

 Page 1

Watermarking Three-Dimensional Polygonal Models

Ryutarou Ohbuchi, Hiroshi Masuda, Masaki Aono

ohbuchi@acm.org, masuda@trl.ibm.co.jp, aono@acm.org
IBM Tokyo Research Laboratory

1623-14 Shimo-tsuruma, Yamato-shi
Kanagawa, 242, Japan

Abstract

The advantages of digital media such as the Internet and
CD-ROMs lie in the fact that their contents are easy to
duplicate, edit, and distribute. These advantages, however,
are double-edged swords, because they also facilitate
unauthorized use of such contents. Data embedding, which
places information into the contents themselves, is an
approach to address this issue. Embedded information can
be used, for example, for copyright protection, theft
deterrence, and inventory.

This paper discusses our work on embedding data into
three-dimensional (3D) polygonal models of geometry.
Given objects consisting of points, lines, polygons, or
curved surfaces, the data embedding algorithms described in
this paper produce polygonal models with data embedded.
Data are placed into 3D polygonal models by modifying
either their vertex coordinates, their vertex topology
(connectivity), or both.

A brief review of related work and a description of the
requirements of data embedding is followed by a discussion
of where, and by what fundamental methods, data can be
embedded into 3D polygonal models. The paper then
presents data-embedding algorithms, with examples, based
on these fundamental methods.

Additional Keywords: three-dimensional geometrical
modeling, three-dimensional graphics, data hiding, digital
watermarking, steganography, copyright protection, digital
fingerprinting.

1. Introduction
The advantages of digital media, such as the Internet

and CD-ROMs lies in the fact that the duplication,
distribution, and modification of contents are much easier
than the older media, e.g., printed media. These advantages,
however, are double-edged swords. Digital media made
unauthorized duplication, distribution, and modification of
their valuable contents easier.
Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date appear, and notice is given
that copyright is by permission of the ACM Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
ACM Multimedia 97 Seattle Washington USA
Copyright 1997 ACM 0-89791-991-2/97/11

One way of addressing this problem is to add
watermarks to the objects in which contents are stored.
Watermarks are structures containing information that are
embedded in a data object (e.g., an image) in such a way that
they do not interfere with its intended use (e.g., viewing).
Watermarks can be used, for example, to deter theft, to
notify users of how to contact the copyright owner for
payment of licensing fees, to discourage unauthorized
copying, or to take inventory. The technology associated
with watermarks in this sense is called steganography, data
hiding, (digital) watermarking, data embedding, or
fingerprinting [Tanaka90, Walton95, Cox95, Braudway96,
O’Ruanaidh96, Smith96, Zhao96, Hartung97]. The
technology has been studied for still images, movie images,
audio data, and texts in the past, but not for 3D model of
geometry.

This paper presents fundamental techniques and
algorithms for embedding data into 3D models of geometry.
Realistic applications of data embedding would require
more sophisticated features, for example, security provided
by using encryption. However, a set of basic data embedding
techniques can serve as a foundation for more specialized
methods adapted for specific applications.

Figure 1. Three-dimensional models of dinosaurs in this
scene are embedded with copyright notices and contact
addresses, which can be extracted and displayed on
demand.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 2

Figure 1 shows an example of embedding data into

polygonal models of dinosaurs using an algorithm described
in Section 3.2. Each dinosaur models are marked with a
distinct message. The message embedded in the triceratops
model, “Copyright (C) DINOSAURS INC. <CR> Model
#triceratops003 <CR> Contact http://www.dinosaurs.org/.”,
can be extracted and displayed by clicking on the model
while using a 3D model browser enhanced with the
extracting capability. Such messages can be used, for
example, to automatically connect the browser to a license
server on the Internet to collect license fees.

Throughout the paper, the act of adding watermark is
called embedding (or watermarking), and retrieving the
information encoded in the watermark for perusal is called
extraction, as illustrated in Figure 2. The object in which the
information is embedded is called cover-<datatype>, the
object with watermark is called stego-<datatype>, and the
information embedded is called embedded-<datatype>,
following recommendations in [Pfitzmann96]. Suffix
“<datatype>” varies with data types such as image, text, or
3D model. For example, an embedded-text is embedded in a
cover-3D-model to produce a stego-3D-model with
embedded-text.

Figure 2 illustrates the flow of data in a most basic of
the data embedding scenarios, the subject of this paper, with
solid arrows. In addition, three possible variations of the
basic embedding schemes are illustrated with dotted arrows.
In the first example, a stego-key is used to encrypt embedded
data so that the embedded data are secure from the third
party. The encryption scheme used can be either public-key
or private key [Shneier96], although the illustration indicates
a private-key scheme. In the second example, escrowing the
original cover-3D-model makes extraction much easier and
robust. However, the need for escrow makes the scheme
unsuitable for many application scenarios. In the third
example, the original cover-3D-model is recoverable by

extraction, by using a reversible data embedding algorithm.
The remaining part of this paper is organized as follows.

In next section, we present a brief review of related work and
a discussion on requirements for data embedding into 3D
models. We then details fundamental methods for data
embedding into 3D models, namely, basic units of
embedding and method to arrange a collection of one of
these units to embed a meaningful amount of data. These
fundamental methods are combined to create several
embedding algorithms described in Section 3. We conclude
in with a summary and some remarks on possible directions
for future work.

2. Fundamentals of watermarking 3D models

2.1. Related work

In case of 3D model of geometry, the comment and
annotation capabilities of scene description formats, such as
the Virtual Reality Modeling Language (VRML) [ISO96],
have been the primary means of adding information.
However, these comments and annotations can be easily
removed, either intentionally or unintentionally. For
example, programs for converting between 3D model
formats often remove comments and annotations.
Consequently, comments and annotations cannot meet most
of the requirements of watermarks.

2.2. Embedding requirements

While each application of data embedding into 3D
models has its own set of requirements, the following three
requirements are common to a majority of application
scenarios.

Unobtrusive: The embedding must not interfere with the
intended use of a model, such as viewing. One published
example of image watermarking [Braudway96] used the
visibility of the watermarks to its advantage, but in most

Embedding Extraction

Cover-3D-model

Embedded data

Text, number,
pattern, etc.

Embedded data

Stego-key
Disturbances: Geometrical transformation,
coordinate randomization, resection, polygon
simplification, floating point error, etc.

Cover-3D-model

(b) Cover-3D-model escrow

Delivery
through
media

Stego-3D-model

(a) stego-key

(c) Reversible
embedding

Figure 2. Data embedding into 3D polygonal models. Solid arrows indicate data flow in a basic embedding scheme. Dotted
arrows indicate additional paths of information used in variations of the basic data embedding scheme: (a) stego-key, (b)
cover-3D-model escrow, and (c) reversible embedding.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 3

applications, the watermarks must be unnoticeable in terms
of the model’s intended use.

Robust: Robustness is crucial to the success of data
embedding. Making the watermark indestructible is not a
trivial problem. Note that this is different from making
message in the watermark unreadable.

With complete knowledge of how watermarks are
embedded, any watermarks can theoretically be removed.
With partial knowledge (e.g., the knowledge of the basic
algorithm), the removal must be difficult enough so that it
either interferes with the intended use of the models, or the
cost of removal is greater than the value of the model.

Assuming the kind of use a VRML model has to expect,
watermarks in a 3D model have to expect the following
kinds of alterations during day-to-day use. Data format
conversion is a common practice, which scrambles orders of
points, polygons and other geometrical primitives. Data
format conversion often introduces floating-point-number
representation errors. Models are geometrically transformed
to construct a scene. While the geometrical transformations
are often limited to rotation, uniform scaling, and translation,
more general transformations, e.g., affine transformations
are common. Local deformations are occasionally applied to
reshape a part of a model. Topological alterations, such as
resection of a desired part of a model and polygon
simplification, may also be performed.

Watermarks in a model may also be attacked with an
intent to destroy or alter them. Possible means of intentional
attack include addition of random (or systematic) values to
vertex coordinates and polygonal simplification. It is not
feasible to list every possible means of attacks.

If the degree of modification is limited so that the utility
of the model is not compromised, watermarks in 3D models
should ideally withstand all of these and other possible
alterations, regardless of whether they are intentional or
otherwise.

Space efficient: A data-embedding method should be able
to embed a non-trivial amount of information into models.

In general, above three requirements are at odds. For
example, if one needs more robust embedding, the amount
of data that can be embedded is reduced. The best trade-off
depends on each application.

2.3. Embedding targets

A 3D model may contain diverse range of data objects.
For example, a VRML 2.0 file includes geometry of objects
defined by polygons, lines, or predefined shapes (e.g.,
cylinders, spheres, or cones). These objects have attributes,
such as shininess, per-surface or per-vertex colors,
per-surface or per-vertex normal vectors, per-vertex texture
coordinates, texture images, and others. The file may also
contain Universal Resource Locator links, pointers to sound
data files, behavioral scripts written in a programming
language, and others. In case of non-VRML models,
geometry of 3D objects may be represented by solids
bounded by curved surfaces (e.g., Bezier patches), by voxel
enumeration, and many others means.

We argue that geometry is the best candidate for data
embedding among the data objects types that could exist in

3D scene descriptions, since it is by definition the least likely
to be removed.

Among the many possible representations of 3D
geometry, we chose, for the study reported in this paper,
polygonal models as the target (output) of embedding (see
Figure 2). A “polygonal model” in this paper may include
one or more of the following geometrical primitives: points,
lines, polygons, connected polygons, polyhedrons, and
connected polyhedrons. While some data embedding
algorithms require topology (connectivity) among points,
topology can be added, for example, by Delaunay
triangulation [O’rourke94].

Inputs to the embedding algorithm may either be
polygonal models or curved surface models. An embedding
may be performed either during or after a tessellation of the
curved surfaces. For example, the algorithm that will be
described in Section 3.5 accepts curved surfaces as input and
embed patterns as it tessellates the surfaces. Embedding
watermarks during a tessellation can be advantageous to
data embedding. This is because the embedding algorithm
could exploit a large degree of freedom it has in choosing the
number, position, and topology of vertices produced by the
tessellation.

Other components of 3D scene descriptions can also be
used for data embedding. Images for texture mapping and
sounds are obvious targets of embedding. Per-vertex normal
vectors, per-vertex texture coordinates, per-vertex colors, or
even face colors can also become targets of data embedding.
These non-geometrical components, however, are less
crucial to 3D scenes and have higher chances of alteration or
removal than geometry.

2.4. Embedding primitives

There are two attributes in a polygonal model of
geometry that can be modified in order to add watermarks.
One is the geometry of the geometrical primitives (e.g.,
points or triangles) and the other is the topology among these
primitives. Units of alteration, either geometrical or
topological, are called embedding primitives in this paper.

2.4.1. Geometrical embedding primitives

Geometrical values - specifically, the coordinates of
points and vertices - can be modified to embed data. Notice,
however, that information encoded directly in coordinate
values is vulnerable to almost any geometrical
transformations. It is thus advantageous to employ
geometrical embedding primitives that are invariant to
certain classes of geometrical transformations. The
following lists examples of embedding primitives derived
from vertex coordinates that are invariant to increasingly
larger class of geometrical transformations.

1. Altered by all the transformations listed below
a. Coordinates of a point.

2. Invariant to translation and rotation
a. Length of a line.
b. Area of a polygon.
c. Volume of a polyhedron.

3. Invariant to rotation, uniform-scaling, and translation
a. Two quantities that define a set of similar triangles

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 4

(e.g., two angles).
b. Ratio of the areas of two polygons.

4. Invariant to affine transformation
a. Ratio of the lengths of two segments of a straight

line.
b. Ratio of the volumes of two polyhedrons.

5. Invariant to projection transformation.
a. Cross-ratio of four points on a straight line [Farin96].

Upon embedding, the quantity of the primitive is
modified, typically by very small amount, so that subsequent
displacements of vertices do not affect the intended uses of
the model.

The algorithms that will be described in Section 3.1 and
Section 3.2 uses the primitive 3a and 4b, respectively.

2.4.2. Topological embedding primitives

Watermarks can be embedded by changing the
topology of a model. The change may also involve change in
geometry as a side effect (e.g., inserting or displacing
vertices), but information is embedded mainly in the
topology.

An example of topological embedding primitive is the
connectivity of triangles in a triangle strip. A geometry
compression algorithm described in [Taubin96] encoded the
topology of a triangle strip in a bit string. (To be more
precise, the algorithm described in [Taubin96] is more
general, for it encoded a topology of a triangle strip with
branches, i.e., tree of triangles.) This technique can be used
in reverse, by letting a bit string control growth of a triangle
strip. This approach is used in the algorithm that will be
described in Section 3.3.

Another example of topological embedding primitives
simply cuts out holes in an input mesh to encode a pair of
symbols. This approach is used in the algorithm that will be
described in Section 3.4. Yet another example of topological
embedding primitives encodes a pair of symbols by using
two different mesh sizes, and . This method is used in
the algorithm that will be described in Section 3.5.

2.5. Embedding primitive arrangements

For a practical data embedding, multiple embedding
primitives must be arranged so that a collection of
embedding primitives functions as a watermark to store a
substantial amount of information.

Data objects such as image and audio data already have
regular implicit ordering of embedding primitives. For
example, an image has rectangular 2D array of pixels. In
case of 3D geometrical models, arrangement of embedding
primitives is somewhat more involved.

An example of arrangements of embedding primitives
for 3D geometrical models is a 1D arrangement generated by
sorting triangles according to their areas. Another example is
a 2D arrangement of triangles based on the connectivity of
triangles in an irregularly-tessellated triangular mesh.

Arrangements of embedding primitives can be
established for 3D polygonal models by the following two
methods.

a. Topological arrangement employs topological

adjacency, such as the adjacency of vertices, to arrange
embedding primitives. Topological arrangement is
applicable to both topological and geometrical
embedding-primitives. It can survive a geometrical
transformation, but is not resistant to a topological
modification.

b. Quantitative arrangement employs inequality
relations among the quantities, such as volumes of
polyhedrons, associated with embedding primitives to
sort those primitives.

In both arrangement methods, it is often necessary to
find an initial condition - for example, the first primitive of a
one-dimensional arrangement - in order to initiate an
arrangement. Obviously, both arrangement and initial
condition must be robust against expected disturbances, such
as geometrical transformations, or the watermarks will be
lost.

In this paper, arrangements of embedding primitives are
classified by their locality into global, local, and subscript
arrangements. Figure 3 shows illustrations of examples of
these three types of arrangements based on topological
adjacency.

a. Global arrangement arranges a set of all the
embedding primitives in an embedding target.

b. Local arrangement arranges each one of multiple
disjoint subsets of every embedding primitive in an
embedding target.

c. Subscript arrangement is similar to local arrangement,
but with a very small (e.g., a few primitives) subset, which
is called a Macro-Embedding-Primitive (MEP). Each
MEP is associated with a special kind of data, a unique
subscript. Subscripts map a set of embedding primitives
into a sequence.

A global arrangement tends to have higher information
density than the other two methods. However, by repeatedly
embedding a message, local and subscript arrangements can
be more robust against partial disruption of arrangements
due, for example, to resection of model .

Arrangements of embedding primitives are used to

embed data in two alternative ways, by means of what we
call symbol-sequence-embedding and pattern-embedding.

a. Symbol-sequence-embedding method embeds an
ordered sequence of symbols, such as a character string.

 Global Local Subscript

1
2

12 4

5
6

7

8

9 10 113 13

 (a) (b) (c)
Figure 3. Illustrations of examples of global, local, and
subscript arrangements defined on a geometrical object.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 5

Symbol-sequence-embedding typically employs a 1D
arrangement of embedding primitives.

b. Pattern-embedding method embeds patterns that are
visually recognizable if presented to human beings. For
example, shapes of letters can be cut into a triangular
mesh as a visible watermark which are visible if displayed
by using a wire-frame rendering. Not all watermarks
produced by pattern-embedding are visible, however.

The mapping from embedded data (either a symbol
sequence or a pattern) and an arrangement of embedding
primitives does not have to be straightforward. Scrambling
the mapping, for example by using a pseudo random number
sequence generated from a stego-key, could increase
security of the embedded data. In this paper, however, we
will not discuss this and other methods of scrambling
watermark any further.

3. Embedding algorithms
This section describes, along with execution examples,

algorithms that are created by combining fundamental
methods discussed in the previous section. In developing the
following algorithms, we assumed viewing of models by 3D
model browsers (e.g., a VRML browser) as the intended use
of models.

All the algorithms are implemented by using a kernel
for a non-manifold modeler [Masuda96]. The system
employs radial edge structure [Weiler86] to represent the
topological relationship among vertices, edges, faces, and
regions.

3.1. Triangle similarity quadruple embedding

A pair of dimensionless quantities, for example, {b/a,
h/c} or {θ1,θ2} in Figure 4, defines a set of similar triangles.
The algorithm described in this section, which is called
Triangle Similarity Quadruple (TSQ) algorithm, uses such
dimensionless quantity pair as the geometrical embedding
primitive to watermark triangular meshes. In order to realize
subscript ordering, the algorithm uses a quadruple of
adjacent triangles that share edges in the configuration
depicted in Figure 5 as a Macro-Embedding-Primitive
(MEP). Each MEP stores a quadruple of values {Marker,
Subscript, Data1, Data2}. A marker is a special value (in
this case a pair of values) that identifies MEPs. In Figure 5,
the triangle marked M stores a marker, S stores a subscript,
and D1 and D2 stores data values. While each MEP is formed
by topology, a set of MEPs are arranged by quantity of
subscript.

The TSQ extraction algorithm does not require
escrowed original cover-3D-model for extraction. However,
it does require a pair of values that identifies marker
triangles. Watermarks produced by the TSQ algorithm
withstand translation, rotation, and uniform-scaling
transformations of the stego-3D-models. The watermarks
are resistant to resection and local deformation since
subscript arrangement and repeated embedding are
employed. The watermarks are destroyed, among other
disturbances, by a randomization of coordinates, by a more
general class of geometrical transformation, or by an
extensive topological alteration such as re-meshing.

The TSQ algorithm embeds a message according to the
following steps.

(1) Traverse the input triangular mesh to find a set of four
triangles to be used as a MEP. In doing so, avoid vertices
that have already been used for the watermark, or
triangles that are unfit for stable embedding, e.g.,
triangles whose dimension-less quantities are too small.

(2) Embed the marker value in the center triangle of the
MEP by changing its dimensionless quantity pair
{e14/e24, h4/e12}, hence coordinates of its vertices v1, v2,
and v4, by small amounts (See Figure 5).

(3) Embed a subscript and two data symbols in the
remaining three triangles of the MEP by displacing
vertices v0, v3, and v5 that are not shared with marker
triangle in the center. Subscript is embedded in the pair
{e02/e01, h0/e12}, and two data symbols are embedded in
the pairs {e13/e34, h3/e14} and {e45/e25, h5/e24}. For each
the three triangles, the algorithm first modifies the ratio
hi/eij by changing hi only. Then the algorithm modifies
the ratio eij/ekl while keeping the height hi constant.

(4) Repeat (1) to (3) above until all the data symbols of the
message are embedded.

In order to embed multiple copies of the message, steps
(1) to (4) are repeated many times. Figure 7 shows triangles
that formed MEPs in darker gray. Due to the mutual
exclusion rule described in the step (1) above, MEPs do not
share vertices.

In the steps (2) and (3) above, the magnitude of
modification of the quantities must be larger than the
expected noise. At the same time, it must be small enough so
that the watermarks are not noticeable by human beings
when displayed by using a model browser. These minimum
and maximum magnitudes of modifications are chosen as a

1θ 2θ
a b

c

h

Figure 4. Examples of dimension-less quantities that
defines a set of similar triangles.

e13

v0

v2v1

v3 v4
v5

e01

e02

e12

e14

e34

e24

e25

e45

h3

h0

h5
h4

S

M
D2D1

Figure 5. A macro-embedding-primitive. In the figure, vI
are vertices, eij are lengths of the edges, and hI are heights
of the triangles.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 6

result of a trade-off between robustness, space efficiency
and noticeability.

Given a watermarked mesh and two numbers that
identify marker triangles, extraction proceeds according to
the following steps.

(1) Traverse a given triangular mesh and find a triangle
with the marker, thereby locating a MEP.

(2) Extract a subscript and two data symbols from the
triangles in the MEP.

(3) Repeat (1) to (2) above for all the marker triangles on a
given triangular mesh.

(4) Sort the extracted symbols according to their subscripts.

The TSQ algorithm performs a simple error correction
by majority voting if multiple copies of a message are
embedded.

Figure 6a shows a model of Beethoven’s bust
(4889 triangles, 2655 vertices) in which six identical copies
of a message, each message consisting of 132 bytes, have
been embedded by using the TSQ algorithm. The message
was gradually lost when the model was resected by arbitrary
planes (Figure 6b-c). As shown in Table 1, cutting the model
in half left the entire message intact, and quartering the
model left 102 out of 132 bytes intact. Since a subscript
arrangement was used, intact characters still tended to be in
the correct positions within the message string.

Table 2 shows, for various models, their data capacities
and execution timings for embedding in the case of the TSQ
algorithm. Timings for extraction were not listed since they
are about the same as those of embedding. The timings were
measured by using IBM AIXTM 4.1.4 operating system and a
xlC c++ compiler on a 100 MHz PowerPC 604 processor.

Space efficiency seen in these examples is adequate for
many practical applications. It should be noted, however,
that these examples pushed space efficiency by somewhat
sacrificing robustness. Increasing robustness, for example
by increasing number of repetition of a message and by
using an error-correcting code would reduce effective data
capacity.

Execution timings are roughly proportional to the
number of triangles in the models. The embedding algorithm
was prototyped on a full-fledged non-manifold modeler
kernel, which has many more features than necessary for the
embedding algorithm Timings will improve significantly if
the code is designed for the embedding algorithm.

3.2. Tetrahedral volume ratio embedding

A ratio of volumes of a pair of tetrahedrons is the
embedding primitive for the Tetrahedral Volume Ratio

(TVR) embedding algorithm described in this section. The
algorithm is designed to accept triangular meshes as its input.
It arranges the embedding primitives topologically into
either global or local one-dimensional arrangement for
symbol sequence embedding.

The TVR algorithm does not require cover-3D-model

 (a) (b) (c) (d)

Figure 6. A model of a Beethoven’s bust (4889 triangles)
resected repeatedly by arbitrary planes.

 Number of
triangles

Data

(a) 4889 6 copies, 132 bytes each
(b) 2443 132/132 bytes
(c) 1192 102/132 bytes
(d) 399 85/132 bytes

Table 1. Data loss due to resection in the example shown in
Figure 6.

Model Number of
triangles

Data
capacity

per model
[bytes]

Embedding
execution

timing [sec]

Cow 5804 1062 19.8
Triceratops 5604 966 9.9
Beethoven 4889 873 9.7
IBM mesh 2996 486 9.8
Face 1406 210 2.3
Stegosaur 1023 180 2.5
Sphere 959 132 1.4

Table 2. Model size, embedding data capacity, and execution
timings for embedding operation for the Triangular
Similarity Quadruple (TSQ) embedding algorithm.

Figure 7. Macro embedding primitives, each of which
consists of four adjacent triangles, are shown in dark gray.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 7

for extraction. The watermarks produced by the TVR
algorithm survive affine transformation. The watermarks are
destroyed, among other disturbances, by topological
modifications such as re-meshing, randomization of vertex
coordinates, and geometrical transformations more general
than affine transformation (e.g., a projection transformation).
A variation of the TVR algorithm discussed at the end of this
section is resistant to resection and local deformation
through the use of local arrangement and repeated
embedding.

The TVR algorithm embeds data in accordance with the
following steps. The crux of the algorithm is establishing
global one-dimensional ordering of embedding primitives.
Details of step (1) below will be explained later.

(1) Find a spanning tree of vertices Vt, called vertex tree, on
the input triangular mesh M, given an initial condition
Ivt for Vt. Convert Vt into a sequence of triangles Tris,
called a triangle sequence.

(2) Convert Tris into a sequence of tetrahedrons Tets, called
a tetrahedron sequence. To do this, compute a common
apex as the centroid of the coordinates of a few triangles
selected from the triangle sequence (e.g., first three).
The selected triangles are removed from the triangle
sequence so that their coordinates are not modified by
embedding of symbols.

(3) Convert Tets into a sequence of ratios of volumes Vrs.
To do this, a volume of a tetrahedron (e.g., the first one)
in Tets is selected as a common denominator of all the
ratios, and volumes of the remaining tetrahedrons are
used for numerators.

(4) Embed a symbol into each ratio by displacing vertices
of numerator-tetrahedrons. The vertex displacements
for the current symbol must not interfere with
modifications of the previously embedded symbols. (In
Figure 8, triangles that are used for embedding, which
are colored dark gray, do not share edges because of this
constraint.)

We now explain details of the first step, starting with
the method to create a triangle sequence, and later come
back to explain how to find an initial condition Ivt.

Generating vertex tree Vt from an input triangular mesh
requires that the input mesh is an orientable manifold. To
generate Vt, traverse vertices from a given initial condition
Ivt, that is, {initial vertex, initial traverse direction} pair,
starting with the Vt initialized to empty. At each vertex, by
scanning the edges in counter-clockwise order, find an edge
that is not a member of Vt and does not loop back to any of
the vertices covered by Vt. If such an edge is found, add it to
Vt.

In the example shown in Figure 9, the vertex tree has a
root (and a branching point) at the vertex numbered 1. After
passing through vertices 1 through to 10, the traverse
backtracks to vertex 1 and adds two vertices, 11 and 12.

The vertex tree Vt is converted into the triangle
sequence Tris as a set of edges Tbe, called a Triangle
Bounding Edge (TBE) set is constructed. The Tbe is
initialized to a set of edges that connect vertices in the Vt. To
add an edge to the Tbe, vertices are traversed according to
the Vt, starting from the root. At each vertex, all the edges

adjacent to the vertex are scanned clockwise, and the
scanned edge is added to the Tbe if it is not a member of the
Tbe. A new triangle is added to the Tris, which started as an
empty sequence, if all three edges of the triangle are in the
Tbe for the first time, and the triangle is not already in the
Tris. In the example shown in Figure 9, edges (except the
initial entries of the Tbe) are marked by alphabets in the
order of addition to the Tbe using alphabetical ordering. In
the figure, members of the Tris are marked by the numbers
in the circles according to the sequence each triangle is
added to the Tris.

As the initial condition, the TVR algorithm selects an
initial edge, instead of an {initial vertex, initial traverse
direction} pair mentioned before. To select the initial edge,
the algorithm computes, for every edge in the model, the
volume of the tetrahedron subtended by the two triangles
that are adjacent to the edge (Figure 10). The algorithm
selects, as the initial edge, the edge for which tetrahedron’s
volume is the largest. This method works since affine
transformation preserves inequality among volumes of
tetrahedrons. (Note that these tetrahedrons are different set
of tetrahedrons from the ones used to embed symbols.)

The TVR extraction algorithm employs the

Figure 8 Triangles used for embedding by the TVR
algorithm are shown in dark gray.

1

2
4

5
8

9 10

11

12

1

2

3
5

6
7

8

10

a
b

c
d

e

f
g

h
i j

k

l

34

6 97

12 11

1: Initial vertex.
1 to 2: Initial

traverse
direction.

１ : Triangle
sequence
entries.

１ : Triangle
bounding
edge (TBE)
list entries.

Figure 9. An example showing a vertex tree, a triangle
bounding edge list, and a triangle sequence.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 8

trial-and-error method to find a correct initial edge. The
algorithm tries multiple candidate edges until it extracts a
correct predetermined lead-in symbol sequence. This is
because the edge found to have the largest volume may be
incorrect due to noise and other reasons.

Using an edge as initial condition leaves two equally
possible alternatives in starting a traversal to construct a
vertex tree. This ambiguity is resolved, again, by using the
trial-and-error method. The TVR extraction algorithm
extracts two sequences of symbols by using both alternatives.
It then choose the direction that yielded correct
predetermined lead-in symbol sequence.

Table 3 shows, for various models, data capacity per
model and execution time for embedding operation.
Conditions for timing measurements are the same as for
Table 2. As with the TSQ algorithm, the amount of data that
can be embedded by using the TVR algorithm appears to be
adequate for many applications. Execution timings in the
same table show similar tendency as the TSQ algorithm;
they are roughly proportional to the size of the model. These
timings also leave room for a significant improvement by
designing an optimized code.

As mentioned before, the watermarks by TVR
algorithm can be made resistant to resection and local
deformation by using a local or subscript arrangement
method combined with repeated embedding. The TVR
algorithm strengthened by a local arrangement method,
called TVR Cluster (TVRC) embedding algorithm, was used
in the examples shown in Figure 11. In order to create
sub-domains for local arrangement, this algorithm simply
split the model into subsets (i.e., multiple disconnected
meshes). Boundaries of subsets have duplicate vertices and
edges so that the crack will not become visible. In this
example, the message embedded in a model of a cow
survived affine transformations. It also survived, to some
extent, resections of a part of the model.

3.3. Triangle strip peeling symbol-sequence-embedding

The embedding algorithm presented in this section,
called Triangle Strip Peeling Symbol sequence (TSPS)
embedding algorithm, peels off triangle strips from a given
triangle mesh in order to embed symbol sequences. The
embedding primitive is an adjacency of a pair of triangles in
a triangle strip, each of which encodes a bit of information.
The adjacency also induces 1D arrangement of embedding
primitives in the triangle strip. Since the algorithm employs
a topological embedding primitive and topological
arrangement, the watermarks produced by the algorithm are
robust against practically every geometrical transformation.
By repeating the embedding, the watermark as can be made
resistant to resection. The algorithm does not require
cover-3D-model escrow for extraction.

A disadvantage of this algorithm is its relatively low
space efficiency. The embedding can be destroyed, for
example, by polygon simplification algorithms that employ
edge swapping operations.

Inputs to this embedding algorithm are an orientable
triangular mesh and a sequence of binary digits. The basic
TSPS embedding algorithm embeds data according to the
following steps. (See Figure 12.)

a
b

c

d

Figure 10. The volume of the tetrahedron a-b-c-d,
subtended by two triangles a-d-c and b-c-d that are adjacent
to the edge c-d, is computed. The arrows show two possible
initial s c-d.

Model Number of

triangles
Data

capacity per
model
[byte]

Embedding
execution

timing [sec]

Cow 5804 1027 20.2
Triceratops 5604 650 7.2
Beethoven 4889 324 9.6
IBM mesh 2996 652 9.9
Face 1406 116 2.2
Stegosaur 1023 225 2.4
Sphere 959 216 1.5

Table 3. Model size, data capacity, and execution timings
for embedding operation for the Tetrahedral Volume Ratio
(TVR) embedding algorithm.

(a) The original model. (b) Message embedded.

(d) Affine-transformed. (c) Cut in half.

Figure 11. (a) Three-dimensional model of a cow (5804
triangles). (b) A message is embedded by using the TVR
algorithm enhanced with local arrangement and repeated
embedding.. The message survives (c) resection or (d)
affine transformation.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 9

(1) Starting from an edge e selected from the input mesh M,

grow a triangular strip S on M by using the message
bit-string to determine the connectivity of triangles on
the strip.

Observe that a triangle at the end of (current) strip
has two “free” edge, i.e., edges that are not adjacent to
triangles of the triangle strip. Since M is orientable,
these two edges can be ordered on the triangle by
traversing the edges in counterclockwise (or clockwise)
order. Label the first free edge ‘0’ and the second (i.e.,
last) free edge ‘1’. Then, depending on the bit to be
embedded, choose one of the free edges to add the next
triangle of the triangle strip. (See Figure 13.)

(2) “Peel off” the triangle strip S from M by splitting all the
edges on the boundary of S except the initial edge e.
(The strip S is connected to the rest of the mesh only by
the edge e.) Since the peeled strip caps the hole
completely, presence of the watermark is visually
unnoticeable.

The mesh with watermark is called M+, and the mesh
M+ minus the triangle strip S is called a stencil mesh R.
The edge e serves as the initial condition for finding the
triangle strip. Ordering of primitives is induced
naturally by the connectivity of embedding primitives in
the triangle strip. Termination condition of the
arrangement is the open end of the strip.

Figure 13 shows an example of a triangle strip that
starts at edge e and embeds a message bit string
“10101101011” in a sequence of 12 triangles. Each bit of the
bit string steers the direction of the growth of the triangle
strip.

Note that such steering may produce strips whose shape
may not fit in a given mesh, depending on the lengths and
arrangement of 0s and 1s of message bit strings. For example,
if a sequence of 1 continues in a bit string, the strip will keep
steering to the left. This strip will either hit a boundary of the
mesh M or circle back to itself, most likely before it is long
enough to have embedded all the message bits. To avoid
such problems, shapes of triangles strips must be
manipulated, and locations and orientations of the strips in
the mesh M must be chosen carefully.

The shape of a triangle stripe can be manipulated by

introducing steering symbols. A steering symbol is a bit that
does not carry information but simply steer direction of
growth of a triangle strip. Steering symbols are interleaved
with data symbols (i.e., symbols that encodes embedded
data) in order to actively steer the triangle strip into a desired
shape. A drawback of using steering symbols is that the
triangle strip becomes less space efficient. To pick locations
and orientations of triangle strips on a mesh, our algorithm
currently employs a simple-minded trial-and-error approach.

Extraction of message can be carried out according to

Peeled strip S

e

M’ = R+S

MM

e

M

Generate triangle
strip based on the
message bit string.

Peel off the triangle
strip from the mesh
M, except the edge
e.

Figure 12. Triangle strip peeling symbol sequence
embedding algorithm. Given a mesh M, a bit string is
embedded into connectivity of triangles in a triangle strip S.
S is then peeled off from the mesh M, except for edge e.
(Cracks around the strip in the bottom figure are for
illustration purpose only.)

e 1 0
1 0

1

1 1
0

0

1

1

0

Figure 13. Connectivity of 12 triangles in a triangle strip
encodes the bit string “10101101011” (11 bits).

Figure 14. A triangle strip consisting of 27 triangles was cut
out a triangle mesh (214 triangles). The triangle strip,
displayed in darker gray, encodes 13 data bits interleaved
with 13 steering bits.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 10

the following steps.

(1) Traverse the given mesh M+ and find an edge with
topological features that starts a triangle strip of known
length that is attached to the stencil mesh by an edge.

(2) Traverse the triangle strip to the open end as embedded
bits are extracted.

Although rare, it is conceivable for the meshes M to
have topological structures identical to that of peeled off
triangle strip. Data extracted from such triangle strips are
meaningless. These erroneous extraction results can be
rejected, for example, by using a “signature” bit sequence.

Figure 14 shows a simple example of TSPS embedding,
in which a triangle strip of length 27 is peeled off of a mesh
that consisted of 214 triangles. The triangle strip encodes 13
data bits and 13 steering bits. Selection of steering bits in this
case was done manually.

3.4. Polygon stencil pattern-embedding

Given a mesh M, a pattern can be embedded by simply
cutting out a polygonal strip S in a desired pattern, as
illustrated in Figure 15. S is attached to the embedded-mesh
mesh by an edge, for example; It is easier to find and remove
S if it is totally disconnected from the rest of the mesh. Since
the strip completely caps the hole, watermarks are visually
unnoticeable.

Watermarks produced by this algorithm, called
Polygon Stencil Pattern (PSP) embedding, are robust against
most of the polygonal simplification algorithms, since
vertices on the boundary of polygonal strips and stencil
meshes are preserved by these algorithms. (Unlike the TSP
algorithm, connectivity of vertices on the strip does not
matter.) If vertices on the boundary are removed or
displaced forcefully, cracks will most likely appear in the
model, diminishing the value of the model.

Figure 16 shows a stenciled polygonal mesh, a cut out
triangle strip, and effects of polygon simplification
algorithm on them. The vertices on the boundary of the
stencil mesh are preserved despite a polygon simplification,
which reduced the number of triangles from 1815 down to
459. Number and coordinates of vertices on the boundary of
the triangle strip did not change after simplification.
Topology of the edges did change after simplification,
however, due to edge swapping employed by one of the
simplification algorithms we have tried. (One of the
polygonal “simplification” algorithms that employed
edge-swapping actually increased the number of triangles
from 207 triangles to 213 triangles while it kept the number
of vertices unchanged.)

3.5. Mesh density pattern embedding

Another simple pattern embedding algorithm, named
Mesh Density Pattern (MDP) embedding, generates
polygonal mesh models given curved surface models as
inputs. As the algorithm tessellates given curved surfaces, it
embeds visible pattern by modulating the sizes of triangles
in the output mesh (Figure 17a). This pattern is hardly
visible if displayed with a smooth shading (e.g., Gouraud
shading) using proper vertex normal vectors calculated form
the original curved surfaces. The pattern becomes visible

when the data is displayed by using wire mesh rendering.
This watermark withstands practically any geometrical

transformation. The algorithm is resistant but not immune to
polygonal simplification and other topology manipulations.
Figure 17b shows an example of effects of polygonal
simplification in which the number of triangles in the
original mesh has been less than halved by a polygonal
simplification algorithm. The pattern will be destroyed
eventually due to the simplification. However, a visible
watermark may be just enough to deter unauthorized use of

M M+

S
R

Figure 15. Pattern is embedded by peeling off a polygonal
strip S in a desired pattern out of a given mesh M.

(a) The stencil mesh (1815
triangles) left after peeling
off the strip (right) from the
original mesh.

(b) The triangle strips cut in
patterns of three letters (207
triangles total).

(c) The stencil mesh after
polygonal simplification
(459 triangles).

(d) Triangle strips after
polygonal “simplification”
(213 triangles).

Figure 16. A mesh generated from a curved surface has
been stenciled with three letters (a). Letters are cut off as
triangular strips (b). Boundary vertices and edges are
preserved in the stenciled mesh and in the polygonal strips
after polygonal simplification.

Proceedings of the Fifth ACM International Multimedia Conference (ACM Multimedia '97),
pp. 261-272, November 9-13, 1997, Seattle, Washington, USA.

 Page 11

the data.
Note that many topological embedding methods can be

combined with geometrical embedding methods. In fact, the
“IBM mesh” model used in the examples of Table 2 and
Table 3 is the mesh shown in Figure 17a. A combination of
multiple embedding methods, each with its own strength and
weakness, is a possible approach to increase utility of the
data embedding.

4. Summary and future Work
In this paper we presented fundamental techniques and

example of algorithms for embedding information into 3D
polygonal models. A review of related work and a
discussion on requirements and on selection of target objects
for embedding data into 3D models of geometry were given.
Next, we presented fundamental methods for embedding
data into a polygonal model, namely, geometrical and
topological embedding primitives, and methods for
introducing order into a set of embedding primitives. Finally,
we described some simple data embedding algorithms and
results from their implementations to demonstrate that a data
embedding into 3D polygonal model of geometry is a
practicable technique.

Some of the algorithms described in this paper may be
useful for inventory of 3D models or for notification of
copyrights to cooperative users. However, these algorithms
lack many qualities desired for realistic applications.
Probably the most important deficiency of the algorithms
presented in this paper is the lack of robustness.

Development of more robust data embedding
algorithms will be a major focus of our future work. We
would also like to broaden the class of target objects for
watermarking, for example, to include parameters defining
curved surfaces or vertex normal vectors. Adaptation of
embedding algorithms to realistic application models, for
example, by adding security through stego-keys, is another
area to be examined. Data embedding for 3D models whose
intended purpose is not simple viewing is another interesting
topic for investigation.

Acknowledgements

The authors would like to thank Mei Kobayashi and
Shuichi Shimizu for helpful discussions. The authors also
would like to thank anonymous reviewers for valuable
comments.

References
[Braudway96] G. Braudway, K. Magerlein, and F. Mintzer,
Protecting Publicly-Available Images with a Visible Image
Watermark, IBM Research Report, TC-20336 (89918),
January 15, 1996.
[Cox95] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon,
Secure Spread Spectrum Watermarking for Multimedia,
Technical Report 95-10, NEC Research Institute, 1995.
[Farin96] G. Farin, Curves and Surfaces for CAGD: a
Practical guide, Fourth edition, Academic Press, 1996.
[Hartung97] F. Hartung, B. Girod, Copyright Protection in
Video Delivery Networks by Watermarking of
Pre-Compressed Video, Lecture Notes in Computer Science,
Vol. 1242, pp.423-436, Springer, 1997.
[ISO96] ISO/IEC JTC1 SC24/N1596 CD #14772 Virtual
Reality Model Language (VRML 2.0)
[Masuda96] H. Masuda, Topological operations for
non-manifold geometric modeling and their applications,
Ph. D dissertation, Department of Precision Machinery
Engineering, University of Tokyo, 1996 (in Japanese).
[O’Rourke94] J. O’Rourke, Computational Geometry in C,
Cambridge University Press, 1994.
[O’Ruanaidh96] J. J. K. O’Ruanaidh, W. J. Dowling, F. M.
Boland, Watermarking Digital Images for Copyright
Protection, IEE Proc.-Vis. Image Signal Process., Vol. 143,
No. 4, pp. 250-256, August 1996.
[Pfitzmann96] B. Pfitzmann, Information Hiding
Terminology, in R. Anderson, Ed., Lecture Notes in
Computer Science No. 1174, pp 347-350, Springer-Verlag,
1996.
[Schneier96] B. Schneier, Applied Cryptography, Second
edition, John Wiley & Sons, Inc., New York, 1996.
[Smith96] J. R. Smith and B. O. Comiskey, Modulation and
Information Hiding in Images, in R. Anderson, Ed., Lecture
Notes in Computer Science No.1174, pp. 207-296,
Springer-Verlag, 1996.
[Tanaka90] K. Tanaka, Y. Nakamura, and K. Matsui,
Embedding Secret Information into a Dithered Multilevel
Image, Proc. 1990 IEEE Military Communications
Conference, pp. 216-220, 1990.
[Taubin96] G.Taubin, Geometric Compression Through
Topological Surgery, IBM Research Report, RC-20340
(89924), January 16, 1996.
[Walton95] S. Walton, Image Authentication for a Slippery
New Age, Dr. Dobb’s Journal, pp. 18-26, April 1995.
[Weiler86] K. Weiler, The Radial Edge Structure: A
Topological Representation for Non-Manifold Geometric
Boundary Modeling, Geometric Modeling for CAD
Applications, North Holland, pp. 3-36, May 1986.
[Zhao96] J. Zhao and E. Koch, Embedding Robust Labels
into Images for Copyright Protection, Proc. of the Int’l.
Congress on Intellectual Property Rights for Specialized
Information, Knowledge, and New Technologies, Vienna,
August 1995.

(a) Pattern is embedded by
reducing mesh size by 1/4
(2996 triangles).

(b) The mesh after
polygonal simplification
(1374 triangles).

Figure 17. Pattern embedding and effect of a mesh
simplification algorithm on the embedded pattern.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

