
Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

Watermarking Multiple Object Types
in Three-Dimensional Models

Ryutarou Ohbuchi
IBM Tokyo Research Laboratory

1623-14 Shimo-tsuruma, Yamato-shi,

Kanagawa, 242-8502, Japan

ohbuchi@acm.org

Hiroshi Masuda
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku

Tokyo, 113-8656, Japan

masuda@nakl.t.u-tokyo.ac.jp

Masaki Aono
IBM Tokyo Research Laboratory

1623-14 Shimo-tsuruma, Yamato-shi,

Kanagawa, 242-8502, Japan

aono@acm.org

1. ABSTRACT
Three-dimensional (3D) graphical model is
about to become a full-fledged multimedia
data type, prompted by increasing popularity
of Virtual Reality Modeling Language
(VRML) [7] and imminent standardization of
MPEG4 [8].
Following an introduction on data embedding,
this paper presents a discussion on potential
targets of data embedding that exist in both
VRML and MPEG4 formats. We then present
several algorithms that embed data in shape
(i.e., geometry and topology of the shapes) and
shape attributes associated with shape (e.g.,
per-vertex texture coordinates).
1.1 Keywords
Three-dimensional computer graphics, geometrical
modeling, information security, digital watermark.

2. INTRODUCTION
The advantages of digital media, such as the Internet and
CD-ROMs lies in the fact that the duplication,
distribution, and modification of contents are much easier
than the older media, such as printed media. For example,
duplication of a digital content can be performed without
any loss of its quality. These advantages, however, are

double-edged swords. Digital media made unauthorized
duplication, distribution, and modification of their
valuable contents easier.

Data embedding, or (digital) watermarking put structures
called watermarks into digital contents (e.g., images) in
such a way that the structures do not interfere with
intended use (e.g., viewing) of the contents. The
watermarks carry information that can be used to manage
the contents, for example, to add annotations, to detect
tampering, or to authenticate rightful purchasers. While
data can be embedded in an analog media, digital media
provided an opportunity for a robust data embedding with
significant data capacity.

In the past, a multimedia content typically meant a content
that includes text, image, video, and audio data types. As a
result, data embedding techniques for these “traditional”
digital content data types has been studied by many [18,
19, 23, 1, 2, 11, 17, 3, 5, 10, 21, 22]. As 3D model gains
status as an important member of multimedia data types,
prompted by increasing popularity of Virtual Reality
Modeling Language [6] and imminent standardization of
MPEG-4 [7], we added 3D polygonal model of geometry
to the list of data embedding targets [12, 13, 14, 15].

In this paper, we will first introduce data embedding in
general, followed by a discussion on embedding targets
that exists in 3D models that follows VRML and MPEG4.
We will then present three embedding algorithms, each of
which is based on vertex coordinate modification, vertex
topology modification, and texture coordinate
modification, respectively.

2.1 Data Embedding Classifications
In this paper, following recommendation in [16], the act of
adding watermark is called (data) embedding or
watermarking, and retrieving the information encoded in
the watermark for perusal is called extraction. The object
in which the information is embedded is called cover-
1

<datatype>, the object with watermark is called stego-
<datatype>, and the information embedded is called

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

2

embedded-<datatype>. The suffix “<datatype>” varies
with data types, such as image, text, or 3D model. For
example, an embedded-text is embedded in a cover-
polygonal mesh to produce a stego-polygonal mesh with
embedded-text.

A watermarks can be classified by its (1) visibility (or,
more generally, perceptibility) and (2) robustness, as
suggested by Mintzer, et al. [10]. A visible watermark is
made intentionally visible to serve their purposes, for
example, to deter a third party from unauthorized sales of
contents. On the other hand, an invisible watermark is
imperceptible without processing by mechanical means. A
robust watermark should resists both intentional and
unintentional modifications of the watermarked content. A
fragile watermark, on the other hand, must be altered by
intentional (and some unintentional) modifications so that
it could detect tampering of or damage to the content.
Here, unintentional modifications are the kind a content
should expect during a course of its intended use, while
intentional modifications are the kind that are applied with
an intention of destroying or altering the watermark.

A watermark can be classified further by its use of cover
data for extraction. If an extraction algorithm requires
original cover data as well as the (possibly corrupted)
stego-data, the scheme is called private watermarking.
Otherwise, the scheme is called public watermarking. An
embedding scheme by Cox et al [3] is an example of
private watermarking.

A watermarking scheme may employ a random sequence
generator to make an embedded message secure from
being read by a third party. For example, in an image
watermarking, positions of pixels to be modified for
watermarks can be scrambled by a pseudo-random
sequence generated from a stego-key (or stego-keys) by
using a public-key cryptographic method [9]. The
scrambling can also be used to erase (reduce) statistical
signature in order to make watermarking less detectable.
Both public-key cryptography and shared-(private-)key
cryptographic method can be used for this purpose.

Data embedding has many potential applications.
Obviously, requirements for data embedding scheme vary
depending on its intended application(s). Some of the
potential applications are listed below.

• Theft deterrence: A robust, visible yet unobtrusive
watermark in an image could deter unauthorized sales
of the image by lowering commercial value of the
image.

• Copyright notification: A copyright could be
embedded as a robust invisible watermark into an
image. Such notification could direct users of the
model to the web site of the model’s copyright owner.

• Tamper detection: Images taken by a digital still
camera can be marked in the camera with a fragile
invisible watermark so that modification made to the

image afterward can be detected.

• Content integrity check: Since MPEG4 contents are
editable, content creators might fear that a part of
her/his creation is extracted and played without
context, or a part of the content might is substituted.
Watermarks in polygonal models and other 3D model
contents could be used to detect such tampering.

• Fingerprinting: If an image is “fingerprinted” with
the identities (e.g., digital signatures) of its purchaser
and seller by using a robust watermarking technique,
circulation of unauthorized copies of the image could
be traced to the purchaser.

• Play or duplication control: Robust invisible
watermark could control hardware devices to stop
delivery of pornographic or violent digital-video
contents (a la v-chip for broadcast TV in USA), or to
prevent unauthorized duplication.

3. EMBEDDING TARGET OBJECTS IN 3D
MODELS
3D models in VRML [6] and MEPG4 [7] formats contain
many types of objects. Among them, we consider objects
in the following list to be important targets for data
embedding. These objects are important since they have
relatively large quantity of redundancy that can be
exploited for data embedding.

1. Shape

• Polygonal Mesh Topology and Geometry
• Regular Mesh Geometry
• Elevation Grid Height Field Values

2. Shape attributes

• Vertex color (opacity), vertex texture coordinate,
vertex normal vector, etc.

• Line color, etc.
• Face color (opacity), face normal vector, index of

refraction, etc.

• Volume color (opacity), etc.

3. Animation parameters

• Interpolators

• Point/vertex coordinate and orientation..
• Colors and normal vector.
• Camera position and orientation.

• Face and Body Animation Parameters

• Parameterized position of eyes, tongue, etc.
• Angle of joints, etc.

• Animated Mesh

• Vertex coordinates displacements.

4. Others

• 2D still texture image, movie texture.
• Sampled sound.

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

3

• Text string, text position and orientation, text
color, etc.

Text-to-speech phoneme strings and synthetic sound
symbol sequences (e.g., a MIDI command sequence)
contain little redundancy to be used as good embedding
targets.

3.1.1 Shapes
Shapes, or geometrical components, of 3D objects are
arguably the most important class of target, for without
shape, 3D model means little. While point set and poly-
lines are viable candidate for data embedding targets,
polygonal mesh is probably the most important target for
data embedding in 3D models.

Two components, vertex coordinates and vertex topology,
define shape of a 3D polygonal mesh. Vertex coordinate
combined with vertex topology defines more complex
geometrical primitives, that are, lines, polygons, and
polyhedrons. These geometrical primitives have their own
quantities such as length of a line segment and volume of
a polyhedron that are called geometrical quantities in this
paper. The geometrical primitives have topology of their
own, which are, for example, connectivity of triangles and
tetrahedrons.

Data can be embedded in a 3D shape by modifying either
geometry or topology of its geometrical primitives. A unit
of such modification is called embedding primitive. It is
also important to arrange these embedding primitives in an
order so that the arranged set of embedding primitive as a
whole carry a significant amount of information.
Arrangement can be created either by topology or by
quantity of geometrical primitives.

Details of fundamental methods to embed data into shapes
can be found in papers [14] and [15]. Section 4 of this
paper presents two data embedding algorithms, one that
targets geometry and the other targets topology. (These
algorithms have previously appeared in [14] and [15], but
included in here for completeness.)

3.1.2 Shape Attributes
Shape-attributes, such as vertex color, per-vertex texture
coordinates, per-face color and per-volume refractive
index, are essentially sets of numerical values that can be
modified to embed data. While less important than a shape
itself, a shape attribute still is an important class of target
for embedding.

The approach to embedding using shape attributes is
similar to those used for algorithms that employ
coordinate embedding primitives; Values of the attributes
are modified and the modifications are ordered to embed a
significant amount of information.

Details of a data embedding algorithm that targets texture
coordinate will be presented in Section 4. (This algorithm
has previously appeared in [15].)

3.1.3 Animation Parameters
Animation parameters have potentials to become very
important targets for data embedding. For example, if
polygon-based counterparts of music videos are made,
moves of a popular musician captured to animate his/her
figure could carry a very high value.

VRML provides various interpolators for animation. An
interpolator is a sequence of multiple sets of values that
are linearly interpolated to produce continuously varying
values. These varying values can be used to translate,
rotate, or deform objects.

Figure 1 shows an example of VRML interpolator data
generated by a 3D modeling and animation software. It is
a plot of trajectory of the torso of a skateborder model as
it performs a manuever called "540". In the torso alone,
this animation sequence contained 53 coodinate points,
each of which is a 3D coordinate. Combined with the
other parts, such as head, upper-arm, lower-arm, camera,
etc., there are siginificant amount of data that can be
exploited for embedding in the animated 3D model.

The MPEG4 proposal [7] contains other types of data
objects for animation. It contains animated (deforming)
regular mesh whose vertices move over time given a
continuously transmitted list of incremental
displacements. The displacements may be coded in two
ways, either by using simple difference or by using
discrete cosine transformation of a short sequence of
displacement values.

The MPEG4 proposal also contains human face and body
models that can be animated by transmitted animation
parameters. For example, a facial model is controlled by a
set of about sixty integer values, each of which specify
location of eyebrows, eyes, a tounge, ears, etc. Most of

F
in
Body position interpolator

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Key values

C
oo

rd
in

at
e

va
lu

es

x y z

igure 1. Plot of key values of a VRML coordinate
terpolator in an animation sequence.

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

4

these parameters use small quantization levels (from 2 to
5), except for a few. The body model is controlled by over
170 parameters, each of which has quantization levels of
256. While face animation parameters with its small
quantization levels may lack redunduncy for data
embedding, body animation parameters will have enough
redunduncy to be exploited for data embedding.

It must be noted, however, that the MPEG4 proposal
contains extensive list of both lossless and lossy
compression algorithms for shapes, shape attributes, and
for animation parameters. Data compression algorithms in
general try to find and remove redunduncies that are
necessary for data embedding algorithms. Embedding
algorithms must take these data compression algorithms
into account.

3.1.4 Others
Sampled sound, 2D still texture and 2D movie texture are
obvious targets of embedding by using data embedding
algorithms developed previously for respective data types.
However, care must be taken in using these objects for
embedding since these objects in a 3D model can be
removed effortlessly.

4. EMBEDDING ALGORITHMS FOR 3D
POLYGONAL MESHES
In this section, we will present algorithms that target shape
and a shape attribute of polygonal meshes for data
embedding. All the algorithms in this section are
implemented by using a kernel for a non-manifold
modeler [9]. The system employs radial edge structure
[20] to represent the topological relationship among
vertices, edges, faces, and regions.

4.1 An Algorithm Based on Geometrical
Quantity Modification
A pair of dimensionless quantities, for example, {e14/e24,
h4/e12} in Figure 2, defines a set of similar triangles. The
algorithm described in this section, Triangle Similarity
Quadruple (TSQ) algorithm, uses such dimensionless
quantity pair as the geometrical embedding primitive to
watermark triangular meshes.

The TSQ algorithm can be classified as a public
watermarking scheme. Watermarks produced by the TSQ
algorithm withstand translation, rotation, and uniform-
scaling transformations of the stego-polygonal-meshes. An
embedded message is resistant to resection and local
deformation if it is repeatedly embedded over a mesh. The
watermarks are destroyed, among other disturbances, by a
randomization of coordinates, by a more general class of
geometrical transformation, or by a topological
modification such as re-meshing.

In order to realize subscript ordering, the algorithm uses a
quadruple of adjacent triangles in the configuration
depicted in Figure 2 as a Macro-Embedding-Primitive
(MEP). Each MEP stores a quadruple of symbols {Marker,

Subs
M sto
store
identi
water
mesh
neces
conta
data
MEP
arran

The T
follow
execu

(1)

(2)

Figure
vi are
heigh

Figure
macro g
“3D-e
subsc
e13

v0

v2v1

v3 v4

v5

e01

e02

e12

e14

e34

e24

e25

e45

h3

h0

h5
h4

S

M
D2D1

 2. A macro-embedding-primitive. In the figure,
 vertices, eij are lengths of the edges, and hi are
ts of the triangles.

s(1)

M
“e”“-”

“b”
“m”

s(2)

M

M

M
M

M s(3)

s(4)

“e”

“d”

“d”“i”

“n”

“g”

s(0)

“D”

“3”

s(5)

 3. In this example of TSQ watermarking, six
 embedding primitives on a mesh embed a strin

mbedding”. Subscripts (denoted s(i) for a
ript i) arranges the MEPs.
cript, Data1, Data2}. In Figure 2, the triangle marked
res a marker, S stores a subscript, and D1 and D2

s data values. A marker is a pair of values that
fies MEPs. As mentioned above, this public
marking scheme does not require cover-polygonal-
 for extraction. However, the marker value pair is
sary for extraction. A watermarked mesh would
in multiple MEPs to embed a significant amount of
as shown in the example of Figure 3. While each
is formed by topology, a set of multiple MEPs is
ged by quantity of the subscript.

SQ algorithm embeds a message according to the
ing steps. (For the detailed explanation and
tion examples, please refer [14].)

Traverse the input triangular mesh to find a set of
four triangles to be used as a MEP. MEPs must not
share edges or vertices to avoid interference.

Embed the marker value by changing a

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

(

(

F
h
r
e
r

F
D
a

G
m
f

(

(

(

(

The TSQ algorithm embedded 210 bytes of data, that is,
0.15 byte/triangle, in the model of Figure 4, which
consisted of 1406 triangles. Experiments using seven
polygonal mesh models showed that the TSQ algorithm
was able to embed 0.15-0.18 byte/triangle.

4.2 An Algorithm Based on Topological
Modification
The Triangle Strip Peeling Symbol sequence (TSPS)
embedding algorithm that will be presented in this section
is a public watermarking scheme based on a topological
embedding primitive. It employs, as its embedding
primitive, an adjacency of a pair of triangles in a triangle
strip, each of which encodes a binary bit of information.
One-dimensional arrangement of embedding primitives is
induced by the adjacency of triangles on the triangle strip.
To recognize the triangle strip with watermark, the strip is
peeled off from the original mesh.

Since both embedding primitive and arrangement are
topological, watermarks produced by the algorithm are
immune to geometrical transformation. Repetitive
embedding makes the watermarks resistant to resection.

h
k

Figure 4. Macro embedding primitives, each of whic
consists of four adjacent triangles, are shown in dar
gray.
5

dimensionless quantity pair in the center triangle of
the MEP. In Figure 2, it is {e14/e24, h4/e12}. This
modifies positions of vertices v1, v2, and v4.

3) Embed a subscript and two data symbols in a
similar manner by displacing vertices v0, v3, and v5.
Subscript is embedded in the pair {e02/e01, h0/e12},
and two data symbols are embedded in the pairs
{ e13/e34, h3/e14} and {e45/e25, h5/e24}.

4) Repeat (1) to (3) above until all the data symbols of
the message are embedded.

or each triangle, the algorithm first modifies the ratio
i/eij by changing hi only. Then the algorithm modifies the
atio eij /ekl while keeping the height hi constant. In order to
mbed the message repetitively, steps (1) to (4) are
epeated many times.

igure 4 shows triangles that formed MEPs in darker gray.
ue to the mutual exclusion rule described in the step (1)
bove, MEPs do not share vertices.

iven a watermarked mesh and two numbers that identify
arker triangles, extraction proceeds according to the

ollowing steps.

1) Traverse a given triangular mesh and find a triangle
with the marker, thereby locating a MEP.

2) Extract a subscript and two data symbols from the
triangles in the MEP.

3) Repeat (1) to (2) above for all the marker triangles
on a given triangular mesh.

4) Sort the extracted symbols according to their
subscripts.

The watermarks can be destroyed by topological
manipulations, for example, by polygon simplification
algorithms. A disadvantage of this algorithm is its low
space efficiency compared to many algorithms based on
geometrical primitives.

Inputs to this embedding algorithm are an orientable
triangular mesh and a message bit string. The TSPS
embedding algorithm embeds data according to the
following steps. (See Figure 5.)

(1) Starting from an edge e selected from the input
mesh M, grow a triangle strip S on M by using the
message bit-string to determine the direction of
growth of the strip. Observe that a triangle at the
end of (current) strip has two “free” edges, i.e.,
edges that are not adjacent to triangles of the
current triangle strip. Since M is orientable, these
two edges can be ordered on the triangle by
traversing the edges in a fixed order (either
counterclockwise or clockwise). Depending on the
data bit, choose one of the two free edges as the
edge to be shared with the next triangle of the strip.
(See Figure 6.)

(2) “Peel off” the triangle strip S from M by splitting
all the edges and vertices on the boundary of S
except the initial edge e. The strip S is connected to
the rest of the mesh only by the edge e.

The edge e serves as the initial condition for finding the
triangle strip. Arrangement of embedding primitives is
induced naturally by the connectivity of triangles on the
triangle strip. Since the peeled strip caps the hole
completely, proper colors and vertex normal vectors make
the watermark invisible.

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

6

Figure 6 shows an example of a triangle strip. The strip
drawn with solid lines, which start at edge e, embeds a bit
string “10101101011” in a sequence of 12 triangles. Each
bit of the bit string steers the direction of growth of the
triangle strip. If the last bit of the string is “0” instead of
“1”, the last triangle will become the one that is drawn
with broken lines.

Steering by message bit strings produces strips whose
shape may not fit in a given mesh, depending on a given
bit string. In the example of Figure 6, a message bit string
with all “1” would keep steering the strip to the left. If the
message string is sufficiently long, the strip will either hit
the boundary of the mesh or circle back to itself. To avoid
this problem, shapes, locations and orientations of the
strips must be controlled carefully. We manipulate the
shape of the triangle by using steering symbols. A steering

symbol is a bit that does not carry information but simply
steer direction of growth of a triangle strip. Steering
symbols are interleaved with data symbols, that are,
symbols that encode embedded data, in order to control
shape of triangle strips. Obviously, steering symbol halves
the embedding data capacity. Our current implementation
determines initial locations, directions of growth, and
shapes of triangle strip manually.

Extraction of a message is carried out according to the
following steps.

(1) Traverse the watermarked mesh and find an edge
with topological features that starts a triangle strip
of known length that is attached to the stencil mesh
by an edge.

(2) Starting from the initial edge, traverse the triangle
strip to the open end as embedded bits are
extracted.

Figure 7 shows a simple example of TSPS embedding, in
which a triangle strip of length 27 is peeled off from a
mesh that consisted of 214 triangles. The triangle strip
encodes 13 data bits and 13 steering bits. Selection of
steering bits in this case was done manually. As another
example, a model of triceratops (499 triangles) in Figure 8
is marked with a triangle strip of length 19 triangles,
which encodes 9 bits. (The colors of the strips in these
examples are intentionally changed to show their
location.)

Watermarks produced by the TSPS embedding algorithm
can be erased if a geometrical “mending” program, for
example the one similar to [4], which would stitch the
triangle strip back to the stencil mesh. Such mending can
be prevented to some extent by modifying topology of
stego-polygonal-mesh in order to confuse mending
algorithms. For example, vertices, edges, and polygons
can be added into the stencil mesh R so that finding
correspondence of edges and vertices to be stitched

t

g

e

F s
c
t a
b

Peeled strip S

e

M’ = R�S

MM

e

(a) Generate triangle strip S
based on the message bi
string.

Cut out the strip S from
the mesh M, except at the
edge e.

M+ =Rm+S

S

Peeled strip S

e

M

(b)Original mesh.

(c) (d) Scramble mesh topology
of the stenciled mesh (M-
S) by adding vertices,
edges, and polygons, if
necessary.

Figure 5. Triangle strip S encoding a message bit strin
is peeled off from the cover-polygonal mesh M. (The
cracks around S in the figure is for illustration purpose
only.)

e 1
0

1 0

1

1 1
0 0

1

1
0

Figure 6. Connectivity of 12 triangles (drawn with solid
lines) in a triangle strip encodes the bit string
“10101101011” (11 bits). If the bit string is
“10101101010” (change in the last bit), the last triangl
will be the one drawn with broken lines.
igure 7. A triangle strip consisting of 27 triangles wa
ut out from a flat triangular mesh (214 triangles). The
riangle strip, displayed in darker gray, encodes 13 dat
its interleaved with 13 steering bits.

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

7

together is difficult (Figure 5(d)).

Figure 8. A triangle strip, 19 triangles long and shown
in a light gray, is generated and peeled off from a
model of a triceratops (499 triangles). (A part of the
strip is not visible from this viewpoint.)

4.3 An Algorithm Based on Shape Attribute
Modification
An algorithm explained below embeds data in texture
coordinates of polygonal mesh. A similar algorithm can be
used to embed data in other per-vertex attributes, such as
vertex colors. Data embedding into per-face attributes of a
polygonal mesh surface is also possible; Modify per-face
attributes and then arrange these modified attributes.

A set of texture coordinates associated with vertices of a
polygonal model is a good target for data embedding. This
is because a set of roper texture coordinate is crucial to
properly render texture mapped objects, and a set of
texture coordinates is difficult to regenerate once it is lost.

The algorithm we experimented modulates amplitude of
texture coordinates based on message bit string. Let si be
ith bit of a bit string S. The embedding algorithm modifies
a coordinate value xi (e.g., either u or v) of a texture
coordinates by the following steps, given a modulation
amplitude A.

r=xi-xi/A;

if si= ‘0’ then b=A/4 else if si=’1’ then b=A*3/4;
xi= r+b;

This is just an example of modulation method. Many other
alternatives, including multi-valued modulations, are
possible. Whatever the modulation method, we can make
two such modulations per 2D-texture coordinates. Thus, if
we embed one bit per floating point number, we can
embed 2N bits into N 2D-texture coordinates.

In modifying the texture coordinate, the modulation

amplitude A must be chosen so that the watermark is
robust enough without degrading quality of texture
mapped objects. We conducted experiments to see how
amplitude affect appearances of texture-mapped 3D
polygonal mesh objects. Some of the results are shown in
Figure 9 and Figure 10.

Texture images are a synthetic red-and-white stripe image
(256 x 256 pixels) and a photograph of a human face with
a tree leaves in background (300 x 300 pixels image area,
1024 x 1024 pixels overall). These images were texture-
mapped onto a model of a sphere tessellated into 1800
triangles, which contained 961 vertices (and thus
961 texture coordinate). We can embed a maximum of
961 bytes in the sphere if we modify four bits per single-
precision floating-point number. In this experiment, we
embedded a 358 byte long text.

In the figures, Ar is the modulation amplitude relative to
the range of texture coordinate variation on the model. In
these examples, the texture coordinates varied in the range
[0,1] in both u and v coordinates so that the maximum
variation range of texture was 1.0. In another word
Ar=0.1 % means amplitude of 0.001.

In Figure 9, in which the red-and-white stripe texture is
used, distortion in the rendered image is perceptible in
rendered images when Ar=0.5 % (Figure 9c) and Ar=1 %
(Figure 9d). Complex, less geometrical, texture images
reduced perceptibility of texture distortions. Distortions of
the human face texture shown in Figure 10 were difficult
to perceive. Even for the image with Ar=1 % (Figure 10c),
a careful comparison with the original image (Figure 10a)
was necessary to reveal distortions.

In our prototype implementation, we used the order of
appearance of texture coordinates in the input file as the
arrangement for embedding. This arrangement is
destroyed easily by shuffling the positions of the texture
coordinates in the file. If this is a problem, there are
alternative methods to introduce ordering into a set of
texture coordinates. Since each texture coordinates is
associated with a vertex, ordering vertices implies
ordering of texture coordinates. Several examples of
methods to order vertices are described in [14]. It is also
possible to arrange texture coordinate by using a non-
geometrical quantity itself. In the example of texture
coordinate, texture coordinate or quantity derived from it
can be used to order vertices.

Note that watermark that modifies geometry and/or
topology of a polygonal mesh do not interfere directly
with non-geometrical attributes. It is possible to combine
an attribute-modifying algorithm (e.g., the one described
in this section that modifies texture coordinate) with an
algorithm that modifies geometry or topology (e.g., the
triangle strip peeling algorithm).

This experiment showed that, if modification amplitude is
chosen appropriately, data embedding into texture

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

8

coordinates is possible without noticeable change in the
models rendered appearance.

5. SUMMARY AND FUTURE WORK
In this paper, we first presented introduction to data
embedding technology. It is followed by a discussion on
possible data embedding targets that exist in 3D models,
that are, shape (both topological and geometrical
components of shape), shape-attributes (e.g., texture
coordinates and vertex color), and others, such as mesh
animation parameters and face/body animation
parameters. As examples, we presented three algorithms.
Two of the algorithms embed data in shape, using both
geometry and topology of 3D polygonal meshes. The other
algorithm embeds data in a shape-attribute, that is, texture
coordinates, of 3D polygonal mesh models.

In the future, we would like to experiment with algorithms
that embed data in animation parameters that exists in
MPEG4 and VRML formats. We need to evaluate effects
of data compression algorithms used in these formats to
compress shape, shape attributes, and animation
parameters. We also would like to develop and test
realistic scenarios employing data embedding algorithms
for 3D models.

6. REFERENCES
[1] W. Bender, D. Gruhl, and N. Morimoto, Techniques

for Data Embedding, IBM Systems Journal, Vol. 35,
Nos. 3 & 4, 1996.

[2] G. Braudway, K. Magerlein, and F. Mintzer,
Protecting Publicly-Available Images with a Visible
Image Watermark, IBM Research Report, TC-20336
(89918), January 15, 1996.

[3] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon,
Secure Spread Spectrum Watermarking for
Multimedia, IEEE Trans. on Image Processing, Vol.
6, No. 12, pp1673-1678, 1997.

[4] A. Gueziec, G. Taubin, F. Lazarus, and W. Horn,
Cutting and Stitching: Efficient Conversion of a Non-
Manifold Polygonal Surface to a Manifold, IBM
Research Report RC-20935 (92693), July, 1997.

[5] F. Hartung and B. Girod, Copyright Protection in
Video Delivery Networks by Watermarking of Pre-
Compressed Video, Lecture Notes in Computer
Science, Vol. 1242, pp.423-436, Springer, 1997.

[6] ISO/IEC 14772-1 Virtual Reality Model Language
(VRML).

[7] ISO/IEC JTC1/SC29/WG11 MPEG-4 Visual and
MPEG 4 SNHC.

[8] H. Masuda, Topological Operations for Non-Manifold
Geometric Modeling and Their Applications, Ph. D
dissertation, Department of Precision Machinery
Engineering, University of Tokyo, 1996 (in Japanese).

s

e

(a) Ar=0 (No embedding) (b) Ar=0.1 %

(c) Ar=0.5 % (d) Ar=1 %

Figure 9. A red-and-white stripe image is mapped onto
a sphere model (1800 triangles). Texture coordinate
are modulated with relative amplitudes Ar=0 % to
Ar=1 %.

(a) Ar=0. (No embedding) (b) Ar=0.1 %

(c) Ar=0.5 % (d) Ar=1 %

Figure 10. A photograph of a human face is mapped
onto a sphere model (1800 triangles). Textur
coordinates are modulated with several relative
amplitudes Ar=0.0% to 1%.

Multimedia and Security Workshop at ACM Multimedia ’98, Bristol, U.K., September 12-13, 1998.

9

[9] A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press,
1996.

[10] F. Mintzer, G. W. Braudway, and M. M. Yeung,
Effective and Ineffective Digital Watermarks,
Proceedings of the IEEE International Conference on
Image Processing (ICIP) '97, Vol. 3, pp. 9-12, 1997.

[11] J. J. K. O’Ruanaidh, W. J. Dowling and F. M. Boland,
Watermarking Digital Images for Copyright
Protection, IEE Proc.-Vis. Image Signal Process., Vol.
143, No. 4, pp. 250-256, August 1996.

[12] R. Ohbuchi, H. Masuda, and M. Aono, Embedding
Data in 3D Models, in Steinmetz, et al. eds, Lecture
Notes in Computer Science No. 1309, pp.1-11
(Proceedings of the IDMS ’97, Darmstadt, Germany,
September) 1997.

[13] R. Ohbuchi, H. Masuda, and M. Aono, Watermarking
Three-Dimensional Polygonal Models, Proceedings of
the ACM Multimedia ’97, Seattle, Washington, USA,
November 1997, pp. 261-272.

[14] R. Ohbuchi, H. Masuda, and M. Aono, Watermarking
Three-Dimensional Polygonal Models Through
Geometric and Topological Modifications, pp. 551-
560, IEEE Journal on Selected Areas in
Communications, May 1998.

[15] R. Ohbuchi, H. Masuda, and M. Aono, Geometrical
and Non-Geometrical Targets for Data Embedding in
Three-Dimensional Polygonal Models, to appear in
August 1998 issue of the Computer Communications,
Elsevier.

[16] B. Pfitzmann, Information Hiding Terminology, in R.
Anderson, Ed., Lecture Notes in Computer Science
No.1174, pp. 347-350, Springer-Verlag, 1996.

[17] J. R. Smith and B. O. Comiskey, Modulation and
Information Hiding in Images, in R. Anderson, Ed.,
Lecture Notes in Computer Science No.1174, pp. 207-
296, Springer, 1996.

[18] K. Tanaka, Y. Nakamura, and K. Matsui, Embedding
Secret Information into a Dithered Multilevel Image,
Proc. 1990 IEEE Military Communications
Conference, pp. 216-220, 1990.

[19] S. Walton, Image Authentication for a Slippery New
Age, Dr. Dobb’s Journal, pp. 18-26, April 1995.

[20] K. Weiler, The Radial Edge Structure: A Topological
Representation for Non-Manifold Geometric Boundary
Modeling, Geometric Modeling for CAD
Applications, North Holland, pp. 3-36, May 1986.

[21] M. M. Yeung, F. C. Mintzer, G. Braudway, and A. R.
Rao, Digital Watermarking For High-Quality
Imaging, Proceedings of the First IEEE Workshop on
Multimedia Signal Processing, Princeton, NJ, USA,
June, 1997, pp. 357-362.

[22] M. M. Yeung and F. Mintzer, An Invisible
Watermarking Techniques for Image Verification,
Proceedings of the IEEE ICIP '97, Vol. 2, pp. 680-
683, 1997.

[23] J. Zhao and E. Koch, Embedding Robust Labels into
Images for Copyright Protection, Proc. of the Int’l.
Congress on Intellectual Property Rights for
Specialized Information, Knowledge, and New
Technologies, Vienna, August 1995.

	ABSTRACT
	Keywords

	INTRODUCTION
	Data Embedding Classifications

	EMBEDDING TARGET OBJECTS IN 3D MODELS
	
	Shapes
	Shape Attributes
	Animation Parameters
	Others

	EMBEDDING ALGORITHMS FOR 3D POLYGONAL MESHES
	An Algorithm Based on Geometrical Quantity Modification
	An Algorithm Based on Topological Modification
	An Algorithm Based on Shape Attribute Modification

	SUMMARY AND FUTURE WORK
	REFERENCES

