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Abstract 

The advantages of digital media such as the Internet and 
CD-ROMs lie in the fact that their contents are easy to 
duplicate, edit, and distribute. These advantages, however, 
are double-edged swords, because they also facilitate 
unauthorized use of such contents. Data embedding, which 
places information into the contents themselves, is an 
approach to address this issue. Embedded information can 
be used, for example, for copyright protection, theft 
deterrence, and inventory.  

This paper discusses our work on embedding data into 
three-dimensional (3D) polygonal models of geometry. 
Given objects consisting of points, lines, polygons, or 
curved surfaces, the data embedding algorithms described in 
this paper produce polygonal models with data embedded. 
Data are placed into 3D polygonal models by modifying 
either their vertex coordinates, their vertex topology 
(connectivity), or both.  

A brief review of related work and a description of the 
requirements of data embedding is followed by a discussion 
of where, and by what fundamental methods, data can be 
embedded into 3D polygonal models. The paper then 
presents data-embedding algorithms, with examples, based 
on these fundamental methods.  

Additional Keywords: three-dimensional geometrical 
modeling, three-dimensional graphics, data hiding, digital 
watermarking, steganography, copyright protection, digital 
fingerprinting. 

1. Introduction 
The advantages of digital media, such as the Internet 

and CD-ROMs lies in the fact that the duplication, 
distribution, and modification of contents are much easier 
than the older media, e.g., printed media. These advantages, 
however, are double-edged swords. Digital media made 
unauthorized duplication, distribution, and modification of 
their valuable contents easier.  
Permission to make digital/hard copies of all or part of this material for 
personal or classroom use is granted without fee provided that the copies are 
not made or distributed for profit or commercial advantage, the copyright 
notice, the title of the publication, and its date appear, and notice is given 
that copyright is by permission of the ACM Inc. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee.  
ACM Multimedia 97 Seattle Washington USA 
Copyright 1997 ACM 0-89791-991-2/97/11 

One way of addressing this problem is to add 
watermarks to the objects in which contents are stored. 
Watermarks are structures containing information that are 
embedded in a data object (e.g., an image) in such a way that 
they do not interfere with its intended use (e.g., viewing). 
Watermarks can be used, for example, to deter theft, to 
notify users of how to contact the copyright owner for 
payment of licensing fees, to discourage unauthorized 
copying, or to take inventory. The technology associated 
with watermarks in this sense is called steganography, data 
hiding, (digital) watermarking, data embedding, or 
fingerprinting [Tanaka90, Walton95, Cox95, Braudway96, 
O’Ruanaidh96, Smith96, Zhao96, Hartung97]. The 
technology has been studied for still images, movie images, 
audio data, and texts in the past, but not for 3D model of 
geometry.  

This paper presents fundamental techniques and 
algorithms for embedding data into 3D models of geometry. 
Realistic applications of data embedding would require 
more sophisticated features, for example, security provided 
by using encryption. However, a set of basic data embedding 
techniques can serve as a foundation for more specialized 
methods adapted for specific applications.  
 

Figure 1. Three-dimensional models of dinosaurs in this 
scene are embedded with copyright notices and contact 
addresses, which can be extracted and displayed on 
demand. 
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Figure 1 shows an example of embedding data into 

polygonal models of dinosaurs using an algorithm described 
in Section 3.2. Each dinosaur models are marked with a 
distinct message. The message embedded in the triceratops 
model, “Copyright (C) DINOSAURS INC. <CR> Model 
#triceratops003 <CR> Contact http://www.dinosaurs.org/.”, 
can be extracted and displayed by clicking on the model 
while using a 3D model browser enhanced with the 
extracting capability. Such messages can be used, for 
example, to automatically connect the browser to a license 
server on the Internet to collect license fees.  

Throughout the paper, the act of adding watermark is 
called embedding (or watermarking), and retrieving the 
information encoded in the watermark for perusal is called 
extraction, as illustrated in Figure 2. The object in which the 
information is embedded is called cover-<datatype>, the 
object with watermark is called stego-<datatype>, and the 
information embedded is called embedded-<datatype>, 
following recommendations in [Pfitzmann96]. Suffix 
“<datatype>” varies with data types such as image, text, or 
3D model. For example, an embedded-text is embedded in a 
cover-3D-model to produce a stego-3D-model with 
embedded-text.  

Figure 2 illustrates the flow of data in a most basic of 
the data embedding scenarios, the subject of this paper, with 
solid arrows. In addition, three possible variations of the 
basic embedding schemes are illustrated with dotted arrows. 
In the first example, a stego-key is used to encrypt embedded 
data so that the embedded data are secure from the third 
party. The encryption scheme used can be either public-key 
or private key [Shneier96], although the illustration indicates 
a private-key scheme. In the second example, escrowing the 
original cover-3D-model makes extraction much easier and 
robust. However, the need for escrow makes the scheme 
unsuitable for many application scenarios. In the third 
example, the original cover-3D-model is recoverable by 

extraction, by using a reversible data embedding algorithm.  
The remaining part of this paper is organized as follows. 

In next section, we present a brief review of related work and 
a discussion on requirements for data embedding into 3D 
models. We then details fundamental methods for data 
embedding into 3D models, namely, basic units of 
embedding and method to arrange a collection of one of 
these units to embed a meaningful amount of data. These 
fundamental methods are combined to create several 
embedding algorithms described in Section 3. We conclude 
in with a summary and some remarks on possible directions 
for future work. 

2. Fundamentals of watermarking 3D models 

2.1. Related work 

In case of 3D model of geometry, the comment and 
annotation capabilities of scene description formats, such as 
the Virtual Reality Modeling Language (VRML) [ISO96], 
have been the primary means of adding information. 
However, these comments and annotations can be easily 
removed, either intentionally or unintentionally. For 
example, programs for converting between 3D model 
formats often remove comments and annotations. 
Consequently, comments and annotations cannot meet most 
of the requirements of watermarks. 

2.2. Embedding requirements 

While each application of data embedding into 3D 
models has its own set of requirements, the following three 
requirements are common to a majority of application 
scenarios. 

Unobtrusive: The embedding must not interfere with the 
intended use of a model, such as viewing. One published 
example of image watermarking [Braudway96] used the 
visibility of the watermarks to its advantage, but in most 

Embedding Extraction

Cover-3D-model

Embedded data

Text, number,
pattern, etc.

Embedded data

Stego-key
Disturbances: Geometrical transformation,
coordinate randomization, resection, polygon
simplification, floating point error, etc.

Cover-3D-model

(b) Cover-3D-model escrow

Delivery
through
media

Stego-3D-model

(a) stego-key

(c) Reversible
embedding

Figure 2. Data embedding into 3D polygonal models. Solid arrows indicate data flow in a basic embedding scheme. Dotted 
arrows indicate additional paths of information used in variations of the basic data embedding scheme: (a) stego-key, (b) 
cover-3D-model escrow, and (c) reversible embedding. 
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applications, the watermarks must be unnoticeable in terms 
of the model’s intended use. 

Robust: Robustness is crucial to the success of data 
embedding. Making the watermark indestructible is not a 
trivial problem. Note that this is different from making 
message in the watermark unreadable.  

With complete knowledge of how watermarks are 
embedded, any watermarks can theoretically be removed. 
With partial knowledge (e.g., the knowledge of the basic 
algorithm), the removal must be difficult enough so that it 
either interferes with the intended use of the models, or the 
cost of removal is greater than the value of the model.  

Assuming the kind of use a VRML model has to expect, 
watermarks in a 3D model have to expect the following 
kinds of alterations during day-to-day use. Data format 
conversion is a common practice, which scrambles orders of 
points, polygons and other geometrical primitives. Data 
format conversion often introduces floating-point-number 
representation errors. Models are geometrically transformed 
to construct a scene. While the geometrical transformations 
are often limited to rotation, uniform scaling, and translation, 
more general transformations, e.g., affine transformations 
are common. Local deformations are occasionally applied to 
reshape a part of a model. Topological alterations, such as 
resection of a desired part of a model and polygon 
simplification, may also be performed.  

Watermarks in a model may also be attacked with an 
intent to destroy or alter them. Possible means of intentional 
attack include addition of random (or systematic) values to 
vertex coordinates and polygonal simplification. It is not 
feasible to list every possible means of attacks.  

If the degree of modification is limited so that the utility 
of the model is not compromised, watermarks in 3D models 
should ideally withstand all of these and other possible 
alterations, regardless of whether they are intentional or 
otherwise.  

Space efficient: A data-embedding method should be able 
to embed a non-trivial amount of information into models.  

In general, above three requirements are at odds. For 
example, if one needs more robust embedding, the amount 
of data that can be embedded is reduced. The best trade-off 
depends on each application.  

2.3. Embedding targets 

A 3D model may contain diverse range of data objects. 
For example, a VRML 2.0 file includes geometry of objects 
defined by polygons, lines, or predefined shapes (e.g., 
cylinders, spheres, or cones). These objects have attributes, 
such as shininess, per-surface or per-vertex colors, 
per-surface or per-vertex normal vectors, per-vertex texture 
coordinates, texture images, and others. The file may also 
contain Universal Resource Locator links, pointers to sound 
data files, behavioral scripts written in a programming 
language, and others. In case of non-VRML models, 
geometry of 3D objects may be represented by solids 
bounded by curved surfaces (e.g., Bezier patches), by voxel 
enumeration, and many others means. 

We argue that geometry is the best candidate for data 
embedding among the data objects types that could exist in 

3D scene descriptions, since it is by definition the least likely 
to be removed.  

Among the many possible representations of 3D 
geometry, we chose, for the study reported in this paper, 
polygonal models as the target (output) of embedding (see 
Figure 2). A “polygonal model” in this paper may include 
one or more of the following geometrical primitives: points, 
lines, polygons, connected polygons, polyhedrons, and 
connected polyhedrons. While some data embedding 
algorithms require topology (connectivity) among points, 
topology can be added, for example, by Delaunay 
triangulation [O’rourke94].  

Inputs to the embedding algorithm may either be 
polygonal models or curved surface models. An embedding 
may be performed either during or after a tessellation of the 
curved surfaces. For example, the algorithm that will be 
described in Section 3.5 accepts curved surfaces as input and 
embed patterns as it tessellates the surfaces. Embedding 
watermarks during a tessellation can be advantageous to 
data embedding. This is because the embedding algorithm 
could exploit a large degree of freedom it has in choosing the 
number, position, and topology of vertices produced by the 
tessellation.  

Other components of 3D scene descriptions can also be 
used for data embedding. Images for texture mapping and 
sounds are obvious targets of embedding. Per-vertex normal 
vectors, per-vertex texture coordinates, per-vertex colors, or 
even face colors can also become targets of data embedding. 
These non-geometrical components, however, are less 
crucial to 3D scenes and have higher chances of alteration or 
removal than geometry.  

2.4. Embedding primitives 

There are two attributes in a polygonal model of 
geometry that can be modified in order to add watermarks. 
One is the geometry of the geometrical primitives (e.g., 
points or triangles) and the other is the topology among these 
primitives. Units of alteration, either geometrical or 
topological, are called embedding primitives in this paper. 

2.4.1. Geometrical embedding primitives 

Geometrical values - specifically, the coordinates of 
points and vertices - can be modified to embed data. Notice, 
however, that information encoded directly in coordinate 
values is vulnerable to almost any geometrical 
transformations. It is thus advantageous to employ 
geometrical embedding primitives that are invariant to 
certain classes of geometrical transformations. The 
following lists examples of embedding primitives derived 
from vertex coordinates that are invariant to increasingly 
larger class of geometrical transformations.  

1. Altered by all the transformations listed below 
a. Coordinates of a point. 

2. Invariant to translation and rotation 
a. Length of a line. 
b. Area of a polygon. 
c. Volume of a polyhedron.  

3. Invariant to rotation, uniform-scaling, and translation 
a. Two quantities that define a set of similar triangles 
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(e.g., two angles). 
b. Ratio of the areas of two polygons. 

4. Invariant to affine transformation 
a. Ratio of the lengths of two segments of a straight 

line. 
b. Ratio of the volumes of two polyhedrons. 

5. Invariant to projection transformation. 
a. Cross-ratio of four points on a straight line [Farin96]. 

Upon embedding, the quantity of the primitive is 
modified, typically by very small amount, so that subsequent 
displacements of vertices do not affect the intended uses of 
the model. 

The algorithms that will be described in Section 3.1 and 
Section 3.2 uses the primitive 3a and 4b, respectively.  

2.4.2. Topological embedding primitives 

Watermarks can be embedded by changing the 
topology of a model. The change may also involve change in 
geometry as a side effect (e.g., inserting or displacing 
vertices), but information is embedded mainly in the 
topology.  

An example of topological embedding primitive is the 
connectivity of triangles in a triangle strip. A geometry 
compression algorithm described in [Taubin96] encoded the 
topology of a triangle strip in a bit string. (To be more 
precise, the algorithm described in [Taubin96] is more 
general, for it encoded a topology of a triangle strip with 
branches, i.e., tree of triangles.) This technique can be used 
in reverse, by letting a bit string control growth of a triangle 
strip. This approach is used in the algorithm that will be 
described in Section 3.3.  

Another example of topological embedding primitives 
simply cuts out holes in an input mesh to encode a pair of 
symbols. This approach is used in the algorithm that will be 
described in Section 3.4. Yet another example of topological 
embedding primitives encodes a pair of symbols by using 
two different mesh sizes,  and . This method is used in 
the algorithm that will be described in Section 3.5.  

2.5. Embedding primitive arrangements 

For a practical data embedding, multiple embedding 
primitives must be arranged so that a collection of 
embedding primitives functions as a watermark to store a 
substantial amount of information.  

Data objects such as image and audio data already have 
regular implicit ordering of embedding primitives. For 
example, an image has rectangular 2D array of pixels. In 
case of 3D geometrical models, arrangement of embedding 
primitives is somewhat more involved. 

An example of arrangements of embedding primitives 
for 3D geometrical models is a 1D arrangement generated by 
sorting triangles according to their areas. Another example is 
a 2D arrangement of triangles based on the connectivity of 
triangles in an irregularly-tessellated triangular mesh.  

Arrangements of embedding primitives can be 
established for 3D polygonal models by the following two 
methods.   

a. Topological arrangement employs topological 

adjacency, such as the adjacency of vertices, to arrange 
embedding primitives. Topological arrangement is 
applicable to both topological and geometrical 
embedding-primitives. It can survive a geometrical 
transformation, but is not resistant to a topological 
modification. 

b. Quantitative arrangement employs inequality 
relations among the quantities, such as volumes of  
polyhedrons, associated with embedding primitives to 
sort those primitives.  

In both arrangement methods, it is often necessary to 
find an initial condition - for example, the first primitive of a 
one-dimensional arrangement - in order to initiate an 
arrangement. Obviously, both arrangement and initial 
condition must be robust against expected disturbances, such 
as geometrical transformations, or the watermarks will be 
lost.  

In this paper, arrangements of embedding primitives are 
classified by their locality into global, local, and subscript 
arrangements. Figure 3 shows illustrations of examples of 
these three types of arrangements based on topological 
adjacency.  

a. Global arrangement arranges a set of all the 
embedding primitives in an embedding target. 

b. Local arrangement arranges each one of multiple 
disjoint subsets of every embedding primitive in an 
embedding target.  

c. Subscript arrangement is similar to local arrangement, 
but with a very small (e.g., a few primitives) subset, which 
is called a Macro-Embedding-Primitive (MEP). Each 
MEP is associated with a special kind of data, a unique 
subscript. Subscripts map a set of embedding primitives 
into a sequence.  

A global arrangement tends to have higher information 
density than the other two methods. However, by repeatedly 
embedding a message, local and subscript arrangements can 
be more robust against partial disruption of arrangements 
due, for example, to resection of model .  

Arrangements of embedding primitives are used to 

embed data in two alternative ways, by means of what we 
call symbol-sequence-embedding and pattern-embedding.  

a. Symbol-sequence-embedding method embeds an 
ordered sequence of symbols, such as a character string. 

      Global     Local        Subscript

1
2

12 4

5
6

7

8

9 10 113 13

       (a)            (b)            (c) 
Figure 3. Illustrations of examples of global, local, and 
subscript arrangements defined on a geometrical object.  
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Symbol-sequence-embedding typically employs a 1D 
arrangement of embedding primitives.  

b. Pattern-embedding method embeds patterns that are 
visually recognizable if presented to human beings. For 
example, shapes of letters can be cut into a triangular 
mesh as a visible watermark which are visible if displayed 
by using a wire-frame rendering. Not all watermarks 
produced by pattern-embedding are visible, however. 

The mapping from embedded data (either a symbol 
sequence or a pattern) and an arrangement of embedding 
primitives does not have to be straightforward. Scrambling 
the mapping, for example by using a pseudo random number 
sequence generated from a stego-key, could increase 
security of the embedded data. In this paper, however, we 
will not discuss this and other methods of scrambling 
watermark any further.  

3. Embedding algorithms 
This section describes, along with execution examples, 

algorithms that are created by combining fundamental 
methods discussed in the previous section. In developing the 
following algorithms, we assumed viewing of models by 3D 
model browsers (e.g., a VRML browser) as the intended use 
of models.  

All the algorithms are implemented by using a kernel 
for a non-manifold modeler [Masuda96]. The system 
employs radial edge structure [Weiler86] to represent the 
topological relationship among vertices, edges, faces, and 
regions. 

3.1. Triangle similarity quadruple embedding  

A pair of dimensionless quantities, for example, {b/a, 
h/c} or {θ1,θ2} in Figure 4, defines a set of similar triangles. 
The algorithm described in this section, which is called 
Triangle Similarity Quadruple (TSQ) algorithm, uses such 
dimensionless quantity pair as the geometrical embedding 
primitive to watermark triangular meshes.  In order to realize 
subscript ordering, the algorithm uses a quadruple of 
adjacent triangles that share edges in the configuration 
depicted in Figure 5 as a Macro-Embedding-Primitive 
(MEP). Each MEP stores a quadruple of values {Marker, 
Subscript, Data1, Data2}. A marker is a special value (in 
this case a pair of values) that identifies MEPs. In Figure 5, 
the triangle marked M stores a marker, S stores a subscript, 
and D1 and D2 stores data values. While each MEP is formed 
by topology, a set of MEPs are arranged by quantity of 
subscript.  

The TSQ extraction algorithm does not require 
escrowed original cover-3D-model for extraction. However, 
it does require a pair of values that identifies marker 
triangles. Watermarks produced by the TSQ algorithm 
withstand translation, rotation, and uniform-scaling 
transformations of the stego-3D-models. The watermarks 
are resistant to resection and local deformation since 
subscript arrangement and repeated embedding are 
employed. The watermarks are destroyed, among other 
disturbances, by a randomization of coordinates, by a more 
general class of geometrical transformation, or by an 
extensive topological alteration such as re-meshing.  

The TSQ algorithm embeds a message according to the 
following steps. 

(1) Traverse the input triangular mesh to find a set of four 
triangles to be used as a MEP. In doing so, avoid vertices 
that have already been used for the watermark, or 
triangles that are unfit for stable embedding, e.g., 
triangles whose dimension-less quantities are too small. 

(2) Embed the marker value in the center triangle of the 
MEP by changing its dimensionless quantity pair 
{e14/e24, h4/e12}, hence coordinates of its vertices v1, v2, 
and v4, by small amounts (See Figure 5). 

(3) Embed a subscript and two data symbols in the 
remaining three triangles of the MEP by displacing 
vertices v0, v3, and v5 that are not shared with marker 
triangle in the center. Subscript is embedded in the pair 
{e02/e01, h0/e12}, and two data symbols are embedded in 
the pairs {e13/e34, h3/e14} and {e45/e25, h5/e24}. For each 
the three triangles, the algorithm first modifies the ratio 
hi/eij by changing hi only. Then the algorithm modifies 
the ratio eij/ekl while keeping the height hi constant. 

(4) Repeat (1) to (3) above until all the data symbols of the 
message are embedded.  

In order to embed multiple copies of the message, steps 
(1) to (4) are repeated many times. Figure 7 shows triangles 
that formed MEPs in darker gray. Due to the mutual 
exclusion rule described in the step (1) above, MEPs do not 
share vertices.  

In the steps (2) and (3) above, the magnitude of 
modification of the quantities must be larger than the 
expected noise. At the same time, it must be small enough so 
that the watermarks are not noticeable by human beings 
when displayed by using a model browser. These minimum 
and maximum magnitudes of modifications are chosen as a 

1θ 2θ
a b

c

h

 
Figure 4. Examples of dimension-less quantities that 
defines a set of similar triangles.  

e13

v0

v2v1

v3 v4
v5

e01

e02

e12

e14

e34

e24

e25

e45

h3

h0

h5
h4

S

M
D2D1

 
Figure 5. A macro-embedding-primitive. In the figure, vI 
are vertices, eij are lengths of the edges, and hI are heights 
of the triangles.  
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result of a trade-off between robustness, space efficiency 
and noticeability. 

Given a watermarked mesh and two numbers that 
identify marker triangles, extraction proceeds according to 
the following steps. 

(1) Traverse a given triangular mesh and find a triangle 
with the marker, thereby locating a MEP.  

(2) Extract a subscript and two data symbols from the 
triangles in the MEP.  

(3) Repeat (1) to (2) above for all the marker triangles on a 
given triangular mesh. 

(4) Sort the extracted symbols according to their subscripts. 

The TSQ algorithm performs a simple error correction 
by majority voting if multiple copies of a message are 
embedded. 

Figure 6a shows a model of Beethoven’s bust 
(4889 triangles, 2655 vertices) in which six identical copies 
of a message, each message consisting of 132 bytes, have 
been embedded by using the TSQ algorithm. The message 
was gradually lost when the model was resected by arbitrary 
planes (Figure 6b-c). As shown in Table 1, cutting the model 
in half left the entire message intact, and quartering the 
model left 102 out of 132 bytes intact. Since a subscript 
arrangement was used, intact characters still tended to be in 
the correct positions within the message string.  

Table 2 shows, for various models, their data capacities 
and execution timings for embedding in the case of the TSQ 
algorithm. Timings for extraction were not listed since they 
are about the same as those of embedding. The timings were 
measured by using IBM AIXTM 4.1.4 operating system and a 
xlC c++ compiler on a 100 MHz PowerPC 604 processor.  

Space efficiency seen in these examples is adequate for 
many practical applications. It should be noted, however, 
that these examples pushed space efficiency by somewhat 
sacrificing robustness. Increasing robustness, for example 
by increasing number of repetition of a message and by 
using an error-correcting code would reduce effective data 
capacity. 

Execution timings are roughly proportional to the 
number of triangles in the models. The embedding algorithm 
was prototyped on a full-fledged non-manifold modeler 
kernel, which has many more features than necessary for the 
embedding algorithm Timings will improve significantly if 
the code is designed for the embedding algorithm. 

 

3.2. Tetrahedral volume ratio embedding 

A ratio of volumes of a pair of tetrahedrons is the 
embedding primitive for the Tetrahedral Volume Ratio 

(TVR) embedding algorithm described in this section. The 
algorithm is designed to accept triangular meshes as its input. 
It arranges the embedding primitives topologically into 
either global or local one-dimensional arrangement for 
symbol sequence embedding.  

The TVR algorithm does not require cover-3D-model 

 
            (a)                   (b)                 (c)                 (d) 

Figure 6. A model of a Beethoven’s bust (4889 triangles) 
resected repeatedly by arbitrary planes.  

 Number of   
triangles 

Data 

(a) 4889 6 copies, 132 bytes each 
(b) 2443 132/132 bytes
(c) 1192 102/132 bytes 
(d) 399 85/132 bytes 

Table 1. Data loss due to resection in the example shown in 
Figure 6. 

Model Number of 
triangles 

Data 
capacity 

per model 
[bytes] 

Embedding 
execution 

timing [sec] 

Cow 5804 1062 19.8
Triceratops 5604 966 9.9
Beethoven 4889 873 9.7
IBM mesh 2996 486 9.8
Face 1406 210 2.3
Stegosaur 1023 180 2.5
Sphere 959 132 1.4

Table 2. Model size, embedding data capacity, and execution 
timings for embedding operation for the Triangular 
Similarity Quadruple (TSQ) embedding algorithm.  

 
Figure 7. Macro embedding primitives, each of which 
consists of four adjacent triangles, are shown in dark gray. 
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for extraction. The watermarks produced by the TVR 
algorithm survive affine transformation. The watermarks are 
destroyed, among other disturbances, by topological 
modifications such as re-meshing, randomization of vertex 
coordinates, and geometrical transformations more general 
than affine transformation (e.g., a projection transformation). 
A variation of the TVR algorithm discussed at the end of this 
section is resistant to resection and local deformation 
through the use of local arrangement and repeated 
embedding. 

The TVR algorithm embeds data in accordance with the 
following steps. The crux of the algorithm is establishing 
global one-dimensional ordering of embedding primitives. 
Details of step (1) below will be explained later.  

(1) Find a spanning tree of vertices Vt, called vertex tree, on 
the input triangular mesh M, given an initial condition 
Ivt for Vt. Convert Vt into a sequence of triangles Tris, 
called a triangle sequence. 

(2) Convert Tris into a sequence of tetrahedrons Tets, called 
a tetrahedron sequence. To do this, compute a common 
apex as the centroid of the coordinates of a few triangles 
selected from the triangle sequence (e.g., first three). 
The selected triangles are removed from the triangle 
sequence so that their coordinates are not modified by 
embedding of symbols.  

(3) Convert Tets into a sequence of ratios of volumes Vrs. 
To do this, a volume of a tetrahedron (e.g., the first one) 
in Tets is selected as a common denominator of all the 
ratios, and volumes of the remaining tetrahedrons are 
used for numerators.  

(4) Embed a symbol into each ratio by displacing vertices 
of numerator-tetrahedrons. The vertex displacements 
for the current symbol must not interfere with 
modifications of the previously embedded symbols. (In 
Figure 8, triangles that are used for embedding, which 
are colored dark gray, do not share edges because of this 
constraint.) 

We now explain details of the first step, starting with 
the method to create a triangle sequence, and later come 
back to explain how to find an initial condition Ivt.  

Generating vertex tree Vt from an input triangular mesh 
requires that the input mesh is an orientable manifold. To 
generate Vt, traverse vertices from a given initial condition 
Ivt, that is, {initial vertex, initial traverse direction} pair, 
starting with the Vt initialized to empty. At each vertex, by 
scanning the edges in counter-clockwise order, find an edge 
that is not a member of Vt and does not loop back to any of 
the vertices covered by Vt. If such an edge is found, add it to 
Vt.  

In the example shown in Figure 9, the vertex tree has a 
root (and a branching point) at the vertex numbered 1. After 
passing through vertices 1 through to 10, the traverse 
backtracks to vertex 1 and adds two vertices, 11 and 12.  

The vertex tree Vt is converted into the triangle 
sequence Tris as a set of edges Tbe, called a Triangle 
Bounding Edge (TBE) set is constructed. The Tbe is 
initialized to a set of edges that connect vertices in the Vt. To 
add an edge to the Tbe, vertices are traversed according to 
the Vt, starting from the root. At each vertex, all the edges 

adjacent to the vertex are scanned clockwise, and the 
scanned edge is added to the Tbe if it is not a member of the 
Tbe. A new triangle is added to the Tris, which started as an 
empty sequence, if all three edges of the triangle are in the 
Tbe for the first time, and the triangle is not already in the 
Tris. In the example shown in Figure 9, edges (except the 
initial entries of the Tbe) are marked by alphabets in the 
order of addition to the Tbe using alphabetical ordering. In 
the figure, members of the Tris are marked by the numbers 
in the circles according to the sequence each triangle is 
added to the Tris.  

As the initial condition, the TVR algorithm selects an 
initial edge, instead of an {initial vertex, initial traverse 
direction} pair mentioned before. To select the initial edge, 
the algorithm computes, for every edge in the model, the 
volume of the tetrahedron subtended by the two triangles 
that are adjacent to the edge (Figure 10). The algorithm 
selects, as the initial edge, the edge for which tetrahedron’s 
volume is the largest. This method works since affine 
transformation preserves inequality among volumes of 
tetrahedrons. (Note that these tetrahedrons are different set 
of tetrahedrons from the ones used to embed symbols.)  

The TVR extraction algorithm employs the 

 
Figure 8 Triangles used for embedding by the TVR 
algorithm are shown in dark gray.  
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1:  Initial vertex. 
1 to 2: Initial 
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direction. 
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sequence 
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edge (TBE) 
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Figure 9. An example showing a vertex tree, a triangle 
bounding edge list, and a triangle sequence. 
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trial-and-error method to find a correct initial edge. The 
algorithm tries multiple candidate edges until it extracts a 
correct predetermined lead-in symbol sequence. This is 
because the edge found to have the largest volume may be 
incorrect due to noise and other reasons.  

Using an edge as initial condition leaves two equally 
possible alternatives in starting a traversal to construct a 
vertex tree. This ambiguity is resolved, again, by using the 
trial-and-error method. The TVR extraction algorithm 
extracts two sequences of symbols by using both alternatives. 
It then choose the direction that yielded correct 
predetermined lead-in symbol sequence.  

Table 3 shows, for various models, data capacity per 
model and execution time for embedding operation. 
Conditions for timing measurements are the same as for 
Table 2. As with the TSQ algorithm, the amount of data that 
can be embedded by using the TVR algorithm appears to be 
adequate for many applications. Execution timings in the 
same table show similar tendency as the TSQ algorithm; 
they are roughly proportional to the size of the model. These 
timings also leave room for a significant improvement by 
designing an optimized code.  

As mentioned before, the watermarks by TVR 
algorithm can be made resistant to resection and local 
deformation by using a local or subscript arrangement 
method combined with repeated embedding. The TVR 
algorithm strengthened by a local arrangement method, 
called TVR Cluster (TVRC) embedding algorithm, was used 
in the examples shown in Figure 11. In order to create 
sub-domains for local arrangement, this algorithm simply 
split the model into subsets (i.e., multiple disconnected 
meshes). Boundaries of subsets have duplicate vertices and 
edges so that the crack will not become visible. In this 
example, the message embedded in a model of a cow 
survived affine transformations. It also survived, to some 
extent, resections of a part of the model. 

3.3. Triangle strip peeling symbol-sequence-embedding 

The embedding algorithm presented in this section, 
called Triangle Strip Peeling Symbol sequence (TSPS) 
embedding algorithm, peels off triangle strips from a given 
triangle mesh in order to embed symbol sequences. The 
embedding primitive is an adjacency of a pair of triangles in 
a triangle strip, each of which encodes a bit of information. 
The adjacency also induces 1D arrangement of embedding 
primitives in the triangle strip. Since the algorithm employs 
a topological embedding primitive and topological 
arrangement, the watermarks produced by the algorithm are 
robust against practically every geometrical transformation. 
By repeating the embedding, the watermark as can be made 
resistant to resection. The algorithm does not require 
cover-3D-model escrow for extraction.  

A disadvantage of this algorithm is its relatively low 
space efficiency. The embedding can be destroyed, for 
example, by polygon simplification algorithms that employ 
edge swapping operations.  

Inputs to this embedding algorithm are an orientable 
triangular mesh and a sequence of binary digits. The basic 
TSPS embedding algorithm embeds data according to the 
following steps. (See Figure 12.) 

a
b

c

d

 
Figure 10. The volume of the tetrahedron a-b-c-d, 
subtended by two triangles a-d-c and b-c-d that are adjacent 
to the edge c-d, is computed. The arrows show two possible 
initial s c-d. 

 
Model Number of 

triangles
Data 

capacity per 
model 
[byte] 

Embedding 
execution 

timing [sec] 

Cow 5804 1027 20.2
Triceratops 5604 650 7.2
Beethoven 4889 324 9.6
IBM mesh 2996 652 9.9
Face 1406 116 2.2
Stegosaur 1023 225 2.4
Sphere 959 216 1.5

Table 3. Model size, data capacity, and execution timings 
for embedding operation for the Tetrahedral Volume Ratio 
(TVR) embedding algorithm. 

(a) The original model. (b) Message embedded. 

(d) Affine-transformed. (c) Cut in half. 

Figure 11. (a) Three-dimensional model of a cow (5804 
triangles). (b) A message is embedded by using the TVR 
algorithm enhanced with local arrangement and repeated 
embedding.. The message survives (c) resection or (d) 
affine transformation.  
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(1) Starting from an edge e selected from the input mesh M, 

grow a triangular strip S on M by using the message 
bit-string to determine the connectivity of triangles on 
the strip.   

Observe that a triangle at the end of (current) strip 
has two “free” edge, i.e., edges that are not adjacent to 
triangles of the triangle strip. Since M is orientable, 
these two edges can be ordered on the triangle by 
traversing the edges in counterclockwise (or clockwise) 
order. Label the first free edge ‘0’ and the second (i.e., 
last) free edge ‘1’. Then, depending on the bit to be 
embedded, choose one of the free edges to add the next 
triangle of the triangle strip. (See Figure 13.) 

(2) “Peel off” the triangle strip S from M by splitting all the 
edges on the boundary of S except the initial edge e. 
(The strip S is connected to the rest of the mesh only by 
the edge e.) Since the peeled strip caps the hole 
completely, presence of the watermark is visually 
unnoticeable.  

The mesh with watermark is called M+, and the mesh 
M+ minus the triangle strip S is called a stencil mesh R. 
The edge e serves as the initial condition for finding the 
triangle strip. Ordering of primitives is induced 
naturally by the connectivity of embedding primitives in 
the triangle strip. Termination condition of the 
arrangement is the open end of the strip.  

Figure 13 shows an example of a triangle strip that 
starts at edge e and embeds a message bit string 
“10101101011” in a sequence of 12 triangles. Each bit of the 
bit string steers the direction of the growth of the triangle 
strip.  

Note that such steering may produce strips whose shape 
may not fit in a given mesh, depending on the lengths and 
arrangement of 0s and 1s of message bit strings. For example, 
if a sequence of 1 continues in a bit string, the strip will keep 
steering to the left. This strip will either hit a boundary of the 
mesh M or circle back to itself, most likely before it is long 
enough to have embedded all the message bits. To avoid 
such problems, shapes of triangles strips must be 
manipulated, and locations and orientations of the strips in 
the mesh M must be chosen carefully.  

The shape of a triangle stripe can be manipulated by 

introducing steering symbols. A steering symbol is a bit that 
does not carry information but simply steer direction of 
growth of a triangle strip. Steering symbols are interleaved 
with data symbols (i.e., symbols that encodes embedded 
data) in order to actively steer the triangle strip into a desired 
shape. A drawback of using steering symbols is that the 
triangle strip becomes less space efficient. To pick locations 
and orientations of triangle strips on a mesh, our algorithm 
currently employs a simple-minded trial-and-error approach.  

Extraction of message can be carried out according to 

Peeled strip S

e

M’ = R+S

MM

e

M

Generate triangle
strip based on the
message bit string.

Peel off the triangle
strip from the mesh
M, except the edge
e.

Figure 12. Triangle strip peeling symbol sequence 
embedding algorithm. Given a mesh M, a bit string is 
embedded into connectivity of triangles in a triangle strip S. 
S is then peeled off from the mesh M, except for edge e. 
(Cracks around the strip in the bottom figure are for 
illustration purpose only.)  

e 1 0
1 0

1

1 1
0

0

1

1

0

 
Figure 13. Connectivity of 12 triangles in a triangle strip 
encodes the bit string “10101101011” (11 bits). 

Figure 14. A triangle strip consisting of 27 triangles was cut 
out a triangle mesh (214 triangles). The triangle strip, 
displayed in darker gray, encodes 13 data bits interleaved 
with 13 steering bits. 
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the following steps.  

(1) Traverse the given mesh M+ and find an edge with 
topological features that starts a triangle strip of known 
length that is attached to the stencil mesh by an edge.  

(2) Traverse the triangle strip to the open end as embedded 
bits are extracted.  

Although rare, it is conceivable for the meshes M to 
have topological structures identical to that of peeled off 
triangle strip. Data extracted from such triangle strips are 
meaningless. These erroneous extraction results can be 
rejected, for example, by using a “signature” bit sequence.  

Figure 14 shows a simple example of TSPS embedding, 
in which a triangle strip of length 27 is peeled off of a mesh 
that consisted of 214 triangles. The triangle strip encodes 13 
data bits and 13 steering bits. Selection of steering bits in this 
case was done manually.  

3.4. Polygon stencil pattern-embedding  

Given a mesh M, a pattern can be embedded by simply 
cutting out a polygonal strip S in a desired pattern, as 
illustrated in Figure 15. S is attached to the embedded-mesh 
mesh by an edge, for example; It is easier to find and remove 
S if it is totally disconnected from the rest of the mesh. Since 
the strip completely caps the hole, watermarks are visually 
unnoticeable.  

Watermarks produced by this algorithm, called 
Polygon Stencil Pattern (PSP) embedding, are robust against 
most of the polygonal simplification algorithms, since 
vertices on the boundary of polygonal strips and stencil 
meshes are preserved by these algorithms. (Unlike the TSP 
algorithm, connectivity of vertices on the strip does not 
matter.) If vertices on the boundary are removed or 
displaced forcefully, cracks will most likely appear in the 
model, diminishing the value of the model. 

Figure 16 shows a stenciled polygonal mesh, a cut out 
triangle strip, and effects of polygon simplification 
algorithm on them. The vertices on the boundary of the 
stencil mesh are preserved despite a polygon simplification, 
which reduced the number of triangles from 1815 down to 
459. Number and coordinates of vertices on the boundary of 
the triangle strip did not change after simplification. 
Topology of the edges did change after simplification, 
however, due to edge swapping employed by one of the 
simplification algorithms we have tried. (One of the 
polygonal “simplification” algorithms that employed 
edge-swapping actually increased the number of triangles 
from 207 triangles to 213 triangles while it kept the number 
of vertices unchanged.)  

3.5. Mesh density pattern embedding 

Another simple pattern embedding algorithm, named 
Mesh Density Pattern (MDP) embedding, generates 
polygonal mesh models given curved surface models as 
inputs. As the algorithm tessellates given curved surfaces, it 
embeds visible pattern by modulating the sizes of triangles 
in the output mesh (Figure 17a). This pattern is hardly 
visible if displayed with a smooth shading (e.g., Gouraud 
shading) using proper vertex normal vectors calculated form 
the original curved surfaces. The pattern becomes visible 

when the data is displayed by using wire mesh rendering. 
This watermark withstands practically any geometrical 

transformation. The algorithm is resistant but not immune to 
polygonal simplification and other topology manipulations. 
Figure 17b shows an example of effects of polygonal 
simplification in which the number of triangles in the 
original mesh has been less than halved by a polygonal 
simplification algorithm. The pattern will be destroyed 
eventually due to the simplification. However, a visible 
watermark may be just enough to deter unauthorized use of 

M M+

S
R

 
Figure 15. Pattern is embedded by peeling off a polygonal 
strip S in a desired pattern out of a given mesh M.  

 

 

(a) The stencil mesh (1815 
triangles) left after peeling 
off the strip (right) from the 
original mesh.   

(b) The triangle strips cut in 
patterns of three letters (207 
triangles total). 

 

 

(c) The stencil mesh after 
polygonal simplification 
(459 triangles). 

(d) Triangle strips after 
polygonal “simplification”  
(213 triangles).  

Figure 16. A mesh generated from a curved surface has 
been stenciled with three letters (a). Letters are cut off as 
triangular strips (b). Boundary vertices and edges are 
preserved in the stenciled mesh and in the polygonal strips 
after polygonal simplification.  
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the data.  
Note that many topological embedding methods can be 

combined with geometrical embedding methods. In fact, the 
“IBM mesh” model used in the examples of Table 2 and 
Table 3 is the mesh shown in Figure 17a. A combination of 
multiple embedding methods, each with its own strength and 
weakness, is a possible approach to increase utility of the 
data embedding.  

4. Summary and future Work 
In this paper we presented fundamental techniques and 

example of algorithms for embedding information into 3D 
polygonal models. A review of related work and a 
discussion on requirements and on selection of target objects 
for embedding data into 3D models of geometry were given. 
Next, we presented fundamental methods for embedding 
data into a polygonal model, namely, geometrical and 
topological embedding primitives, and methods for 
introducing order into a set of embedding primitives. Finally, 
we described some simple data embedding algorithms and 
results from their implementations to demonstrate that a data 
embedding into 3D polygonal model of geometry is a 
practicable technique.  

Some of the algorithms described in this paper may be 
useful for inventory of 3D models or for notification of 
copyrights to cooperative users. However, these algorithms 
lack many qualities desired for realistic applications. 
Probably the most important deficiency of the algorithms 
presented in this paper is the lack of robustness.  

Development of more robust data embedding 
algorithms will be a major focus of our future work. We 
would also like to broaden the class of target objects for 
watermarking, for example, to include parameters defining 
curved surfaces or vertex normal vectors. Adaptation of 
embedding algorithms to realistic application models, for 
example, by adding security through stego-keys, is another 
area to be examined. Data embedding for 3D models whose 
intended purpose is not simple viewing is another interesting 
topic for investigation.  
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(a) Pattern is embedded by 
reducing mesh size by 1/4  
(2996 triangles). 

(b) The mesh after 
polygonal simplification 
(1374 triangles). 

Figure 17. Pattern embedding and effect of a mesh 
simplification algorithm on the embedded pattern. 
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