
1998.

[13] Ryutarou Ohbuchi, Hiroshi Masuda, and Masaki
Aono, A Shape-Preserving Data Embedding
Algorithm for NURBS Curves and Surfaces, Proc.
Computer Graphics International '99, pp. 180-177,
Canmore, Canada, June 7-11, 1999.

[14] Emil Praun, Hugues Hoppe, Adam Finkelstein,
Robust Mesh Watermarking, Proc. SIGGRAPH ‘99,
pp. 49-56, Aug. 1999.

[15] G. Taubin, A Signal Processing Approach to Fair
Surface Design, Proc. ACM SIGGRAPH ’95,
pp. 351-358, 1995.

[16] M. G. Wagner, Robust Watermarking of Polygonal
Meshes, Proc. Geometric Modeling & Processing
2000, pp. 201-208, Hong Kong, April 10-12, 2000.

[17] B-L. Yeo and M. M. Yeung, Watermarking 3D
Objects for Verification, IEEE CG&A, pp. 36-45,
January/February 1999.

	Introduction
	The Spectral Domain Watermarking Algorithm
	Spectral Analysis of Polygonal Meshes
	Embedding Watermark
	Extracting Watermark
	Mesh Partitioning
	Watermarking Parameters
	Chip rate �
	Modulation amplitude �
	Spectrum allocation

	Experiments and results
	Watermark Perceptibility
	Mesh Partitioning and Computation time
	Robustness
	Similarity Transformation
	Additive Random Noise
	Mesh smoothing
	Mesh resection
	Combinations of the Operations Above

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

