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Abstract

This paper presents a shape-blending algorithm that interpolates between 2D and 3D polyhedrons. Shape
blending, which is sometimes called shape metamorphosis or geometric morphing, has applications in such areas
as entertainment and medical visualization.

Our algorithm directly interpolates vertices of polyhedral source shapes by using variationally optimized subdi-
vision surfaces. To interpolate a pair of 3D polyhedrons, for example, a smooth 4D tetrahedral interpolator subdi-
vision surface is created. Intersecting the 4D subdivision surface with another 4D surface produces a blended 3D
mesh. Variational optimization of the interpolator surface ensures a smooth shape transition. At the same time,
manipulable nature of the interpolator subdivision surface allows for feature correspondences, shape transition
e�ects, and other controls over the shape blending.

Key words: Geometric modeling, Geometric morphing, Shape metamorphosis, Shape-interpolation control
Tetrahedral mesh generation,

1 Introduction

The shape blending problem can be stated as fol-
lows; given two or more source shapes, construct
a sequence of interpolated shapes so that blended
shapes adjacent to each other in the sequence are
geometrically close. Shape blending is sometimes
called shape metamorphosis, geometric morphing,
or shape interpolation. The technology can be ap-
plied to create stunning visual e�ects in movies
and TV advertisements, for example.

Shape blending has been studied since around
1980s, and many algorithms have been published.
An excellent review on 3D shape morphing by
Lazarus and Verroust [1] notes that there are two
major classes of approaches to 3D shape blending;
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the boundary-representation based approach and
the volume-based approach.

1. Boundary representation based ap-
proach: This approach works in a parameter
domain de�ned on the surface of objects. Polyg-
onal mesh representation has been the boundary
representation of choice for morphing. Most of the
algorithms in this class create a common mesh,
which is a common embedding of both of the
source meshes. The common mesh is then geomet-
rically deformed to produce morphed shapes. The
common mesh is found typically on a spherical or
a rectangular parametric domain.

The advantage of the boundary-representation
based approach is its ability to control morphing.
Feature correspondence can be established, for ex-
ample, through vertex-to-vertex or mesh-to-mesh
correspondence. A disadvantage of this approach
is its diÆculty in morphing between shapes hav-
ing di�erent surface topology (i.e., di�erent genera
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and/or connectivity), for the approach requires
strict correspondence between vertices and edges
of source shapes.

Kent, et al. [2] employed spherical embedding,
while Kanai, et al. [3] employed embedding into a
disk by using harmonic mapping. For feature cor-
respondence, Gregory et al. [4] and Kanai et al. [5]
employed coarse meshes overlaid on the source
meshes to let users specify mesh-to-mesh feature
correspondence. Lee, et al. [6] introduced multires-
olution reparameterization of polygonal meshes
to morphing. Their decomposition, an application
of MAPS mesh reparameterization algorithm [7],
is so that the feature lines and points speci�ed
in their original (i.e., highest resolution) meshes
are preserved in the lowest resolution mesh. Con-
sequently, feature correspondences can be estab-
lished in the simplest, lowest resolution mesh.

As mentioned, this class of algorithm is not
suited for interpolating shapes having di�erent
topology. A paper by DeCarlo and Gallier [8] is
the only example we know of in this class that ex-
plicitly dealt with interpolation of shapes having
di�erent topologies.

2. Volume-based approach: This approach
employs level sets of distance functions com-
puted from the source shapes for morphing. These
distance functions are interpolated to produce
blended shapes.

A major advantage of this approach is its abil-
ity to morph easily between shapes having di�er-
ent surface topology. However, it lacks detailed
control over morphing available in the boundary-
representation based approach. Establishing fea-
ture correspondence and controlling shape transi-
tion are diÆcult. Another disadvantage of this ap-
proach is loss of quality, e.g., loss of sharp features,
due to approximation of shapes using smooth dis-
tance functions.

Many algorithms in this class employed voxel
representation of shapes, which can be considered
as a 0-level set of a discretized distance func-
tion. Lerios et al. [9] extended feature-based 2D
image morphing by Beier and Neely [10] to 3D.
Hughes [11] brought the voxels into the Fourier
domain, and He et al. [12] into the Wavelet-

transformed domain, for morphing. Some algo-
rithms employed signed distance functions in 3D
to interpolate a set of scattered points in 3D and a
set of 2D contours to construct 3D shapes [13,14].
Kaul and Rossginac [15] used weighted Micowski
sum for morphing. They introduced a concept
of in
uence shape to control shape transition,
albeit indirectly. Payne and Toga [16] and Cohen-
Or, et al. [17] also used signed distance function.
Whitaker and Breen [18] introduced the idea
of evolution equations to morphing. Turk and
O'Brien [19] employed four-dimensional (4D) vari-
ational implicit functions to smoothly interpolate
a pair of 3D distance functions computed from
3D source shapes. The 4D interpolator is then
intersected with a plane to produce a 3D implicit
function of the interpolated shape. Boundary
(polyhedral) representation of the interpolated
shape is then recovered by using an iso-surface
extraction algorithm.

1.1 Our Approach

This paper presents a new shape blending algo-
rithm for shapes de�ned as polyhedrons. The algo-
rithm interpolates the polyhedrons, the \source"
shapes, by using a subdivision surface having a di-
mension one higher than the source shapes. The
subdivision surface is made to smoothly interpo-
late vertices of the source shapes by using vari-
ational optimization. Intersecting the interpola-
tor subdivision surface with another surface pro-
duces a blended shape. Smooth shape transitions
are achieved due to the use of the variational opti-
mization. It should be noted that what is called a
subdivision surface here is di�erent from a typical
subdivision surface. Of two components of a typi-
cal subdivision surface scheme, geometric smooth-
ing and connectivity re�nement, our method bor-
rows the connectivity re�nement only. Our scheme
generate vertex coordinates using methods di�er-
ent from typical subdivision surface schemes.

Thanks to the variationally optimized subdi-
vision surface used for the interpolation, the al-
gorithm combines some of the advantages of the
several algorithms in both of the two classes of
approaches mentioned above. As in the case of
algorithms that employ variationally optimized
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smooth implicit functions, our method is able to
produce smooth shape transition. At the same
time, similar to some of the boundary representa-
tion based methods, our method allows for various
controls over the interpolation. This controlla-
bility is due to manipulability of the subdivision
surfaces employed for the shape interpolation. For
example, feature correspondences among vertices
of source meshes can be established by using line
geometric constraints. Our interpolation method
also allows for other shape transition e�ects, such
as spatially non-uniform shape transition and
transiently exaggerated shapes. An additional ad-
vantage of our algorithm is its potential to blend
source shapes having di�erent surface topology.
This is due mainly to the use of the interpola-
tor surface whose dimension is one higher than
that of the source shapes. While our current im-
plementation limits such topology transcending
shape blending be applicable only to 2D contours,
future extensions should enable blending of 3D
source shapes having di�erent surface topology.

The following list summarizes important fea-
tures of our approach.

(1) Feature correspondence: Direct point-to-
point correspondence can be established be-
tween the source and target meshes by using
constraints.

(2) Smooth blending: Shape transitions as well
as blended shapes are smooth since source
shapes are interpolated by using a smooth,
variationally-optimized subdivision surface.

(3) Sharp source features: Sharp as well as
smooth shape features can be represented in
the source shapes.

(4) Shape transition control: Various shape
transition e�ects can be incorporated. For
example, spatially non-uniform shape transi-
tions and exaggerated blended shapes can be
achieved.

The rest of this paper is structured as follows.
The shape blending algorithm is described in Sec-
tion 2. While our emphasis in this paper is on the
3D shape blending algorithm, we also describe the
2D shape blending algorithm for it helps us to il-
lustrate our approach. Section 2 also includes some
of the results generated by our shape-blending al-
gorithms. Additional results are presented in Sec-

tion 3. We conclude the paper in Section 4 with
the summary and future work.

2 The Shape Blending Algorithm

Our shape-blending algorithm interpolates
source shapes de�ned as n-dimensional polyhe-
drons by using an (n+1)-dimensional subdivision
surface [20{25] as an interpolator. The subdivision
surface is globally optimized using a variational
method so that it is smooth. If more than one
source shape is given, our algorithm could inter-
polate them using a globally smooth subdivision
surface. The smoothing subdivision rule of the
standard subdivision surfaces may be modi�ed, if
necessary, to create sharp shape features in the
source and blended shapes.

In the following of this paper, we call an n-
dimensional source mesh S-mesh and an (n + 1)-
dimensional interpolator mesh I-mesh. We call
the axis of interpolation blending axis, denoted
by t, although it has little to do with time. The
spatial axes in 2D are denoted by x and y, and,
those in 3D are denoted by x, y, and z.

2.1 2D Shape Blending Algorithm

Assume that each source mesh (S-mesh) is a
2D polygonal contour de�ned on the x-y plane.
Multiple S-meshes are located at di�erent values
of the blending axis t. An interpolator mesh (I-
mesh) that interpolates S-meshes is a 3D trian-
gular mesh. Blending of 2D shapes is achieved by
following the steps below:

1. Initial meshing: Given S-meshes, each of
which is de�ned as a 2D polygonal contour,
the algorithm creates an initial 3D triangular
I-mesh by connecting vertices of an adjacent
pair of S-meshes on the blending axis t.

2. I-mesh subdivision: The initial triangular
I-mesh is subdivided by applying a 1-to-4
subdivision rule, that is topologically iden-
tical to Loop's scheme [22]. The subdivi-
sion gives the I-mesh topological complexity
enough for smooth interpolation of complex
shapes.
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3. Variational optimization: The subdivided
triangular I-mesh is variationally optimized
so that the I-mesh satis�es a given set of ge-
ometric constraints. Constraints usually in-
clude surface smoothness and end-point (that
is, S-mesh) interpolation. In addition, vertex-
to-vertex feature correspondence and other
controls over the blending may also be given
as geometric constraints to the optimization.

4. Shape extraction: The 3D I-mesh is inter-
sected with a 3D surface to extract an inter-
polated (or a blended) 2D contour. The sur-
face may be a plane at t = const., or a curved
surface de�ned as a function of x, y, and t.

When blending a pair of 2D polygonal contours,
the initial mesh can be created automatically us-
ing a method described by Shinagawa et al. [26].
Given a pair of polygonal contours, the method
�nds pairs of closest vertices from the contours.

Figure 1 shows an example of 2D shape blending.
Figure 1(a) shows a pair of source contours to be
interpolated, outlines of letters \7" and \8", with
a topological key-shape in the middle. Figure 1(b)
is the initial interpolating triangular mesh that
connects two 2D polygonal contours. Figure 1(a)
is the interpolating subdivision surface produced
as a result of variational optimization. Intersecting
this smoothed mesh with a t = const. surface will
produces a blended shape.

The topological key-shape, an additional out-
line inserted in the middle of the blending axis,
guides topological evolution of shapes between ini-
tial contours having di�erent topology. A topolog-
ical key-shape is inserted at each topological junc-
ture in order to uniquely guide topological evolu-
tion of shapes. In the example of Figure 1, the let-
ter \8" has two interior loops while the letter \7"
has none. The key-shape in this example guides
the topological evolution by relating the A1 with
B1, A2 with B2, A3 with B3, and B3 with C3.
Without the guidance, there are many equally fea-
sible topological con�gurations of the I-mesh.

Please note that the key-shape is to guide topol-
ogy only; its geometry (vertex coordinate) can be
arbitrary. (It is true, however, that a reasonable
key-shape geometry leads to a faster computation
of the I-mesh.) Note also that the vertex topol-

ogy of the source shapes and the key-shape need
not correspond exactly. The di�erences in vertex
topology are taken care of by the I-mesh con-
nectivity subdivision, which increases degrees-of-
freedom of the I-mesh.

2.2 3D Shape Blending Algorithm

In the case of 3D shape blending, each source
shape (S-mesh) is a 3D polyhedral mesh. The S-
meshes are interpolated by an I-mesh, which is a
4D tetrahedralmesh.While basic steps are similar,
the 3D shape-blending algorithm is signi�cantly
more involved than its 2D counterpart. Much of
the additional diÆculty lies in the initial mesh-
ing stage. Unlike a 3D triangular mesh connecting
2D polygonal contours, it is not straightforward
to create a tetrahedral mesh connecting a set of
arbitrary polygonal meshes. Our approach to this
diÆculty of initial meshing is to \start simple and
re�ne later".

The tetrahedral mesh creation is relatively easy
if the source meshes are simple enough. As an
extreme example, a tetrahedral mesh between
a pair of tetrahedra can be found quite easily.
Our algorithm �rst simpli�es the S-meshes using
wavelet analysis. Prior to the wavelet analysis,
source meshes are reparameterized, if necessary,
so that the resulting mesh has 1-to-4 subdivision
connectivity required for the wavelet analysis.
The S-mesh reparameterized to have 1-to-4 sub-
division connectivity is called a TS-mesh. Then,
for each source mesh, the lowest resolution source
mesh produced by the wavelet analysis is used to
create a base or level-0 tetrahedral I-mesh. An al-
gorithm to create the base tetrahedral mesh will
be explained in the next section.

The base tetrahedral I-mesh is topologically and
geometrically re�ned into a fully featured tetra-
hedral I-mesh. This recursive re�nement of vertex
connectivity employs a 1-to-4 subdivision rule for
the triangular S-meshes and a 1-to-8 subdivision
rule for the tetrahedral I-mesh. The 1-to-4 sub-
division rule our algorithm employed is topologi-
cally identical to Loop's scheme [22] for triangu-
lar meshes (Figure 6). The 1-to-8 subdivision rule
for tetrahedral meshes is the \symmetric subdivi-
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sion" rule of Moore [27] illustrated in Figure 7. At
each subdivision step, detail coeÆcients from the
wavelet analysis are used to provide geometric re-
�nement.

A full-resolution initial I-mesh is created when
the wavelet analysis performed on the source TS-
meshes is fully reversed through the re�nement.
The re�nement process using the wavelet coeÆ-
cients reverts the source meshes to their original
connectivities and geometries. The coordinates of
vertices inserted to create the level-n I-mesh are
computed recursively from those of the level-�(n-
1) I-mesh by using linear interpolation. Note that
these coordinate values are initial values to be
modi�ed by the succeeding variational optimiza-
tion step. The coordinates of vertices in the source
meshes are to remain unchanged.

When the initial meshing is complete, subdivi-
sion of the I-mesh and variational optimization fol-
lows. Blended shape is extracted by intersecting
the variationally optimized I-mesh with another
surface.

Blending of 3D S-meshes is accomplished by fol-
lowing the steps below (see Figure 2):

1. Initial meshing: Create an initial 4D tetra-
hedral I-mesh from a given set of 3D poly-
hedral S-meshes. This is accomplished by
(1) simplifying the S-meshes, (2) start a
base tetrahedral I-mesh from the simpli�ed
S-meshes, and (3) systematically grow a
complex I-mesh out of the base I-mesh.
A. Multiresolution analysis (MRA):

Each S-mesh is wavelet-analyzed to cre-
ate a multiresolution (MR) representa-
tion of the S-mesh using the framework
of Lounsbery et al. [28]. For each of
the S-meshes, the analysis produces a
base mesh and multiple levels of detail
coeÆcients. Since the wavelet analysis
assumes a triangular mesh with 1-to-4
subdivision connectivity as its input, the
S-mesh may require reparameterization.
To reparameterize, we employ Multires-
olution Adaptive Parameterization of
Surfaces (MAPS) algorithms by Lee et
al. [7]. The S-mesh reparameterized to
have 1-to-4 subdivision connectivity is

called a TS-mesh.
B. Base I-mesh creation: For each of the

TS-meshes, the lowest resolution (i.e.,
the simplest) TS-mesh produced by the
MR analysis above is used to create a
base tetrahedral I-mesh that interpo-
lates TS-meshes. The base tetrahedral
I-mesh is created by connecting ver-
tices of a pair of the lowest-resolution
TS-meshes. (Details of the base tetrahe-
dral I-mesh creation will be explained in
Section 2.2.1.)

C. I-mesh re�nement: The base TS-
meshes are recursively re�ned, both
topologically and geometrically, by us-
ing multiple levels of detail coeÆcients
produced by the MRA in the step 1A
above. As the polygonal TS-meshes are
re�ned, the tetrahedral I-mesh is also re-
�ned accordingly. The 1-to-4 subdivision
connectivity of the TS-meshes enables
systematic topological re�nement of the
tetrahedral I-mesh while maintaining the
I-mesh's 1-to-8 subdivision connectivity
by using the Moore's subdivision rule.

2. I-mesh subdivision: If necessary, both
I-mesh and TS-meshes are subdivided to in-
crease their topological complexity. Increased
topological complexity gives the meshes
increased degrees-of-freedom necessary to
smoothly approximate complex shapes that
could occur in the tetrahedral I-mesh.

3. Variational optimization: Re�ned and
subdivided tetrahedral I-mesh is variation-
ally optimized so that it satis�es various geo-
metric constraints. Constraints typically in-
clude smoothness and end-point (i.e., source
shape) interpolation. In addition, constraints
used for various shape-blending e�ects may
be included in the optimization. These shape-
blending e�ects, including feature correspon-
dence and spatially non-uniform shape tran-
sition, are among the major advantages of
the method proposed in this paper.

4. Shape extraction: The I-mesh is inter-
sected with a surface to extract an interpo-
lated shape. The surface may be a t = const.
plane, or a curved surface de�ned as a func-
tion of x, y, z, and t.
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The variational optimization step, whose de-
tails will be explained in Section 2.3, employs a
framework similar to wavelet based multiresolu-
tion analysis and synthesis in order to optimize
for di�erent sets of geometric constraints at mul-
tiple resolution levels. Note that the multiresolu-
tion framework for the variational optimization
of I-meshes is di�erent from the one used for
reparameterizing S-meshes.

Figure 3 shows an example of I-mesh cre-
ation. Figure 3(a) is the base I-mesh, created by
tetrahedral-meshing a pair of level-0 TS-meshes.
The level-0 TS-mesh of the star shape (an icosa-
hedron) contains 12 vertices (20 triangular-faces,
30 edges), while the base mesh for the mannequin
head contains 10 vertices (16 triangular-faces, 24
edges). A re�nement step produces the I-mesh
at the resolution level 1 shown in Figure 3(b),
and three re�nement steps create the I-mesh at
resolution level 3 shown in Figure 3(c).

Note in Figure 3 that, to visualize a 4D tetra-
hedral mesh in 2D projections, one of the spatial
axes z and the blending axis t are overlaid. Simi-
lar overlaying of coordinate axes will be employed
throughout this paper to visualize 4D meshes in
2D projections.

2.2.1 Creating Base Tetrahedral Mesh

The base tetrahedral I-mesh is created from a
pair of the lowest resolution TS-meshes by using
the algorithm below. Let the two triangular S-
meshes be Ms andMt. If we assume that a graph
Gs (a dual of the mesh Ms) and a graph Gt (iso-
morphic to Gs) can be embedded in the meshes
Ms and Mt, respectively, then Ms and Gt can be
meshed together by a set of tetrahedra. Figure 4
illustrates the relationships between Ms, Mt, Gs,
and Gt.

1. Compute a graph Gs, which is a dual of the
meshMs. (A face in Ms becomes a vertex in
Gs, and vice versa.)

2. Establish a one-to-one mapping between ver-
tices in Gs and a subset of vertices in Mt.
De�ne a graph Gt having as its vertices the
vertices ofMt in the above subset.

3. Add edges to Gt so that Gt is isomorphic to
Gs.

4. Establish a correspondence between an edge
inGt and a path inMt (that is, an edge inGt),
so that Gt is isomorphic to Gs. Here a path
refers to a series of connected edges. Note that
either one of the two paths does not share any
vertex in Mt except at the ends.

5. Create a tetrahedron by applying either one
of the three rules below (See Figure 5).
(a) Generate a tetrahedron from a vertex in

Ms and a face in Mt. (Figure 5(a))
(b) Generate a tetrahedron from an edge in

Ms and an edge in Mt. (Figure 5(b))
(c) Generate a tetrahedron from a face inMs

and a vertex in Mt. (Figure 5(c))

In Step 2 above, if the number of vertices in Gs

(that is, the number of faces in Ms) is larger than
the one in Mt, we pick two adjacent faces in Ms

and group them into one so that the number of
vertices in Gs is identical to (or less than)Mt. The
pair of faces to be grouped together is picked by
their geometrical proximity, e.g., closeness of their
centroids.

The same procedure can also be applied when
we fail in Step 4 above. If we cannot �nd the cor-
respondences between an edge in Gt and a path
of Mt, we reduce the number of vertices in Gs by
one and go back to the Step 1 again.

This algorithm always succeeds in establishing
tetrahedral meshes. For example, if both of the
two source meshes are topologically identical to
spheres, the algorithm will terminate as the num-
ber of vertices in Gs (and hence Gt) goes down to
4. This is because, in such a case, the graph having
only four vertices becomes a tetrahedron, and we
can de�nitely embed a tetrahedron in amesh topo-
logically equivalent to a sphere. Actually, the algo-
rithm �nds tetrahedral meshes bymerging at most
a few faces. The same argument holds when the
source meshes are of arbitrary topological type.

When wavelet-analyzing a pair of TS-meshes to
create a pair of simpli�ed TS-meshes, we reduce
their vertex counts down to about 10 to 20.Meshes
of this size are simple enough for the base tetra-
hedral I-mesh creation algorithm described above
to terminate quickly on all the examples we tried.
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2.3 Variational optimization

The variational optimization step of our algo-
rithm employs a minor variation of Takahashi's
subdivision surfaces with multiresolution con-
straints [29]. Compared to Gortler's [24] and
Zorin's [25] method, Takahashi's subdivision sur-
face is di�erent, in that it allows an independent
sets of geometric constraints to be attached at
each of the multiple resolution levels. This fea-
ture allows us to specify a complex shape with a
smaller number of constraints than are necessary
with the other methods.

The variational optimization algorithms for the
3D triangular I-mesh and 4D tetrahedral I-mesh
are almost identical. The most signi�cant di�er-
ences are the dimension of coordinates and the
vertex topology of the meshes to be optimized.
The following description employs terminology
for the case of a 3D triangular I-mesh interpolat-
ing 2D polygonal contours. However, by replacing
terms \mesh", \surface" and \polyhedron" with
\tetrahedral mesh", \tetrahedral volume", and
\4D polyhedron", respectively, the description
can be understood as the variational optimiza-
tion algorithm for a 4D tetrahedral subdivision
surface.

2.3.1 Subdivision Surface

A subdivision surface is obtained by recur-
sively re�ning the original control polyhedron
�(0) so that the sequence of re�ned polyhedra
�(1);�(2); : : : converges to the limit surface �(1).
Lounsbery et al. [28] treated re�nement levels of
subdivision surfaces as the resolution levels in a
wavelet-based framework of multiresolution anal-
ysis. In this context, the superscript (k) denotes
the resolution level in the multiresolution analysis.

Let the number of vertices in the subdivision
surface �(k) be m(k). By using the vectors of ba-

sis functions '
(k)
� (� = 1; 2; : : : ; m(k)) and coeÆ-

cients c
(k)
� (� = 1; 2; : : : ; m(k)) corresponding to

'
(k)
� , the shape of the subdivision surface �(k)

can be written as a vector inner product C(k) =

'(k)>
� c(k) = ('(k)1 ; : : : ; '

(k)

m(k))
>
� (c(k)1 ; : : : ; c

(k)
mk

),

where C(k)(x)(2 V (k)). In fact �(k) belongs to a

function space V (k) of dimension m(k). Here, the
i-th element of c(k) represents some coordinate (ei-
ther x, y, or z, if it is of 3D) of the i-th vertex of

�(k). This set of basis functions '
(k)
1 ; : : : ; '

(k)

m(k) is
called scaling functions at resolution level k.

Consider now a function space W (k) de�ned
as a di�erence of two function spaces spanned
by the sets of bases '(k+1) and '(k). The space
W (k) is spanned by the vector of basis functions

 
(k)
� and has the dimension n(k) = m(k+1)

�m(k).
By using a vector of coeÆcients corresponding

to  
(k)
� (x)(� = 1; 2; : : : ; m(k)), the di�erence

space can be written as D(k)(x) =  (k)>
� d(k),

where D(k)
2 W (k). This set of basis functions

 
(k)
1 ; : : : ;  

(k)

n(k) is called wavelets at the resolution
level k.

In the wavelet analysis framework, the di�erence
D(k)(x) adds \details" to C(k)(x) to synthesize
(or, reconstruct) a detail mesh �(k+1). Wavelet
synthesis can be written as

c(k+1) = P (k)c(k) +Q(k)d(k) (1)

by using matrices P (k) andQ(k). Here, the pair of
matrices P (k) and Q(k) is de�ned as

'(k)(x)
>

='(k+1)(x)
>

P (k); and (2)

 (k)(x)
>

= (k+1)(x)
>

Q(k): (3)

These matrices are called synthesis �lters.

In a typical subdivision surface framework, a
coarser mesh �(k) is topologically and geometri-
cally re�ned to generate a �ner mesh �(k+1) with-
out using the detail coeÆcients d(k). The coordi-
nate of each vertex after the topological re�nement
is computed by using a weighted sum of vertices
around the vertex in question. Thus, the formula
(1) above is simpli�ed to

c(k+1) = P (k)c(k): (4)

Here the synthesis �lter P (k) is anm(k+1)
�m(k),

and it determines the coordinates of the re�ned
mesh �(k+1).

To construct a subdivision surface in 3D, we
employ a triangular subdivision rule topologically
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identical to Loop's [22] (Figure 6). Our scheme
di�ers from Loop's method in that we compute
�(k+1) from �(k), plus a set of constraints at res-
olution level (k + 1) by using the local �ltering
method of Taubin et al. [30]. The vector of de-
tail coeÆcients d(k) is then obtained to satisfy for-
mula (4) given the meshes �(k+1) and �(k). To
construct a subdivision \surface" in 4D, that is,
a \surface" consisting of tetrahedra, we employ a
symmetric subdivision rule for a tetrahedron de-
scribed by Moore [27] (Figure 7).

2.3.2 Geometric Constraints

To �nd subdivision surfaces that interpolate tri-
angular source meshes (TS-meshes), the algorithm
treats vertices of the shapes as geometric con-
straints to be interpolated. As explained, the in-
terpolation algorithm �rst creates a coarse initial
interpolator mesh (I-mesh) by connecting vertices
of TS-meshes. Then, the initial interpolator mesh
(I-mesh) is subdivided and variationally optimized
to produce a smooth I-mesh.

We employ both �nite-dimensional constraints
and trans�nite-dimensionalconstraints, as de�ned
by Welch et al. [31], for the interpolation. The
former refers to constraints de�ned on a discrete
parametric domain, such as points, and the latter
refers to constraints de�ned on a continuous para-
metric domain, such as lines and curves.

In the shape-blending algorithm, a �nite-
dimensional constraint is added to each vertex
of S-mesh in order to make I-mesh interpolate
the vertex. Finite-dimensional constraints can
also be used to create various transitional e�ects,
e.g., by pulling/pushing the surface by the con-
straints. Our algorithm [29] allows di�erent sets
of constraints to be added at each of the multiple
resolution levels. This gives us control over the
shape of interpolating subdivision surfaces that
is more powerful than are possible with either
Gortler's [24] or Zorin's [25] methods.

A �nite-dimensional constraint thatmakes a sur-
face �(k) interpolate a point constraint �0 at a pa-
rameter value x0 can be written as

�(k)(x0) = '
(k)(x0)

>
� c(k) = �0 (5)

To specify vertex-to-vertex correspondence, the
algorithm connects a pair of vertices, one each
from each of the adjacent (in blending axis) TS-
meshes, using a trans�nite-dimensional constraint
such as a straight or a curved line. By specifying a
path in 4D space the correspondence curve should
follow, we could incorporate various shape transi-
tion e�ects.

The algorithm minimizes the least-mean-square
error of an integral to approximately satisfy the
trans�nite-dimensional constraints [31]. Consider
a coordinate of a trans�nite-dimensional con-
straint L(t) = L(l(t)) imposed on �(k)(x) , where
�(k)(x) denotes a coordinate of the subdivision
surface �(k) of the parameter x, and x = l(t) is
the corresponding parametric path. To param-
eterize the subdivision surface, we employed a
barycentric coordinate system. (Please refer [22]
for the barycentric coordinates.) The integral of
the squared di�erence between the surface and
the curve constraint is

Z �
�(k)(l(t))� L(t)

�2
dt: (6)

To minimize this integral, we solve the following
equation;

�Z
l

'(k)(l) �'(k)(l)>
�
c(k) =

Z
l

L �'(k)(l)dt: (7)

Both �nite- and trans�nite-dimensional in the end
result in a system of linear equations with respect
to c(k) as below;

M (k)c(k) = r(k): (8)

The number of linear constraints in this case is
equivalent to the number of vertices contained in
the faces where the trans�nite-dimensional con-
straints traverse.

In our shape blending scheme, both �nite- and
trans�nite-dimensional constraints can be im-
posed on the I-mesh at multiple resolution levels
simultaneously. We call such constraintsmultires-
olution constraints, which allow us to manipulate
shape of an I-mesh e�ectively. Constraints added
at a low resolution level would have global e�ects
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on I-mesh shape, while those added at a high
resolution level would have localized e�ects. By
imposing constraints simultaneously at multiple
resolution levels, we could e�ectively manipulate
shapes of I-meshes. Figure 12 and Figure 13 show
examples of manipulated I-meshes and shape
blending e�ects produced by the mesh by impos-
ing constraints at di�erent resolution levels. In
the example, constraints controls blending of the
letter \2" with the letter \3". Please refer Section
2.4.3 for the explanation on the �gure. Details of
the algorithm for solving the multiresolution con-
straints via local smoothing, which was originally
proposed in [29], will be presented in Appendix A.

2.4 Controlling Shape Interpolation

This section describes mechanisms available in
our algorithm to impose various controls over
shape blending.

2.4.1 Feature Correspondence

Feature correspondences are established by
imposing trans�nite-dimensional constraints on
I-meshes. Figure 8 shows an example of feature
correspondence. Figure 8(a) shows I-mesh with-
out feature correspondence. Blending sequence
resulted from this I-mesh is shown in Figure 8(d).
In Figure 8(b), a pair of vertex-to-vertex feature
correspondences are established by imposing a
pair of straight-line trans�nite-dimensional con-
straints on the I-mesh. The constraints connect
two points of the star with a point of the triangle.
(While not visible, there is another straight-line
constraint connecting the top vertex of the star
with a middle point of the upper edge of the tri-
angle.) Solving for the constraints produced an
I-mesh shown in Figure 8(c) and the blending
sequence shown in Figure 8(e).

An example of feature correspondence in 3D
shape blending is shown in Figure 9. A tip of
the horn of the star shape is related by a curved
line trans�nite-dimensional constraint (shown as
a thick black line) to the tip of the nose of the
mannequin head model. Figure 9(a) shows the
geodesic (shown as a gray line with dots) and the
curved line constraint without the tetrahedral I-

mesh, while Figure 9(b) includes the I-mesh. The
constraint solver tries to match the geodesic on
the surface of the I-mesh (shown as a gray line
with dots) with the curved line constraint, pro-
ducing a deformed I-mesh shown in Figure 9(c).
Note that the geodesic, consisting of a sequence
of edges of the I-mesh, is an approximation of a
real geodesic. The geodesic on the I-mesh is cre-
ated automatically by selecting a pair of vertices
to be related, for manually specifying a sequence
of edges on a 4D I-mesh not practical.

The blending sequence of Figure 10(a) is created
without the feature correspondence, while that of
Figure 10(b) is generated by using the feature cor-
respondence based on the line constraint described
above. The e�ect of feature correspondence be-
tween the horn of a star and the nose of the man-
nequin, with some exaggeration, is noticeable in
Figure 10(b).

2.4.2 Source Sharpness Control

Certain shape interpolation requires that the
sharp features of the source shapes to be pre-
served exactly, while shape transition be smooth
and continuous. We realize such an e�ect by
using special subdivision rules and trans�nite-
dimensional constraints. To control the sharpness
of sources shapes, we attach a 
ag to each vertex
indicating either the vertex is to remain sharp or
be smoothed. Our algorithm applies di�erent sub-
division rules at the vertex depending on the 
ag.

Figure 11 demonstrates this source sharpness
control feature of our algorithm. Source contours
shown in Figure 11(a) are used to create an initial
I-mesh in Figure 11(b). In the source meshes, ver-
tices marked with circles are to remain sharp. The
initial I-mesh is subdivided and smoothed to pro-
duce the I-mesh shown in Figure 11(c) and Fig-
ure 11(d). While the image in Figure 11(c) em-
ployed hidden-surface mesh rendering, that of Fig-
ure 11(d) employed Gouraud-shaded semi-opaque
surface rendering. Note that, among the S-meshes,
vertices of the star shape were not rounded while
a subset of the vertices of the fan-like shape are
smoothed, depending on the smoothing control

ags attached. This kind of sharp features in a
source shape are not easy to achieve if smooth an
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implicit-function is used to represent the source
shapes.

2.4.3 Enhanced shape transition

Deformation of the I-mesh surface by using mul-
tiresolution constraints enables us to create inter-
esting \enhanced" transitional shapes in shape-
blending sequences. Both point and line geometric
constraints can be used for such enhancements of
shape transitions. For example, adding line con-
straints, the same approach as the one used for
feature correspondence described in Section 2.4.1,
can creates enhanced transitions between features
of source shapes. Since constraints are of multires-
olution nature, the locality of in
uence of a con-
straint can be selected by picking a mesh resolu-
tion level at which the constraint is applied.

Images in Figure 12 and Figure 13 compares, in
2D shape blending, exaggerated shape transitions
e�ects generated by applying constraints at dif-
ferent resolution levels. Figures 12(a), (b), and (c)
are smoothed I-meshes at the resolution levels 1,
2, and 3, respectively. Notice dots in each of the
�gure, which are the point geometric constraints
added to deform the I-mesh for the exaggerated
shape transition e�ects. Figures 12(a), (b), and (c)
show constraints with their respective I-meshes at
the resolution level which the constraints are ap-
plied. After solving for the constraints, I-meshes
of Figures 12(d), (e), and (f) have resulted, which
correspond, respectively, to Figures 12(a), (b), and
(c). Deformations are global (Figure 12(d)) if the
constraints are added at a low resolution level
(Figure 12(a)). On the other hand, deformations
are local (Figure 12(f)) if the constraints are added
at a high resolution level (Figure 12(c)).

Figures 13(a)-(d) compares the blending se-
quence produced by the enhanced meshes. Fig-
ure 13(a) is the base case without any enhance-
ment. In the \enhanced" transition sequences of
Figures 13(b)-(d), the middle horizontal \bar" of
the letter \3" protrudes excessively during the
transition. Applying constraints at the I-mesh
resolution levels of 1, 2, and 3 produced, respec-
tively, di�erent versions of the enhanced shape
transition sequences shown in Figures 13(b), (c),
and (d).

Enhanced shape transition can also be created
for 3D shape transitions by using constraints. The
I-mesh manipulation shown in Figure 9 created
the enhanced blending sequence of Figure 10(b).
The blending sequence without enhancement is
shown in Figure 10(a) for comparison. This e�ect
is realized by specifying an arced line as a geomet-
ric constraint for feature correspondence.

2.4.4 Spatially non-uniform shape transition

A spatially non-uniform progress of the blend-
ing creates an interesting e�ect. For example, in
Figure 14(d), by e�ectively increasing the rate of
shape transition at the top, the letter \3" appears
to blend into the letter \1" from top to bottom.

We achieve such non-uniform transition e�ect by
warping an I-mesh by using spline functions be-
fore the I-mesh is intersected with another surface
to extract a blended shape. We �rst compute a
tight bounding box of the I-mesh and normalize
its coordinates. We then employ a warp function
to transform the normalized coordinate values of
the surfaces. In the case of 2D shape blending, we
�rst specify a cubic tensor-product B�ezier patch

P (x; y; t) =
3X

i;j=0

Bi(x)Bj(y)Pij(t); (9)

where Bi(x)(i = 0; : : : ; 3) represents a Bernstein
polynomial and t the blending axis. Each value of
the sixteen control points Pij(t)(i; j = 0; : : : ; 3)
for (9) is a function of t, which is calculated by
specifying four values of Pij(t) at 0;

1
3 ;

2
3 ; 1, and in-

terpolating them with cardinal splines. Thus, the
resulting function (9) is smooth and end-point in-
terpolating. The function transforms the normal-
ized coordinates of the vertices of the I-mesh into
a warped surface, which is the I-mesh with spa-
tially non-uniform progress of blending.

In the case of 3D shape blending, its I-mesh
warping function is similar to that of 2D shape
blending explained above except for its dimension.
Intersecting the warped I-mesh surfaces with a se-
quence of planes perpendicular to the axis t at
t = const. produces a blended shape sequence with
spatially non-uniform progress of blending.

Figure 14 shows, for 2D shape blending, an ex-
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ample of spatially non-uniform progress of shape
blending. Figure 14(a) and Figure 14(b) show the
I-meshes before and after the warp. Resulting spa-
tially non-uniform blending sequence is shown in
Figure 14(c), in which the letter \3" morphs into
the letter \1" from top to bottom.

3 Results

This section presents some of the 3D shape
blending results created by using our shape-
blending method.

Figure 15(a) shows an example of blending the
mannequin head with the tiger head. This exam-
ple tries to preserve sharpness in the source mod-
els. Both of the source shapes shown in the �gure
are already reparameterized so that they have 1-
to-4 subdivision connectivity. Source and blended
meshes in this �gure are at resolution level 4, that
is, the base source mesh is re�ned 4 times by us-
ing the 1-to-4 subdivision rule. For example, the
mannequin head at resolution level 0 consisted
of 22 triangles, and its level 4 mesh consisted of
5632 triangles. Using our prototype implementa-
tion, computing a blended shape in this example
took about 5 minutes on a PC (Intel Pentium III
CPU running at 700 MHz, with 256 MByte mem-
ory). This time includes all the necessary steps
for the shape blending, including reparameteriza-
tion, initial meshing, variational optimization, and
shape extraction. Figure 15(b) is another example
that blended an octahedron with sharp edges and
points with the mannequin head model.

An example of shape blending with feature cor-
respondence is shown in Figure 16. In this exam-
ple, the eyes and nose of the source meshes are
related by vertex-to-vertex curve geometric con-
straints. Figure 16(a) and (b) show the source
shapes with constraints relating ears and noses. In
Figure 16(c), the I-mesh was deformed to satisfy
given geometric constraints. Figure 16(d) shows
the shape blending sequence resulted from the fea-
ture correspondence speci�ed in Figure 16.

The blending sequence shown in Figure 17(a)
is another example of feature correspondence, in
which only one of the pair ears of the mannequin is
related to its counterpart in the tiger head. Figure

17(b) is an example of spatially non-uniform shape
transition in which the blending progresses from
top to bottom. The mannequin head appears to
turn into the tiger head from top down.

4 Conclusion

This paper presented a new geometric morphing
algorithm for shapes de�ned using polyhedrons.
The algorithm directly interpolates the polyhe-
drons (the "source" shapes) by using a subdivision
surface having a dimension one higher than the
source shapes. The vertices of the source shapes
are treated as geometric constraints to be satis�ed
using a variational optimization method, produc-
ing a smooth interpolating surface.

The algorithm combines some of the advantages
of the methods based on variational optimization
of volume implicit function, e.g., that of Turk and
O'Brien [19], and the methods based on a common
mesh embedding of the source polyhedrons, e.g.,
that of Kanai, et al. [3]. As in the case of the former
class of methods, our method produces smooth
transition due to variational optimization. At the
same time, our method allows for feature corre-
spondence through geometric constraints, e.g., a
vertex in a source shape can be coerced to become
a vertex in another source shape through the mor-
phing.

Our method also allows for various shape transi-
tion e�ects thanks mainly to manipulable nature
of the subdivision surface. For example, deforma-
tions of the interpolating surface could produce
spatially non-uniform shape transitions as well as
exaggerated blended shape transitions.

The method we have presented still has much
room for improvements. The foremost on the list
of improvements is the issue of overly smooth
blended shapes. As evidenced in the examples
shown in Figure 17, the algorithm creates blended
shapes that are too smooth. Detailed facial fea-
tures of the tiger or the mannequin head have been
smoothed out in the blended shapes, creating less
appealing blending sequences. We intend to solve
this problem by incorporating multiresolution
framework to shape blending, an approach similar
to Lee et al. [6]. In our proposed solution, we add
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back detailed features in the source TS-meshes
on top of the smooth blended shapes by taking
advantage of our multiresolution framework.

Almost equally important is the obvious exten-
sion of the 3D shape blending for source shapes
having di�erent surface topology. We must �nd
a method to achieve topology transcending shape
blending as well as an e�ective user interface to
specify topological evolution.

Other issues of concern include performance
improvement and better reparameterization algo-
rithm. Our current implementation of the shape-
blending algorithm is not particularly eÆcient.
As mentioned in Section 3, current implementa-
tion took about 5 minutes to create a blended
shape for a blended mesh having 25,000 trian-
gles. We intend to improve both time- and space-
complexities of our algorithm. We also would like
�nd a mesh reparameterization algorithm that is
better suited to our purpose.
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Appendix A Solving Multiresolution
Constraints

Themultiresolution constraints are solved by us-
ing local smoothing �lter as described by Taubin,
et al. [30], which eÆciently approximates global

variational optimization originally used in Welch
and Witkin's scheme [31]. By using Taubin's
method, the variational optimization can be ap-
proximated with a computational cost linearly
proportional to the number of vertices in the
surface.

We apply smoothing one resolution level at a
time. At each resolution level, we �rst add shape
details as speci�ed by constraints attached at the
level, followed by local smoothing. This is repeated
from the lowest resolution level 0 to the highest
resolution level K.

Let bc(k)(k = 0; : : : ; K) be the detail added at
the resolution level k. Then the vertex coordinate
of the subdivision surface at level K, which is de-
noted as c(K), can be written as below;

c(K)=P (K�1)
� � �P (0)bc(0) +

P (K�1)
� � �P (1)bc(1) + � � �+ bc(K) (A.1)

That is, a shape at level K is de�ned as a com-
bination of details de�ned at all resolution lev-
els. We picked an exponential weighting function
�(k)(k = 0; : : : ; K) to weight the contributions
from multiple resolution levels.

�(k) = 
k�K (A.2)

A normalized form below is used to weight resolu-
tion level k

�(k)

��
(A.3)

where

�� =
KX
�=0

��: (A.4)

The steps needed to determine the shape of a sur-
face are as follows, assuming that we have a set of
linear equations for given constraints as de�ned in
(8).

Resolution level 0: Consider a \formal" detail
coeÆcient vector bc0f that satis�es a set of con-
straints at the level 0;
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M (0)bc(0)f = r(0): (A.5)

Then, the actual detail bc(0) of the shape is com-
puted as

bc(0) = �(k)

��
bc(0)f (A.6)

by using the normalized weight described above.
From (A.5) and (A.6), the equation on bc(0) to be
solved becomes;

M (0)c(0) =
�(0)

��
r(0): (A.7)

We apply local smoothing to the surface so that
this constraint equation (A.7) is satis�ed. As we
do, we simply use

bc(0) = 0 (A.8)

as the initial value for the smoothing.

Resolution level k > 0: At resolution level k >
0, consider a vector bc(k)f that satis�es the following
equation;

M (k)bc(k)f = r(k): (A.9)

We want bc(k) to have only the contribution from
the level k, so we subtract contributions from the
levels 0 to (k � 1). The sum of contributions of
details from the level 0 up to level (k � 1) is;

k�1X
�=0

P (k�1)
� � �P (�)bc(�): (A.10)

Thus, with weighting, bc(k) and bc(k)f must satisfy
the following equation;

bc(k)= �(0) + � � �+ �(k)

��
�

k�1X
�=0

P (k�1)
� � �P (�)c(�): (A.11)

From (A.10) and (A.11), we obtain the equation
to solve for bc(k);

M (k)bc(k)= �(0) + � � �+ �(k)

��
r(k) �

M (k)
�k�1X
�=0

P (k�1)
� � �P (�)bc(�)�: (A.12)

As the initial value for the level k, we want the sum
of detail contributions from the level 0 to (k� 1),
i.e., the formula (A.10), but not that of k.

As each resolution level � is weighted by �(�),
the initial value for the actual detail vector bc(k) in
the level k is given by;

�(k)

�(0) + � � �+ �(k�1)

k�1X
�=0

P (k�1)
� � �P (�)bc(�): (A.13)
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(a) Initial source contours (both sides) and a topological key-shape (in the middle).

x

y
t

(b) Initial triangular I-mesh.

x

y
t

(c) Subdivided and smoothed I-mesh.

(d) Shape blending sequence generated.

Fig. 1. Blending 2D contours of the letters "8" and "7". Source contours in (a) are connected to create
the initial I-mesh (b), which is subdivided and smoothed (c). The middle contour in (a), the topological
key-shape, is inserted to guide the topological evolution of the I-mesh from "8" to "7".
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Fig. 2. The process 
ow of the 3D shape-blending algorithm by using subdivision surfaces. The �gure is
illustrated for the case of mesh re�nement level of 2.
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(a) Level-0 I-mesh (b) Level-1 I-mesh (c) Level-3 I-mesh

Fig. 3. The base I-mesh (a) created from the MR TS-meshes of the rounded star and the mannequin head
models. The TS-meshes and the I-mesh are re�ned together by one level (b) and three levels (c).
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Fig. 4. Relationships between Ms, Mt, Gs, and Gt. A graph Gs is de�ned as the dual of a source mesh
Ms, and a graph Gt is de�ned as a subgraph of a target mesh Mt so that Gt is isomorphic to Gs.

(a) Vertex-Face (b) Edge-Edge (c) Face-Vertex

Fig. 5. Three cases in which a tetrahedron is created between a pair of graphs.
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Fig. 6. The 1-to-4 subdivision rules for triangular meshes.

Fig. 7. The 1-to-8 \symmetrical" subdivision rules for tetrahedral meshes.
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(a) I-mesh without feature
correspondence.

(b) I-mesh with line con-
straints.

(c) I-mesh after solving for the
constraints.

(d) The blending sequence without feature correspondence.

(e) The blending sequence with feature correspondence.

Fig. 8. Line constraints can be used to establish feature correspondence required for e�ective shape
blending.

(a) The geodesic and the con-
straint shownwithout the I-mesh.

(b) The geodesic and the con-
straint shown with the I-mesh.

(c) After solving for the con-
straint.

Fig. 9. A feature correspondence is created as a line geometric constraint, which is shown as a thick black
line in (a) (without I-mesh) and (b) (with I-mesh). Geodesic on the I-mesh (shown as a gray line with
dots in (a) and (b)) connecting the feature vertices are pulled out along with the I-mesh nearby to satisfy
the constraint in (c).
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(a) Blending shapes without constraint.

(b) Blending shapes with correspondence that related the tip of the nose with the tips of the rounded star.

Fig. 10. Shape blending with (a) and without (b) feature correspondence, generated from the I-mesh
shown in Figure 9. In (b), a tip of a point of the star shape and the nose of the mannequin's head are
related by using a geometric constraint.
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(a) (b)

(c)

Fig. 11. An example of sharpness control. Source contours (a) and initial I-mesh (b) is subdivided and
selectively smoothed (c). The I-mesh after smoothing is shown using two rendering methods to depict its
shape.
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(a) Level 1 mesh and con-
straints.

(b) Level 2 mesh and con-
straints.

(c) Level 3 mesh and con-
straints.

(d) After solving for the con-
straints added at level 1.

(e) After solving for the con-
straints added at level 2.

(f) After solving for the con-
straints added at level 3.

Fig. 12. Multiresolution constraints creates varying surface deformation for a transition e�ects in shape
blending. Constraints attached at level 1 (a), level 2 (b), and level 3 (c) produced deformed meshes of
(d), (e), and (f), respectively.
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(a) Without the transition e�ect.

(b) Shape transition e�ect produced by constraints added at level 1.

(c) Shape transition e�ect produced by constraints added at level 2.

(d) Shape transition e�ect produced by constraints added at level 3.

Fig. 13. Enhanced shape transitions sequences are created by the mesh deformations at level 1 (b), level
2 (c), and level 3 (d). The "nose" is pulled out from the letter 2 before it changes into the letter 3. For
comparison, the �rst sequence (a) has no such enhancement.
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(a) Before warping I-mesh. (b) After warping I-mesh.

(c) Spatially uniform (original) shape-blending sequence.

(d) Spatially non-uniform shape-blending sequence.

Fig. 14. Spatially non-uniform transition (d) is realized by warping the I-mesh.

(a) Blending the mannequin head model with the tiger head model.

(c) Blending an octahedron with the mannequin head model. Sharp features, that are, vertices and
edges, of the source shape are preserved.

Fig. 15. 3D shape blending sequences created by using our algorithm.
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(a) (b) (c)

Fig. 16. Feature correspondence between ears and noses in the source meshes shown in (a), (b), and (c)
created a shape blending sequence shown in (d), in which the ears and the nose of the mannequin and
the tiger �gures are related

(a) Only one of the ears of the mannequin is related to its counterpart in the tiger model by using linear
geometric constraint for feature correspondence.

(b) Spatially non-uniform transition that propagates from from top to bottom.

Fig. 17. Examples of feature correspondence and spatially non-uniform shape transition.
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