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Abstract

Three-dimensional (3D) graphics is about to become a full-fledged multimedia data type,
prompted by increasing popularity of Virtual Reality Modeling Language (VRML) [15] and
imminent standardization of MPEG-4 [16].

This paper presents several algorithms for embedding data in triangular meshes, arguably
the most important component in both VRML and MPEG 4 in defining arbitrary shapes. A
topology-modifying algorithm described in this paper embeds bit string in connectivity of
triangles, while another algorithm cuts out patterns from a mesh. Yet another algorithm
modifies texture coordinate, a non-geometrical quantity, for embedding.

Watermarks embedded in 3D graphics contents could be used as a tool in managing
intellectual property and other issues associated with these contents.
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1. Introduction

Techniques to embed data into digital contents are referred to by such names as
steganography, information hiding, visible watermarking, invisible watermarking,
fingerprinting, or fragile watermarking depending on their characteristics and application
scenarios. These techniques put structures called watermarks into digital contents (e.g.,
images) in such a way that the structures do not interfere with intended use (e.g., viewing) of
the contents. We will use a neutral term data embedding throughout this paper since our
algorithms simply embed data into three-dimensional (3D) polygonal meshes without assuming
specific application scenarios.

Embedded watermarks can be classified by its visibility (or, more generally, perceptibility)
and robustness, as suggested by Mintzer, et al. [1]. A visible watermark is made intentionally
visible to serve their purposes, for example, to deter a third party from unauthorized sales of
contents. An invisible watermark is imperceptible without processing by using computer
program and other mechanical means. A robust watermark should resists both intentional and
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new embedding target type. In the next section, fundamentals of data embedding in 3D
polygonal meshes are discussed. For completeness, Section 3.1 describes two coordinate
modifying algorithms that appeared in our previous paper [19]. In Section 3.2, this paper will
present two algorithms that target vertex topology (i.e., connectivity of vertices) of 3D
polygonal meshes. These algorithms compliment our previous paper that emphasized
algorithms that modifies vertex coordinates of polygonal meshes. In section 3.3, this paper
presents an algorithm that modifies non-geometrical quantity of polygonal meshes, namely,
texture coordinate, for embedding. This algorithm expands the type of embedding targets. We
will conclude this paper in Section 4.

2. Data Embedding Fundamentals

While a 3D model could contain diverse data object types, we argued in [17, 19] that
definitions of shapes are the best target for data embedding since it is the least likely
component to be removed from a 3D model. Of many representations of shapes [20], we chose
3D polygonal mesh as the embedding target, since it is the most important component in both
VRML and MPEG 4 for defining shapes of objects.

Shape of a 3D polygonal mesh is defined by two components, vertex coordinates and
vertex topology. Vertex coordinate combined with vertex topology defines more complex
geometrical primitives, that are, lines, polygons, and polyhedrons. These geometrical primitives
have their own quantities such as length of a line segment and volume of a polyhedron. We call
these geometrical quantities. These geometrical primitives also have their own topology,
which are, for example, connectivity of vertices and triangles.  These topology and geometrical
quantities are the most important targets for embedding in 3D polygonal meshes.

These geometrical primitives typically have additional non-geometrical quantity associated
with them. Per-vertex color, per-face normal vector, per-vertex texture coordinate, per-face
transparency, or per-volume refractive index, are examples of these non-shape-defining
attributes. While less crucial than the former two shape-defining attributes, these non-
geometrical quantities could be a good target for embedding.

Our data embedding algorithms presented in this paper modify one of these three attributes
of polygonal meshes, that are, geometrical quantity, topology, or non-geometrical quantity to
embed data. In the following, a unit of such modification is called an embedding primitive.
These embedding primitives are arranged in some manner so that an ordered set of embedding
primitives encodes a significant amount of information.

2.1 Modification Primitives

(1) Geometrical quantity
A geometrical-quantity embedding primitive consists of quantity or quantities derived from

vertex coordinate. One of these quantities is modified to embed data. Vertex displacement
resulting from the modification is typically very small so that displacements of vertices do not
affect the intended uses of the model.

The simplest primitive of this kind is vertex coordinate. However, information encoded by
directly modifying vertex coordinate can be destroyed by almost any geometrical
transformation. Many applications of watermark demand robustness against certain class of
unintentional disturbances. In case of polygonal meshes, their watermarks must often withstand
a limited class of geometrical transformations, e.g., affine transformations.
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In order to make watermarks robust against a given class of geometrical transformations,
we proposed to use quantities derived from coordinate values that are invariant to the given
class of geometrical transformations. For example, a ratio of volume of two tetrahedrons is
invariant to affine transformation. This quantity is used in the algorithm detailed in [17, 19].
(This algorithm is described also in Section 3.1.2 of this paper.) As another example, cross-
ratio of four points on a straight-line [21] is invariant to projection transformation, which is a
more general class than affine transformation.
(2) Topology

Watermarks can be embedded by changing topology, that is, connectivity, of a set of
vertices, polygons, and polyhedrons. When topology is modified for embedding, coordinates of
geometrical primitives involved may change as a side effect. For example, vertices (and edges)
may be displaced, inserted, or deleted. However, in topological embedding, information is
embedded primarily in topology.

An example of topological embedding primitive is connectivity of triangles in a triangle
strip. This primitive is used in the algorithm that will be described in Section 3.2.1. Another
example of topological embedding simply cuts out holes in an input mesh to encode a pair of
symbols. This approach is used in the algorithm that will be described in Section 3.2.2. Yet
another example of algorithm that employ a topological embedding primitive, which is
described in [17, 19], encodes patterns by using two different mesh sizes, e.g.,  and .
(3) Non-geometrical quantity

Non-geometrical quantities of polygonal meshes do not define shape but are associated
with geometrical primitives. In VRML models, non-geometrical quantities are defined either
per-vertex (point) or per-face. In non-VRML models, non-geometrical quantities could be
defined per-line (-segment) or per-volume bounded by polygons. Non-geometrical quantities
associated with vertex, line, face, or volume include color, 2D and 3D texture coordinates,
normal vector, and refractive index. All of these attributes, essentially a set of numerical values,
can be modified to embed data symbols. By introducing arrangement among such modulated
values, significant amount of data can be embedded.

An algorithm that will be described in Section 3.3.1 modifies an attribute of this kind,
texture coordinate, to embed data.

2.2. Embedding Primitive Arrangements

For a practical data embedding, multiple embedding primitives must usually be arranged so
that a collection of embedding primitives functions as a watermark to store a substantial
amount of information. An example of arrangements of embedding primitives for a 3D
triangular mesh surface is a 1D arrangement of triangles on the mesh generated by sorting
triangles according to their areas. Another example is a 2D arrangement of triangles of a
(irregularly tessellated) triangular mesh surface based on the topology (adjacency) of triangles.

Data objects such as image and audio data already have regular implicit ordering of
embedding primitives. For example, an image has rectangular 2D array of pixels. In case of
general 3D polygonal mesh surfaces, arrangement of embedding primitives is somewhat more
involved.

Arrangements of both geometrical and non-geometrical embedding primitives can be
established for 3D polygonal meshes by using one of the following; topology, geometrical
quantity, or non-geometrical quantity of geometrical primitives. An arrangement derived from
an attribute could be used to arrange primitives of another kind. For example, topological
arrangement could be used to arrange face colors.



To be published in Computer Communications, Elsevier Science B. V.

5

A topological arrangement method employs topological adjacency, such as the adjacency
of vertices, to arrange embedding primitives. For example, generating a spanning tree of
vertices on the mesh and traversing the tree from its root will create a one-dimensional
ordering of vertices [22]. A quantitative arrangement method employs a set of quantities,
either geometrical or non-geometrical, for arrangement. Hashing vertex coordinate values onto
a finite interval of integer domain would create a simple, generally sparse, 1D arrangement.
Alternatively, sorting the set of numerical values by using comparison operator will create a
dense one-dimensional ordering.

A proper arrangement of embedding primitives often requires an initial condition. For
example, to uniquely determine a topological arrangement of vertices by using vertex tree, an
initial vertex and an initial traverse direction must be found. Obviously, both arrangement and
initial condition must be robust against expected disturbances, such as geometrical
transformations, or the watermarks will be lost.

Note that the mapping from embedded data (either a symbol sequence or a pattern) to an
arrangement of embedding primitives does not have to be straightforward. For example, in
order to secure the embedded data, the mapping can be intentionally scrambled by using a
cryptographic technique with a stego-key.

3. Embedding Algorithms for Polygonal Meshes

In this section, we will present algorithms that target polygonal mesh surfaces for data
embedding. All the algorithms in this section are implemented by using a kernel for a non-
manifold modeler [23]. The system employs radial edge structure [24] to represent the
topological relationship among vertices, edges, faces, and regions.

3.1. Algorithms Based on Geometrical Quantity Modifications

This section describes two algorithms that embed data in polygonal mesh surfaces by
ultimately modifying their vertex coordinates. These two algorithms are describe in detail in
[19], but are presented here for completeness.

3.1.1. Triangle similarity quadruple embedding

A pair of dimensionless quantities, for example, {e14/e24, h4/e12} in Figure 2, defines a set of
similar triangles. The algorithm described in this section, Triangle Similarity Quadruple (TSQ)
algorithm, uses such dimensionless quantity pair as the geometrical embedding primitive to
watermark triangular meshes.

The TSQ algorithm can be classified as a public watermarking scheme. Watermarks
produced by the TSQ algorithm withstand translation, rotation, and uniform-scaling
transformations of the stego-polygonal-meshes. An embedded message is resistant to resection
and local deformation if it is repeatedly embedded over a mesh. The watermarks are destroyed,
among other disturbances, by a randomization of coordinates, by a more general class of
geometrical transformation, or by a topological modification such as re-meshing.

In order to realize subscript ordering, the algorithm uses a quadruple of adjacent triangles
in the configuration depicted in Figure 2 as a Macro-Embedding-Primitive (MEP). Each MEP
stores a quadruple of symbols {Marker, Subscript, Data1, Data2}. In Figure 2, the triangle
marked M stores a marker, S stores a subscript, and D1 and D2 stores data values. A marker is
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a pair of values that identifies MEPs. As mentioned above, this public watermarking scheme
does not require cover-polygonal-mesh for extraction. However, the marker value pair is
necessary for extraction. A watermarked mesh would contain multiple MEPs to embed a
significant amount of data as shown in the example of Figure 3. While each MEP is formed by
topology, a set of multiple MEPs is arranged by quantity of the subscript.

The TSQ algorithm embeds a message according to the following steps. (For the detailed
explanation and execution examples, please refer [12].)

(1) Traverse the input triangular mesh to find a set of four triangles to be used as a MEP.
MEPs must not share edges or vertices to avoid interference.

(2) Embed the marker value by changing a dimensionless quantity pair in the center
triangle of the MEP. In Figure 2, it is {e14/e24, h4/e12}. This modifies positions of vertices v1, v2,
and v4.

(3) Embed a subscript and two data symbols in a similar manner by displacing vertices v0,
v3, and v5. Subscript is embedded in the pair {e02/e01, h0/e12}, and two data symbols are
embedded in the pairs {e13/e34, h3/e14} and {e45/e25, h5/e24}.

(4) Repeat (1) to (3) above until all the data symbols of the message are embedded.

For each triangle, the algorithm first modifies the ratio hi/eij by changing hi only. Then the
algorithm modifies the ratio eij/ekl while keeping the height hi constant. In order to embed the
message repetitively, steps (1) to (4) are repeated many times.

Figure 4 shows triangles that formed MEPs in darker gray. Due to the mutual exclusion
rule described in the step (1) above, MEPs do not share vertices.

Given a watermarked mesh and two numbers that identify marker triangles, extraction
proceeds according to the following steps.

(1) Traverse a given triangular mesh and find a triangle with the marker, thereby locating
a MEP.

(2) Extract a subscript and two data symbols from the triangles in the MEP.
(3) Repeat (1) to (2) above for all the marker triangles on a given triangular mesh.
(4) Sort the extracted symbols according to their subscripts.

The TSQ algorithm embedded 210 bytes of data, that is, 0.15 byte/triangle, in the model of
Figure 4, which consisted of 1406 triangles. Experiments using seven polygonal mesh models
showed that the TSQ algorithm was able to embed 0.15-0.18 byte/triangle.

3.1.2. Tetrahedral volume ratio embedding

A ratio of volumes of a pair of tetrahedrons is the embedding primitive for the Tetrahedral
Volume Ratio (TVR) embedding algorithm described in this section. The algorithm is designed
to accept triangular meshes as its input. It arranges the embedding primitives topologically into
a global one-dimensional arrangement on a triangular mesh in order to embed a sequence of
symbols.

The TVR algorithm is a public watermarking scheme. The watermarks produced by the
TVR algorithm withstand affine transformation of stego-polygonal-meshes. The watermarks
are destroyed, among other disturbances, by topological modifications such as resection and
re-meshing, randomization of vertex coordinates, and geometrical transformations more
general than affine transformation (e.g., a projection transformation). However, repetitive
embedding could make the watermark somewhat resistant to some of these disturbances.
Repetitive embedding in a triangular mesh can be achieved, for example, by cutting the mesh
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into multiple sub-meshes and embedding a message into each sub-mesh.
The crux of the TVR algorithm is establishing 1D arrangement of embedding primitives,

whose process is illustrated in Figure 5 by using a simple example.
Given a triangular mesh, an initial vertex, and an initial traverse direction, a vertex

(spanning) tree is generated on the mesh (Figure 5b). (A method to find the initial vertex and
initial traverse direction will be explained later.) The initial vertex becomes the root of the
vertex tree. The vertex tree is converted to a tree of triangles, a triangle (spanning) tree,
which is then traversed in depth-first order to generate 1D triangle sequence (Figure 5e).
These steps are similar to the one employed in [20] to compress triangular mesh data.

Once the sequence of triangles is obtained, it is converted to a sequence of tetrahedrons by
finding a point to be used as a common apex of the tetrahedrons. For example, the centroid of
three vertices of the first triangle in the triangle sequence is used as the apex. The triangle used
to compute common apex must be put aside so that its vertices are not modified later due to
embedding of data. Note that the vertices on the mesh should not be coplanar, or volumes of
all the tetrahedrons would be zero. (The vertices on the mesh of Figure 5 look coplanar,
because meshes that look coplanar are easier to draw.)  In Figure 5, centroid of vertices of the
triangle numbered 1 is used as the common apex in forming tetrahedrons numbered 2 to 12 in
Figure 5f. (The example of Figure 5 seems to indicate the vertices on the mesh to be coplanar.
This is for the ease of illustration only. Vertices must not be coplanar for the algorithm to
work.)

It is now easy to generate a sequence of ratios of volumes of tetrahedrons. For example,
volume of the first tetrahedron in the tetrahedron sequence is used as a common denominator
and volumes of remaining tetrahedrons are used as numerators. In Figure 5f and in Figure 5g,
volume of the tetrahedron 2 is used as the common denominator, and the remaining
tetrahedrons, numbered 3 to 12, are used as the numerators. Each ratio is modified according
to the symbol to be embedded in the ratio. Modification of these ratios subsequently alters
vertex coordinates.

A pair of initial vertex and initial traverse direction is determined by finding an initial edge.
To find the initial edge, the algorithm computes, for every edge in the mesh, the volume of the
tetrahedron subtended by two triangles adjacent to the edge. The algorithm selects as the initial
edge an edge whose tetrahedron has the largest volume. (The tetrahedrons used to select the
initial edge are unrelated to those used to embed symbols.) Correct initial vertex and initial
traverse direction pair is found by trial-and-error method; the pair that yielded correct lead-in
symbols is chosen as the right pair.

Figure 6 shows a model watermarked with the TVR algorithm in which modified triangles
are rendered with dark gray. Figure 7 shows an example of data embedding by using the TVR
algorithm with repetitive embedding. Affine transformation (Figure 7c) and resection (Figure
7d) did not destroy the embedded message. The TVR algorithm embedded 0.08 byte/triangle
in the face model of the Figure 6, and 0.18 byte/triangle in the cow model of Figure 7. An
experiment with seven polygonal mesh models showed that the embedding data density ranged
from 0.05 byte/triangle to 0.2 byte/triangle.

3.2. Algorithms Based on Topological Modifications

This section presents two new algorithms that embed data by using topology of polygonal
meshes. 1

                                               
1 These two algorithms first appeared in [18].



To be published in Computer Communications, Elsevier Science B. V.

8

3.2.1. Triangle strip peeling symbol-sequence-embedding

The Triangle Strip Peeling Symbol sequence (TSPS) embedding algorithm that will be
presented in this section is a public watermarking scheme based on a topological embedding
primitive. It employs, as its embedding primitive, an adjacency of a pair of triangles in a
triangle strip, each of which encodes a bit of information. One-dimensional arrangement of
embedding primitives is induced by the adjacency of triangles on the triangle strip. To
recognize the triangle strip with watermark, the strip is peeled off from the original mesh.

Since both embedding primitive and arrangement are topological, watermarks produced by
the algorithm are immune to geometrical transformation. Repetitive embedding makes the
watermarks resistant to resection. The watermarks can be destroyed by topological
manipulations, for example, by polygon simplification algorithms. A disadvantage of this
algorithm is its low space efficiency compared to many algorithms based on geometrical
primitives.

Inputs to this embedding algorithm are an orientable triangular mesh and a message bit
string. The TSPS embedding algorithm embeds data according to the following steps. (See
Figure 8.)

(1) Starting from an edge e selected from the input mesh M, grow a triangle strip S on M
by using the message bit-string to determine the direction of growth of the strip.
Observe that a triangle at the end of (current) strip has two “free” edges, i.e., edges
that are not adjacent to triangles of the current triangle strip. Since M is orientable,
these two edges can be ordered on the triangle by traversing the edges in a fixed order
(either counterclockwise or clockwise). Depending on the data bit, choose one of the
two free edges as the edge to be shared with the next triangle of the strip. (See Figure
9.)

(2) “Peel off” the triangle strip S from M by splitting all the edges and vertices on the
boundary of S except the initial edge e. The strip S is connected to the rest of the
mesh only by the edge e.

The edge e serves as the initial condition for finding the triangle strip. Arrangement of
embedding primitives is induced naturally by the connectivity of triangles on the triangle strip.
Since the peeled strip caps the hole completely, proper colors and vertex normal vectors make
the watermark invisible.

Figure 9 shows an example of a triangle strip. The strip drawn with solid lines, which start
at edge e, embeds a bit string “10101101011” in a sequence of 12 triangles. Each bit of the bit
string steers the direction of growth of the triangle strip. If the last bit of the string is “0”
instead of “1”, the last triangle will become the one that is drawn with broken lines.

Steering by message bit strings produces strips whose shape may not fit in a given mesh,
depending on a given bit string. In the example of Figure 9, a message bit string with all “1”
would keep steering the strip to the left. If the message string is sufficiently long, the strip will
either hit the boundary of the mesh or circle back to itself. To avoid this problem, shapes,
locations and orientations of the strips must be controlled carefully. We manipulate the shape
of the triangle by using steering symbols. A steering symbol is a bit that does not carry
information but simply steer direction of growth of a triangle strip. Steering symbols are
interleaved with data symbols, that are, symbols that encode embedded data, in order to
control shape of triangle strips. Obviously, steering symbol halves the embedding data
capacity. Our current implementation determines initial locations, directions of growth, and
shapes of triangle strip manually.   
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Extraction of message is carried out according to the following steps.

(1) Traverse the watermarked mesh and find an edge with topological features that starts
a triangle strip of known length that is attached to the stencil mesh by an edge.

(2) Starting from the initial edge, traverse the triangle strip to the open end as embedded
bits are extracted.

Figure 10 shows a simple example of TSPS embedding, in which a triangle strip of length
27 is peeled off from a mesh that consisted of 214 triangles. The triangle strip encodes 13 data
bits and 13 steering bits. Selection of steering bits in this case was done manually. As another
example, a model of triceratops (499 triangles) in Figure 11 is marked with a triangle strip of
length 19 triangles, which encodes 9 bits. (The colors of the strips in these examples are
intentionally changed to show their location.)

Watermarks produced by the TSPS embedding algorithm can be erased if a geometrical
“mending” program, for example the one similar to [25], which would stitch the triangle strip
back to the stencil mesh. Such mending can be prevented to some extent by modifying
topology of stego-polygonal-mesh in order to confuse mending algorithms. For example,
vertices, edges, and polygons can be added into the stencil mesh R so that finding
correspondence of edges and vertices to be stitched together is difficult.

3.2.2. Polygon stencil pattern-embedding

Given a mesh M, a pattern can be embedded by simply cutting out a polygonal strip S in a
desired pattern, as illustrated in Figure 12. S is attached to the embedded-mesh mesh by an
edge, for example; it is easier to find and remove S if it is totally disconnected from the rest of
the mesh. Since the strip completely caps the hole, given proper colors and normal vectors,
watermarks are visually unnoticeable.

Watermarks produced by this algorithm, called Polygon Stencil Pattern (PSP) embedding,
are robust against many polygonal simplification algorithms. This is because vertices on the
boundary of polygonal strips and stencil meshes are preserved by many polygon simplification
algorithms. If vertices on the boundary are removed or displaced forcefully, as some polygon
simplification algorithms do, cracks will appear, diminishing the value of the model.

Figure 13 shows a stenciled polygonal mesh, a cut out triangle strip, and effects of a
polygon simplification algorithm on them. The vertices on the boundary of the stencil mesh and
the triangle strip are preserved despite a polygon simplification. On the stencil mesh, the
simplification reduced the number of triangles from 1735 down to 413. Number (and
coordinates) of vertices on the boundary of the triangle strip did not change after the
simplification, but the number of triangles is reduces from 287 to 283. Topology of the edges
did change after simplification, but the watermark remained. (Note the change at the upper-left
corner of the letter “M”, for example.)

3.3.  An Algorithm Based on Non-geometrical Quantity Modifications

Data can be embedded in non-geometrical quantities, which include per-vertex color, per-
vertex texture coordinate, per-face color, per-face normal vector, per-vertex normal vector,
per-volume color, and per-volume refractive index. The approach to embedding using non-
geometrical attributes is similar to those used for algorithms that employ coordinate embedding
primitives; Values of the attributes are modified and the modifications are ordered to embed a
significant amount of information.

As an example, a new algorithm that embeds data in texture coordinates of polygonal mesh
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will be presented in the next section. A similar algorithm can be used to embed data in other
per-vertex attributes, such as vertex colors. Data embedding into per-face attributes of a
polygonal mesh surface is also possible; Modify per-face attributes and then arrange
modifications.

3.3.1. Texture coordinate modification embedding

A set of texture coordinates associated with vertices of a polygonal model is a good target
for data embedding. Proper texture coordinate is crucial for proper rendering of texture
mapped objects, and a set of texture coordinates is difficult to regenerate once it is lost. An
added benefit is that texture coordinate is not affected by coordinate transformation of vertices,
which could make embedding algorithms that target texture coordinates simpler than those that
target vertex coordinates.

The embedding algorithm modulates amplitude of texture coordinates based on message
symbols. There are many ways to modify amplitudes of texture coordinate values for
embedding. A simple method to embed a bit string is as follows.

Let si be ith bit of a bit string S. The embedding algorithm modifies a coordinate value xi

(e.g., either u or v) of a texture coordinates by the following steps, given a modulation
amplitude A.

r=xi-xi/A;

if si=‘0’ then b=A/4 else if si=’1’ then b=A*3/4;

xi= r+b;

Alternatively, we can work in binary representation of floating point numbers. To modulate
a number by a bit, simply replace selected bit in the number with the bit to be embedded.
Regardless of the actual modulation methods, we can make two such modulations per 2D-
texture coordinates. Thus, if we embed one bit per floating point number, we can embed 2N
bits into N 2D-texture coordinates.

In our prototype implementation, we used the order of appearance of texture coordinates
in the input file as the ordering for the embedding. This order is destroyed easily by shuffling
the positions of the texture coordinates in the file. If this is a problem, there are alternative
methods to introduce ordering into a set of texture coordinates. Since each texture coordinates
is associated with a vertex, ordering vertices implies ordering of texture coordinates. In
Section 3, we introduced several examples of methods to order vertices. For example, vertices
can be ordered topologically by TVR embedding algorithm (Section 3.1.2) or TSPS
embedding algorithm (Section 3.2.1). It is also possible to arrange texture coordinate by using
a non-geometrical quantity, for example, texture coordinate or vertex color.

Note that watermarks by the TSQ, TVR, and TSPS embedding algorithms do not interfere
with texture coordinates, face color, and other non-geometrical attributes of polygonal meshes.
Thus, it is possible to combine an attribute-modifying algorithm (e.g., the one described here)
with an algorithm that modifies geometry or topology (e.g., TSPS embedding algorithm).

The modulation amplitude A must be small enough so that the embedding does not affect
the visual quality of the rendered model. Simultaneously, the amplitude A should be large
enough so that the embedding won’t be destroyed, for example, by floating-point number
representation errors. We conducted experiments to determine relation between modulation
amplitudes and quality of rendered images. Some of the results are shown in Figure 14 and
Figure 15.

Texture images are a synthetic red-and-white stripe image (256 x 256 pixels), and a
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photograph of a human face (512 x 512 pixels). These images were texture-mapped onto a
model of a sphere tessellated into 1800 triangles, which contained 961 vertices (and thus 961
texture coordinate). If we modify four bits per single-precision floating-point number, we
should be able to embed maximum of 961 bytes in 961 texture coordinates. In this experiment,
we embedded a 358  byte long text in the texture coordinates.

In the figures, Ar is the modulation amplitude relative to the range of texture coordinate
variation on the model. In these examples, the texture coordinates varied in the range [0,1] in
both u and v coordinates so that the maximum variation range of texture was 1.0. Thus,
Ar=0.1 % means amplitude of 0.001.

In Figure 14, in which the red-and-white stripe texture is used, distortion in the rendered
image is perceptible in rendered images when Ar=0.5 % (Figure 14c) and Ar=1 % (Figure
14d). Complex, less geometrical, texture images reduced perceptibility of texture distortions.
Distortions of the human face texture shown in Figure 15 were difficult to perceive. Even for
the image with Ar=1 % (Figure 15d), a careful comparison with the original image (Figure
15a) was necessary to reveal distortions.

This experiment showed that, if modification amplitude is chosen appropriately, data
embedding into texture coordinates is possible without noticeable change in the models
rendered appearance.

4. Conclusion

Following an introduction and a description of fundamental approaches to data embedding
in 3D polygonal meshes, this paper presented algorithms that embed data in polygonal mesh
surfaces.

The paper presented two algorithms that modify topology of polygonal mesh surfaces. One
of the algorithms embeds bit strings in connectivity of triangles and the other embeds visual
patterns by cutting out the patterns. Watermarks produced by both of these algorithms are
robust against any modification of vertex coordinate values. These watermarks are destroyed
by topological modifications, such as polygon simplifications. This paper also presented an
algorithm that modifies non-geometrical quantities. These quantities are associated with
vertices, line segments, faces, or volumes but do not define shapes. Per-vertex texture
coordinates, per-vertex and per-face colors, and per-volume transparency are example of this
kind of quantities. In particular, an algorithm that modifies per-vertex texture coordinate is
presented. With these algorithms, this paper complemented and expanded our previous papers
[17, 18, 19] by adding new algorithms and by increasing target object types.

Data embedding algorithms described in this paper are not robust enough for many
applications scenarios. However, some of them could be used as they are in some other
applications. For example, we are planning to explore application of fragile watermarks for
authentication or tamper detection. We will also look for more robust embedding algorithms
and more diverse embedding target types.
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Embedding Extraction

Cover-3D-model

Text, number,
pattern, etc.

Embedded data

Stego-key

Disturbances: Geometrical transformation,
coordinate randomization, resection, polygon
simplification, floating point error, etc.

Cover-3D-model

(a) Cover-3D-model

Delivery
through
media

Stego-3D-model

(b) stego-key

(c) Reversible
embedding

Embedded data

Figure 1. Data embedding in 3D polygonal models. Solid lines indicate data flow of a
basic embedding scheme. Dotted lines indicate additional paths of information used in
variations of the basic data embedding scheme: (a) extraction that requires cover-3D-
model, (b) security provided by using stego-key, and (c) reversible embedding.
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Figure 4. Macro embedding primitives, each of which consists of four adjacent triangles,
are shown in dark gray.
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Figure 6. Triangles used for embedding by the TVR algorithm are shown in dark gray.
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(a) The original model. (b) Message embedded.

(c) Affine-transformed. (d) Cut in half.

Figure 7. (a) Polygonal mesh model of a cow (5804 triangles). (b) A message is embedded
by using the TVR algorithm enhanced with local arrangement and repeated embedding.
The message survives (c) resection or (d) affine transformation. (The URL is fictitious.)
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Peeled strip S
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Generate triangle
strip based on the
message bit
string.

Reattach the
triangle strip S
to the stencil
mesh R  at the
edge e.

(3)

M

Cut out the triangle strip S from
the mesh M .

Figure 8. Triangle strip peeling symbol sequence embedding algorithm. (Cracks around
the strip in the bottom figure are for illustration purpose only.)
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Figure 9. Connectivity of 12 triangles (drawn with solid lines) in a triangle strip encodes
the bit string “10101101011” (11 bits). If the bit string is “10101101010” (change in the
last bit), the last triangle will be the one drawn with broken lines.

Figure 10. A triangle strip consisting of 27 triangles was cut out from a flat triangular
mesh (214 triangles). The triangle strip, displayed in darker gray, encodes 13 data bits
interleaved with 13 steering bits.
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Figure 11. A triangle strip, 19 triangles long and shown in a light gray, is generated and
peeled off from a model of a triceratops (499 triangles). (A part of the strip is not visible
from this viewpoint.)
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(a) The stencil mesh (1735 triangles) left after
cutting out a strip (right) from the original mesh.

(b) The triangle strips cut in patterns of three
letters “IBM” (287 triangles total).

(c) The stencil mesh and the triangle strip
displayed together (2022 triangles total.)

(d) If rendered together, the embedded watermark
is not noticeable.

(e) The stencil mesh after polygonal simplification
(413 triangles).

(f) The triangle strip after polygonal simplification
(283 triangles).
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(g) The stencil and the triangle strip combined,
reduced to 696 triangles total.

(h) The mesh to the left rendered with shading.
Quality degradation is apparent.

Figure 13. A simple pattern embedding by cutting patterns of a polygonal mesh. The
watermark is resistant to many polygon simplification algorithms.
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(a) Ar=0 (No embedding) (b) Ar=0.1 %

(c) Ar=0.5 % (d) Ar=1 %

Figure 14. A red-and-white stripe image is mapped onto a sphere model (1800 triangles).
Texture coordinates are modulated with several relative amplitudes Ar. Distortions are
not perceptible at Ar=0.1 % but become quite noticeable if Ar is near or above 0.5 %.
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(a) Ar=0. (No embedding) (b) Ar=0.1 %

(c) Ar=0.5 % (d) Ar=1 %

Figure 15. A photograph of a human face is mapped onto a sphere model (1800
triangles), whose texture coordinates are modulated with several relative amplitudes Ar.
With such complex texture images, distortions are less noticeable than with a simpler,
geometrical texture (e.g., that of Figure 2).


