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Abstract

The objective of this track is to evaluate the performance of 3D shape retrieval approaches on a large-sale com-
prehensive 3D shape database that contains different types of models,such as generic, articulated, CAD and
architecture models. The track is based on a new comprehensive 3D shape benchmark, which contains 8,987
triangle meshes that are classified into 171 categories. The benchmark was compiled as a superset of existing
benchmarks and presents a new challenge to retrieval methods as it comprises generic models as well as domain-
specific model types. In this track, 14 runs have been submitted by 5 groups and their retrieval accuracies were
evaluated using 7 commonly used performance metrics.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

With the increasing number of 3D models created every
day and stored in databases, the development of effective
and scalable 3D search algorithms has become an impor-
tant research area. In this contest, the task was to retrieve
3D models similar to a complete 3D model query from a
new integrated large-scale comprehensive 3D shape bench-
mark including various types of models. Owing to the inte-
gration of the most important existing benchmarks to date,
the newly created benchmark is the most exhaustive to date
in terms of the number of semantic query categories cov-
ered, as well as the variations of model types. In particu-
lar, it combines generic and domain-dependent model types
and therefore rates the retrieval performance with respect to
cross-domain retrieval tasks. The shape retrieval contest will

† Track organizers. For any questions related to the track, please
contact Generic3D@nist.gov or li.bo.ntu0@gmail.com.
‡ Track participants.

allow researchers to evaluate results of different 3D shape
retrieval approaches when applied on a large scale compre-
hensive 3D database.

The benchmark is motivated by the latest large collection
of human-drawn sketches built by Eitz et al. [EHA12]. To
explore how human draw sketches and human sketch recog-
nition work, they collected 20,000 human-drawn sketches,
categorized into 250 classes, each with 80 sketches. This
sketch dataset is exhaustive in terms of the number of object
categories. Thus, we believe that a 3D model retrieval bench-
mark based on their object categorizations will be more com-
prehensive and appropriate than currently available 3D re-
trieval benchmarks to more objectively and accurately eval-
uate the real practical performance of a comprehensive 3D
model retrieval algorithm if implemented and used in the real
world.

Considering this, we built a SHREC’14 Large Scale Com-
prehensive Track Benchmark (SHREC14LSGTB) by col-
lecting relevant models in the major previously proposed 3D
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Table 1: Classification information of the 8 selected source benchmarks.

Benchmarks Types Number of models Number of classes Average number of models per class

PSB Generic
907 (train) 90 (train) 10 (train)
907 (test) 92 (test) 10 (test)

SHREC12GTB Generic 1200 60 20

TSB Generic 10,000 352 28

CCCC Generic 473 55 9

WMB Watertight (articulated) 400 20 20

MSB Articulated 457 19 24

BAB Architecture 2257
183 (function-based) 12 (function-based)

180 (form-based) 13 (form-based)

ESB CAD 867 45 19

object retrieval benchmarks. When creating the benchmark,
our target was to find models for as many of the 250 classes
as possible, and for each class find as many models as pos-
sible. These previous benchmarks have been compiled with
different goals in mind and to date, have not been considered
in their union. Our work is the first to integrate them to form
a new, larger benchmark corpus for comprehensive 3D shape
retrieval.

To avoid adding replicate models, we selected the fol-
lowing 8 benchmarks: the Princeton Shape Benchmark
(PSB) [SMKF04], the SHREC’12 Generic Track Bench-
mark (SHREC12GTB) [LGA∗12], the Toyohashi Shape
Benchmark (TSB) [TKA12], the Konstanz 3D Model
Benchmark (CCCC) [Vra04], the Watertight Model Bench-
mark (WMB) [VtH07], the McGill 3D Shape Bench-
mark (MSB) [SZM∗08], the Bonn Architecture Benchmark
(BAB) [WBK09], and the Engineering Shape Benchmark
(ESB) [JKIR06]. Table 1 lists their basic classification in-
formation while Fig.1 shows some example models for the
four specific benchmarks. Totally, the extended large-scale
benchmark has 8,987 models, classified into 171 classes.
The average number of models in each class is 53, which
is much more than any of the benchmark in Table1.

Based on this new challenging benchmark, we organize
this track to foster this research area by soliciting retrieval
results from current state-of-the-art 3D model retrieval meth-
ods for comparison, especially for practical retrieval perfor-
mance. We will also provide evaluation code to compute a
set of performance metrics, including those commonly used
for evaluating query by example retrieval techniques.

2. Data Collection

The SHREC’14 Large Scale Comprehensive Retrieval Track
Benchmark† has 8,987 models, categorized into 171 classes.
We (one undergraduate student, one master student, one

† Available on http://www.itl.nist.gov/iad/vug/
sharp/contest/2014/Generic3D/.

(a) ESB

(b) MSB

(c) WMB

(d) BAB

Figure 1: Example 3D models inESB, MSB, WMB and
BAB datasets.

researcher with a master degree and one with a PhD de-
gree) adopt a voting scheme to classify models. For each
classification, we have at least two votes. If these two
votes agree each other, we confirm that the classification
is correct, otherwise, we perform a third vote to finalize
the classification. All the models are categorized accord-
ing to the classifications in Eitz et al. [EHA12], based
on visual similarity. This 3D dataset was also used as
the target 3D model dataset in evaluating sketch-based
3D shape retrieval algorithms in the SHREC’14 track
on extended large scale sketch-based 3D shape retrieval
(http://www.itl.nist.gov/iad/vug/sharp/contest/2014/SBR/).

3. Evaluation

To have a comprehensive evaluation of the retrieval algo-
rithm, we employ seven commonly adopted performance
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metrics in 3D model retrieval. They are Precision-Recall
(PR) graph, Nearest Neighbor (NN), First Tier (FT), Sec-
ond Tier (ST), E-Measures (E), Discounted Cumulated Gain
(DCG) and Average Precision (AP). We also have developed
the code to compute them. Besides the common definitions,
we also develop two weighted variations for each bench-
mark by incorporating the model variations in each class.
Basically, we use the number of available models to define
the model variations. We assume there is a linear correlation
between the number of available models in one class and
the degree of variations of the class. Therefore, we adopt a
weight based on the number of models or its reciprocal to
define each weighted performance metric.

Proportionally weighted metricsmp and reciprocally
weighted metricsmr (m=NN/FT/ST/E/DCG) are defined as
follows.

mp =
N

∑
i=1

ni

N
·mi ,

mr =
N

∑
i=1

1
ni

∑N
j=1

1
n j

·mi ,

where N is the total number of models,ni is the size of
class to which theith model belongs,mi is the non-weighted
NN/FT/ST/E/DCG metric value for theith model. mp as-
signs bigger weights to the classes with more variations.
On the contrary,mr highlights the performance in retrieving
classes with few models/variations.

4. Participants

There are 5 groups who have successfully participated in the
SHREC’14 Comprehensive 3D Shape Retrieval track. In to-
tal, they have submitted 14 dissimilarity matrices. The de-
tails about the participants and their runs are as follows.

• CSLBP-Run-1, CSLBP-Run-2, CSLBP-Run-3, HSR-DE
and KVLAD submitted by Masaki Aono, Nihad Karim
Chowdhury, Hitoshi Koyanagi, and Ryuichi Kosaka from
Toyohashi University of Technology, Toyohashi, Japan
(Section5.1)

• DBNAA_DEREsubmitted by Qiang Chen and Bin Fang
from Chongqing University, China (Section5.2)

• BF-DSIFT, VM-1SIFT, MR-BF-DSIFT, MR-D1SIFTand
MR-VM-1SIFTsubmitted by Takahiko Furuya and Ryu-
tarou Ohbuchi from University of Yamanashi, Japan (Sec-
tion 5.3)

• ZFDRsubmitted by by Bo Li and Yijuan Lu from Texas
State University, USA; and Henry Johan from Fraunhofer
IDM@NTU, Singapore (Section5.4)

• DBSVC and LCDR-DBSVCsubmitted by Atsushi Tat-
suma and Masaki Aono from Toyohashi University of
Technology, Japan (Section5.5)

5. Methods

5.1. Hybrid Shape Descriptors CSLBP*, HSR-DE, and
KVLAD, by M. Aono, N.K., Chowdhury, H.
Koyanagi, and R. Kosaka

We have investigated accurate 3D shape descriptors over
the years for massive 3D shape datasets. In the Large
Scale Comprehensive 3D Shape Retrieval track, we have at-
tempted to apply three different methods with five runs. Note
that all the five runs, we apply pose normalization [TA09] as
pre-processing.

For the first three runs, we applied CSLBP*, a hy-
brid shape descriptor, composed ofCenter-SymmetricLocal
Binary Pattern (CSLBP) feature [HPS06], Entropy descrip-
tor [CPW98], and optional Chain Code (CC). The differ-
ence between the three runs comes from the number of
view projections and the existence of the optional CC: 16
views for CSLBP in Run-1, 24 views for CSLBP in Run-
2 and Run-3, while no CC for Run-1 and Run-2 and CC
addition in Run-3. CSLBP* is computed by first generating
depth buffer images from multiple viewpoints for a given 3D
shape object, then by analyzing gray-scale intensities to pro-
duce three-resolution level histograms (in our implementa-
tion, 256×256, 128×128, and 64×64), having 16 bins each,
after segmenting each depth-buffer image into sub-images
(16, 8, 4, respectively). In addition to CSLBP, we have aug-
mented it with “Entropy”, trying to capture the randomness
of surface shapes, resulting in CSLBP*.

For the fourth run, we applied HSR-DE, another hybrid
shape descriptor, composed of multiple Fourier spectra ob-
tained by Hole, Surface-Roughness, Depth-buffer, Contour,
Line, Circle, and Edge images, an extension to the method
we published in [AKT13]. Figure 2 illustrates the method
adopted in Run-4.

Figure 2: An example of HSR-DE (Hole and Surface-
Roughness descriptors with Depth-buffer and Edge features
augmented) before conversion to Fourier spectra.

For the fifth run, we applied KVLAD, a supervised learn-
ing method we developed by combining non-linear scale
space [ABD12] with VLAD [ JDSP10]. For the training
stage, we employ SHREC2011 data and generate a code
book of size 500, which is used for distance computation
during the testing stage.

c© The Eurographics Association 2014.
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5.2. 3D Model Retrieval Descriptor DBNAA_DERE, by
Q. Chen and B. Fang [CFYT14]

Figure 3: DBNAA_DERE feature extraction procedure.

First, we extract a Normal Angle Area (NAA), and then
combined NAA with D2 [OFCD02] and Bounding Box fea-
ture to form DBNAA. Second, we combine DBNAA with
Depth buffer images (DE), Ray extent (RE) [Vra04] to form
DBNAA_DERE [CFYT14] descriptor. Figure3 shows the
feature extraction procedure.

(1) DBNAA feature extraction. DBNAA comprises
three components: D2 feature, Bounding Box feature and
Normal Angle Area feature. D2 feature [OFCD02] is ex-
tracted by usingN=1024 samples,B=1024 bins, and Bound-
ing Box feature is extracted after using Continuous Principle
Component Analysis (CPCA) [Vra04] for model pose nor-
malization.

L = {Zmax−Zmin,Ymax−Ymin,Xmax−Xmin},

FBB = { rank(L,1)
rank(L,2)

,
rank(L,2)
rank(L,3)

},

whererank() is to sort the vector in ascending order.

NAA feature is based on mean angleα and average area
Sof each vertex,

α =
1

Nv j
∑

{ni ,n j}⊂Fv j

ni ·n j ,

S =
1

Nv j

Nv j

∑
i=1

Si ,

whereNv j is the number of adjacent faces of each vertex,
ni is the normal of facei, Fv j is the set of normals of the
adjacent faces.

After getting the mean angleα and average areaS, they
can be formed into a joint 2D histogram, whereα is divided
into N bins,S is also divided intoN bins. HereN is set to 16
empirically. NAA is aN*N feature matrix.

1) DBNAA feature combination.Feature combination is
carried out as follows,

dDBNAA= α∗dD +β∗dB+(1−α−β)∗dNAA

where theα andβ is set toα=0.65,β=0.15 according to our
experiments on SHREC’12 Track: Generic 3D Shape Re-
trieval [LGA∗12] dataset.

2) DBNAA_DERE feature combination.Inspired by Li
and Johan [LJ13], the Depth Buffer-based (DE) and Ray-
Extent (RE) [Vra04] features are combined to the DBNAA
framework as follows:

dDBNAA_DERE= α∗dDBNAA+β∗dDE +(1−α−β)∗dRE

Here α=0.3, β=0.35 also according to the experiment on
SHREC’12 Track: Generic 3D Shape Retrieval [LGA∗12]
dataset.

Since it could not get the correct class label of the test
set, so the class information based retrieval method is not
available here. For more details about the shape descriptor
computation, please refer to [CFYT14].

5.3. Visual Feature Combination for Generic 3D Model
Retrieval, by T. Furuya and R. Ohbuchi

Figure 4: Two feature-adaptive distances computed using
two visual features (BF-DSIFT and VM-1SIFT) are com-
bined.

Our method is essentially the one described in [LGA∗12]
and [OF10]. An overview of our algorithm is shown in Fig-
ure 4. It involves multi-viewpoint rendering of 3D models,
extraction of local and global visual features, and combina-
tion of feature-adaptive distances learned on both local and
global visual features.

A nice property of such a view-based approach is that 3D
models in almost any shape representations (polygon soup,
uniform mesh, point cloud etc.) can be compared. And com-
bination of local and global features would yield more robust
retrieval results due to complementary features extracted by
local and global approaches. Local feature is robust against
articulation of 3D shapes, e.g., bending of joints. However,
it has difficulty distinguishing some classes of rigid shapes,
e.g, pipes bent in U shape and in S shape. On the other hand,
global feature may distinguish these rigid shapes.

5.3.1. Visual feature extraction

Our method first renders a 3D model into range images from
multiple (in this case 42) viewpoints spaced uniformly in
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solid angle and image resolution of 256×256 pixels. Then it
extracts a set of local visual features, Dense SIFT (DSIFT)
[FO09] and a set of global visual features, One SIFT (1SIFT)
[OF10] from the range images.

For DSIFT extraction, we randomly and densely sample
feature points on the range image with prior to concentrate
feature points on or near 3D model in the image (see Figure5
(b)). From each feature point sampled on the image, we ex-
tract SIFT [Low04], which is multi-scale, rotation-invariant
local visual feature. The number of feature points per im-
age is set to 300 as in [FO09], resulting in about 13k DSIFT
features per 3D model. The set of dense local features are
integrated into a single feature vector per 3D model by us-
ing Bag-of-Features (BF) approach. We use ERC-Tree algo-
rithm [GEW06] to accelerate both codebook learning (clus-
tering of local features) and vector quantization of local fea-
tures into visual words. The frequency histogram of vector-
quantized DSIFT features becomes a BF-DSIFT feature vec-
tor for the 3D model.

(a) Original
SIFT [Low04]

(b) DSIFT (c) 1SIFT

Figure 5: Our method combines dense local visual features
(DSIFT) and global visual features (1SIFT).

For 1SIFT extraction, we sample a feature point at the
center of the range image and extract a SIFT feature from
a large region covering the entire 3D model (see Figure5
(c)). The number of 1SIFT per model is equal to the num-
ber of rendering viewpoints (42 1SIFT features in this case).
Note that the set of 1SIFT features is not BF-integrated but
is directly compared by using per-View Matching of 1SIFT
features (VM-1SIFT).

5.3.2. Distance computation

For the experiments, ranking of retrieval results are per-
formed by using two different distance metrics; fixed dis-
tance and feature-adaptive distance learned by using Mani-
fold Ranking (MR) algorithm [ZBL∗03].

(1) Fixed distance. Symmetric version of Kullback-
Leibler Divergence (KLD) is used as fixed distance metric.
KLD performs well when comparing a pair of probability
distributions, i.e., histograms. For the BF-DSIFT, distance
between a pair of 3D modelsxi , x j is equivalent to KLD
between BF-DSIFT feature vectors of the models (Equation
(1)). For the VM-1SIFT, distance between a pair of 3D mod-
els is calculated by using Equation (2) whereNv is the num-

ber of 1SIFT features per model andxip is 1SIFT feature
vector extracted from the viewp of 3D modelxi .

dBF−DSIFT(xi ,x j ) = dKLD(xi ,x j ) (1)

dVM−1SIFT(xi ,x j ) =
Nv

∑
p=1

min
1≤q≤Nv

dKLD(xip,x jq) (2)

(2) Feature-adaptive distance. To improve distance met-
ric among 3D models, we apply MR to each of the BF-
DSIFT and the VM-1SIFT to compute diffusion distance on
a feature manifold. We first generate aNm×Nm affinity ma-
trix W whereNm is the number of 3D models (Nm=8,987
for this track) andWi j indicates similarity between a pair
of 3D modelsxi , x j . Wi j is computed by using Equation (3)
where d is fixed distance of either BF-DSIFT (Equation (1))
or VM-1SIFT (Equation (2)).

Wi j =

{

exp(− d(xi ,x j )
σ ) if i 6= j

0 otherwise

We normalizeW for S;

S = D− 1
2 WD− 1

2 (3)

whereD is a diagonal matrix whose diagonal element is
Dii = ∑ j Wi j .

We use the following closed form of the MR to find rel-
evance values inF given “source” matrixY. Fi j is the rel-
evance value of the 3D modeli and j. A higher relevance
means a smaller diffusion distance.

F = (I−αS)−1Y (4)

We add prefix “MR-” before the feature comparison
method to indicate MR-processed algorithms (MR-BF-
DSIFT and MR-VM-1SIFT). Table2 summarizes the pa-
rameters used for MR-BF-DSIFT and MR-VM-1SIFT. To
further improve retrieval accuracy, we combine diffusion
distances of local features and global features. The diffusion
distances of MR-BF-DSIFT and MR-VM-1SIFT are nor-
malized and then summed with equal weight (MR-D1SIFT).

Table 2: Parameters for the MR.

Method σ α
MR-BF-DSIFT 0.0050 0.975
MR-VM-1SIFT 0.0025 0.900

c© The Eurographics Association 2014.
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5.4. Hybrid Shape Descriptor ZFDR, by B. Li, Y. Lu
and H. Johan [LJ13]

Figure 6: ZFDR feature extraction process [LJ13].

The comprehensive 3D model dataset contains both
generic and professional (e.g. CAD and architecture mod-
els), rigid and non-rigid, articulated and non-articulated, wa-
tertight and non-watertight models. Due to the variations
in the types and robustness considerations in retrieval per-
formance, we employ the hybrid shape descriptor ZFDR
devised in [LJ13] which integrates both visual and geo-
metric information of a 3D model:Zernike moments and
Fourier descriptor features of 13 cube-based sample views,
andDepth information feature of 6 depth buffer views and
Ray-based features based on ray shooting from the center of
the model to its farthest surface intersection points. Figure6
illustrates the overview of the feature extraction process: 3D
model normalization mainly utilizing Continuous Principle
Component Analysis (CPCA) [Vra04] and extraction of four
component featuresZ, F, D andR. The details are described
as follows.

(1) View sampling. As a tradeoff between efficiency and
accuracy, the approach sets cameras on the 4 top corners, 3
adjacent face centers and 6 middle edge points of a cube to
generate 13 silhouette views to represent a 3D model.

(2) Zernike moments and Fourier descriptors features
(ZF). For each silhouette view, up to 10th order Zernike mo-
ments [KH90] (totally 35 moments) and first 10 centroid
distance-based Fourier descriptors [ZL01] are computed to
respectively represent the region-based and contour-based
visual features of the 3D model.

(3) Depth information and Ray-based features (DR).
To improve the versatility of the descriptor in characteriz-
ing diverse types of models, the depth buffer-based feature
and ray-based with spherical harmonic representation fea-
ture developed by Vranic [Vra04] are integrated into the hy-
brid shape descriptor. The executable files [Vra04] are uti-
lized to extract the 438-dimensionalD and 136-dimensional
R features.

(4) ZFDR hybrid shape descriptor distance. Scaled-
ℓ1 [Vra04] or Canberra distance metric is first applied to

measure the component distancesdZ, dF , dD, and dR be-
tween two models. Then, the hybrid descriptor distance
dZFDR is generated by linearly combining the four compo-
nent distances.

Please refer to the original paper [LJ13] for more details
about the feature extraction and retrieval process.

5.5. Depth Buffered Super-Vector Coding, by A.
Tatsuma and M. Aono

We propose a new 3D model feature known as Depth
Buffered Super-Vector Coding (DBSVC), an approach
categorized as a bag-of-visual words method [BBGO11,
FO09]. DBSVC extracts 3D model features from ren-
dered depth buffer images using a super-vector coding
method [ZYZH10].

Figure 7 illustrates the generation of our proposed DB-
SVC feature. We first apply pose normalization. 3D models
are usually defined by different authors with distinct author-
ing tools, which make the position, size, and orientation of
3D models diverse from each other. To solve this problem,
we use Point SVD, a normalization method developed pre-
viously by the authors [TA09].

Post pose normalization, we enclose the 3D model with a
unit geodesic sphere. From each vertex of the unit geodesic
sphere, we render depth buffer images with 300×300 reso-
lution, and a total of 38 viewpoints are defined.

After image rendering, we extract local features from
each depth buffer image. Here, we propose a new local
feature called Power SURF descriptor. SURF-128 descrip-
tor extracts the sums of the wavelet responses, which are
split up according to their signs [BETVG08]. The SURF-
128 descriptor outperforms the regular SURF descriptor, but

!"#$%&'%(#'%)*+#,-.%(#/012%3! 4"#56*(17*#89718#:%1*-(%3#!
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Figure 7: Overview of the Depth Buffered Super Vector Cod-
ing (DBSVC)
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it turns more sparse. In the field of computer vision, Eu-
clidean distance is known as a poor measure of similarity
on sparse vectors [NS06]. The power normalization dimin-
ishes the sparseness of a vector [PSM10]. Thus, we apply the
power and theℓ2 normalization to the SURF-128 descriptor,
and call it the Power SURF descriptor. Moreover, we employ
feature augmentation with patch coordinates [SPdC12]. The
Power SURF descriptors are extracted from 98× 98 pixel
patches arranged every 5 pixels.

To calculate DBSVC, we generate a codebook of visual
words in advance. The visual word is thus defined as the cen-
ter of a cluster obtained by applyingK-means clustering to
the Power SURF descriptors, which are extracted from 3D
models in the training dataset. For the training dataset, we
use the NTU 3D Model Dataset (NMD) [CTSO03], consist-
ing of 10910 unclassified models. We remove the decimated
and the duplicated models from NMD, and use the remain-
ing 4500 models as the training dataset.K-means clustering
is performed withK = 2048.

We calculate DBSVC with the codebook ofk visual words
v1, . . . ,vK . Given a set of local featuresx1, . . . ,xN extracted
from a 3D model, letqki = 1 if xi is assigned tovk and 0
otherwise. For eachk= 1, . . . ,K, we define

pk =
1
N

N

∑
i=1

qki,

sk = s
√

pk,

uk =
1√
pk

N

∑
i=1

qki(xi −vk),

wheres is a constant chosen to balancesk with uk numeri-
cally. Then the DBSVC feature is obtained by

fDBSVC= [s1,u
T
1 , . . . ,sK ,u

T
K ]

T
.

To diminish the sparseness, the DBSVC feature is normal-
ized using the power and theℓ2 normalization.

We simply calculate the Euclidean distance for comparing
DBSVC features between two 3D models.

In addition, ranking scores are calculated using our
modified manifold ranking algorithm. We use a lo-
cally constrained diffusion process [YKTL09] for calcu-
lating the affinity matrix in the manifold ranking algo-
rithm [ZWG∗04], and call this method Locally Constrained
Diffusion Ranking (LCDR).

6. Results

In conclusion, among the 5 participating groups, 2 groups
(Aono and Tatsuma) employ a local shape descriptor, 2
groups (Chen and Li) adopt a global feature, and 1 group
(Furuya) tests both local and local features. Two groups (Tat-
suma and Furuya) that extract local features have applied
the Bag-of-Words framework and K-means clustering on the
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Figure 8: Precision-Recall plot performance comparison of
all the 14 runs of the 5 groups.
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Figure 9: Precision-Recall plot performance comparison of
the best runs of each group.

local features, which shows the popularity of the Bag-of-
Words technique in dealing with local features.

In this section, we perform a comparative evaluation of
the results of the 14 runs submitted by the 5 groups. To have
a comprehensive comparison, we measure the retrieval per-
formance based on the 7 metrics mentioned in Section3:
PR, NN, FT, ST, E, DCG and AP, and the proportionally and
reciprocally weighted NN, FT, ST, E, DCG.

Figure 8 shows the Precision-Recall performances of
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Table 3: Performance metrics for the performance comparison.

Participant Method NN FT ST E DCG AP

Aono

CSLBP-Run-1 0.840 0.353 0.452 0.197 0.736 0.349
CSLBP-Run-2 0.842 0.352 0.450 0.197 0.735 0.347
CSLBP-Run-3 0.840 0.359 0.459 0.200 0.740 0.355
HSR-DE 0.837 0.381 0.490 0.203 0.752 0.378
KVLAD 0.605 0.413 0.546 0.214 0.746 0.396

Chen DBNAA_DERE 0.817 0.355 0.464 0.188 0.731 0.344

Furuya

BF-DSIFT 0.824 0.378 0.492 0.201 0.756 0.375
VM-1SIFT 0.732 0.282 0.380 0.158 0.688 0.269
MR-BF-DSIFT 0.845 0.455 0.567 0.229 0.784 0.453
MR-D1SIFT 0.856 0.465 0.578 0.234 0.792 0.464
MR-VM-1SIFT 0.812 0.368 0.467 0.194 0.737 0.357

Li ZFDR 0.838 0.386 0.501 0.209 0.757 0.387

Tatsuma
DBSVC 0.868 0.438 0.563 0.234 0.790 0.446
LCDR-DBSVC 0.864 0.528 0.661 0.255 0.823 0.541

Table 4: Proportionally weighted performance metrics for the performance comparison.

Participant Method NN FT ST E DCG

Aono

CSLBP-Run-1 175.324 75.507 100.098 28.904 159.435
CSLBP-Run-2 175.631 74.830 98.638 28.868 159.036
CSLBP-Run-3 175.073 75.915 100.682 29.115 159.862
HSR-DE 175.864 80.634 107.474 29.509 161.943
KVLAD 123.059 83.382 114.400 28.756 160.724

Chen DBNAA_DERE 171.149 79.380 108.438 27.193 159.316

Furuya

BF-DSIFT 173.028 78.158 105.412 28.547 161.179
VM-1SIFT 158.938 57.790 80.962 23.973 150.085
MR-BF-DSIFT 174.762 92.451 120.921 31.160 166.318
MR-D1SIFT 178.497 94.309 121.762 31.804 167.318
MR-VM-1SIFT 172.998 77.332 99.818 28.245 158.999

Li ZFDR 175.142 79.407 106.578 29.422 161.351

Tatsuma
DBSVC 178.981 88.434 120.341 32.321 167.176
LCDR-DBSVC 177.863 107.851 144.179 33.691 173.773

all the 14 runs while Figure9 compares the best runs
of each group. Tables3∼5 list the other 6 non-weighted
and weighted performance metrics of all the 14 runs. As
can be seen from Figure9 and Tables3∼5, Tatsuma’s
LCDR-DBSVC performs the best, followed by Furuya’s
MR-D1SIFT. From this result, we can say that using view-
based features in combination with advanced feature coding
and adaptive ranking provides best performance among the
set of submitted methods. Usage of local visual features (as
in LCDR-DBSVC) seems to work better, on average than
coarser or global visual features (as in MR-D1SIFT).

As can be seen from Figure8, if we compare approaches
without employing a machine learning approach including
Manifold Ranking, overall Li’s ZFDR, Furuya’s BF-DSIFT
and Aono’s HSR-DF are comparable to Tatsuma’s DB-
SVC approach. However, after applying a Manifold Ranking
learning method, Tatsuma et al. have achieved an apparent
performance improvement which can be seen by the result-
ing LCDR-DBSVC method. Compared to DBSVC, LCDR-
DBSVC has a 20.6%, 17.4%, 9.0%, 4.2% and 21.3% gain in
terms of non-weighted FT, ST, E, DCG and AP, respectively.
In fact, Furuya et al.’s three “MR-” runs also have adopted
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Table 5: Reciprocally weighted performance metrics for the performance comparison.

Participant Method NN FT ST E DCG

Aono

CSLBP-Run-1 4.504 2.060 2.437 1.224 3.877
CSLBP-Run-2 4.538 2.065 2.442 1.226 3.879
CSLBP-Run-3 4.471 2.103 2.480 1.245 3.894
HSR-DE 4.459 2.160 2.584 1.281 3.956
KVLAD 3.261 2.196 2.945 1.445 3.830

Chen DBNAA_DERE 4.252 1.911 2.306 1.146 3.747

Furuya

BF-DSIFT 4.379 2.179 2.643 1.306 3.992
VM-1SIFT 3.716 1.596 1.972 0.962 3.467
MR-BF-DSIFT 4.622 2.551 3.016 1.504 4.206
MR-D1SIFT 4.678 2.604 3.090 1.542 4.263
MR-VM-1SIFT 4.256 2.037 2.442 1.215 3.829

Li ZFDR 4.476 2.216 2.661 1.321 3.994

Tatsuma
DBSVC 4.803 2.523 3.022 1.523 4.269
LCDR-DBSVC 4.881 2.905 3.435 1.731 4.470

Manifold Ranking method to improve the retrieval perfor-
mance. This indicates the advantage of employing machine
learning approach in the 3D model retrieval research field.
We need to mention that the above finding is consistent with
three types of metrics, either standard, or proportionally or
reciprocally weighted ones.

7. Conclusions

In this paper, we first present the motivation of the organi-
zation of this comprehensive 3D shape retrieval track and
then introduce the data collection process. Next, we briefly
introduce our evaluation method, followed by the short de-
scriptions of the 5 methods (14 runs) submitted by the 5
groups. Finally, a comprehensive evaluation has been con-
ducted in terms of 7 different performance metrics, with or
without proportional or reciprocal weights based on model
variations in each class. According to the track, Manifold
Ranking learning method and Bag-of-Words approach are
two popular and promising techniques in comprehensive 3D
shape retrieval, which shows a current research trend in the
field of comprehensive 3D model retrieval.

Acknowledgments

This work of Bo Li and Yijuan Lu is supported by the Texas
State University Research Enhancement Program (REP),
Army Research Office grant W911NF-12-1-0057, and NSF
CRI 1058724 to Dr. Yijuan Lu.

Henry Johan is supported by Fraunhofer IDM@NTU,
which is funded by the National Research Foundation (NRF)
and managed through the multi-agency Interactive & Digi-

tal Media Programme Office (IDMPO) hosted by the Media
Development Authority of Singapore (MDA).

We would like to thank Yuxiang Ye and Natacha Feola
who helped us to build the benchmark.

We would like to thank Mathias Eitz, James Hays and
Marc Alexa who collected the 250 classes of sketches. We
would also like to thank following authors for building the
3D benchmarks:

• Philip Shilane, Patrick Min, Michael M. Kazhdan,
Thomas A. Funkhouser who built the Princeton Shape
Benchmark (PSB);

• Atsushi Tatsuma, Hitoshi Koyanagi, Masaki Aono who
built the Toyohashi Shape Benchmark (TSB);

• Dejan Vranic and colleagues who built the Konstanz 3D
Model Benchmark (CCCC);

• Daniela Giorgi who built the Watertight Shape Bench-
mark (WMB);

• Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shok-
oufandeh, Sylvain Bouix, Sven Dickinson who built the
McGill 3D Shape Benchmark (MSB);

• Raoul Wessel, Ina Blümel, Reinhard Klein, University
of Bonn, who built the Bonn Architecture Benchmark
(BAB);

• Subramaniam Jayanti, Yagnanarayanan Kalyanaraman,
Natraj Iyer, Karthik Ramani who built the Engineering
Shape Benchmark (ESB).

References

[ABD12] A LCANTARILLA P. F., BARTOLI A., DAVISON A. J.:
KAZE features. InECCV (6)(2012), Fitzgibbon A. W., Lazebnik
S., Perona P., Sato Y., Schmid C., (Eds.), vol. 7577 ofLecture
Notes in Computer Science, Springer, pp. 214–227.3

c© The Eurographics Association 2014.



B. Li et al. / SHREC’14 Track: Large Scale Comprehensive 3D Shape Retrieval

[AKT13] A ONO M., KOYANAGI H., TATSUMA A.: 3D shape re-
trieval focused on holes and surface roughness. InProc. of 2013
Asia-Pacific Signal and Information Processing Association An-
nual Summit and Conference (APSIPA)(2013), pp. 1–8.3

[BBGO11] BRONSTEIN A. M., BRONSTEIN M. M., GUIBAS

L. J., OVSJANIKOV M.: Shape google: Geometric words and
expressions for invariant shape retrieval.ACM Transactions on
Graphics 30, 1 (Feb. 2011), 1–20.6

[BETVG08] BAY H., ESSA., TUYTELAARS T., VAN GOOL L.:
Speeded-up robust features (SURF).Computer Vision Image Un-
derstanding 110, 3 (June 2008), 346–359.6

[CFYT14] CHEN Q., FANG B., YU Y.-M., TANG Y.: 3D cad
model retrieval based on the combination of features.Multimedia
Tools and Applications(2014), 1–19.4

[CPW98] CHEN C. H., PAU L. F., WANG P. S. P.:Handbook of
Pattern Recognition and Computer Vision (2nd Edition). World
Scientific Publishing Co., Inc., 1998.3

[CTSO03] CHEN D.-Y., TIAN X.-P., SHEN Y.-T., OUHYOUNG

M.: On visual similarity based 3D model retrieval.Computer
Graphics Forum 22, 3 (2003), 223–232.7

[EHA12] EITZ M., HAYS J., ALEXA M.: How do humans sketch
objects?ACM Trans. Graph. 31, 4 (2012), 44:1–44:10.1, 2

[FO09] FURUYA T., OHBUCHI R.: Dense sampling and fast en-
coding for 3D model retrieval using bag-of-visual features.In
Proc. of the ACM International Conference on Image and Video
Retrieval(2009), CIVR ’09, ACM, pp. 26:1–26:8.5, 6

[GEW06] GEURTS P., ERNST D., WEHENKEL L.: Extremely
randomized trees.Machine Learning 63, 1 (2006), 3–42.5

[HPS06] HEIKKILÄ M., PIETIKÄINEN M., SCHMID C.: De-
scription of interest regions with center-symmetric local binary
patterns. InICVGIP (2006), Kalra P. K., Peleg S., (Eds.),
vol. 4338 of Lecture Notes in Computer Science, Springer,
pp. 58–69.3

[JDSP10] JEGOU H., DOUZE M., SCHMID C., PÉREZ P.: Ag-
gregating local descriptors into a compact image representation.
In CVPR(2010), IEEE, pp. 3304–3311.3

[JKIR06] JAYANTI S., KALYANARAMAN Y., IYER N., RAMANI

K.: Developing an engineering shape benchmark for cad models.
Computer-Aided Design 38, 9 (2006), 939–953.2

[KH90] K HOTANZAD A., HONG Y.: Invariant image recognition
by Zernike moments.IEEE Transactions on Pattern Analysis and
Machine Intelligence 12, 5 (1990), 489–497.6

[LGA∗12] LI B., GODIL A., AONO M., BAI X., FURUYA

T., LI L., LÓPEZ-SASTRE R. J., JOHAN H., OHBUCHI R.,
REDONDO-CABRERA C., TATSUMA A., YANAGIMACHI T.,
ZHANG S.: SHREC’12 track: Generic 3D shape retrieval. In
3DOR(2012), Spagnuolo M., Bronstein M. M., Bronstein A. M.,
Ferreira A., (Eds.), Eurographics Association, pp. 119–126. 2, 4

[LJ13] LI B., JOHAN H.: 3D model retrieval using hybrid fea-
tures and class information.Multimedia Tools Appl. 62, 3 (2013),
821–846.4, 6

[Low04] LOWE D. G.: Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision
60, 2 (2004), 91–110.5

[NS06] NISTER D., STEWENIUS H.: Scalable recognition with
a vocabulary tree. InProceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(Washington, DC, USA, 2006), vol. 2 ofCVPR ’06, IEEE Com-
puter Society, pp. 2161–2168.7

[OF10] OHBUCHI R., FURUYA T.: Distance metric learning and

feature combination for shape-based 3D model retrieval. InPro-
ceedings of the ACM workshop on 3D object retrieval(2010),
3DOR ’10, ACM, pp. 63–68.4, 5

[OFCD02] OSADA R., FUNKHOUSER T. A., CHAZELLE B.,
DOBKIN D. P.: Shape distributions.ACM Trans. Graph. 21,
4 (2002), 807–832.4

[PSM10] PERRONNIN F., SÁNCHEZ J., MENSINK T.: Improv-
ing the fisher kernel for large-scale image classification. InPro-
ceedings of the 11th European Conference on Computer Vision:
Part IV (Berlin, Heidelberg, 2010), ECCV ’10, Springer-Verlag,
pp. 143–156.7

[SMKF04] SHILANE P., MIN P., KAZHDAN M. M.,
FUNKHOUSER T. A.: The Princeton shape benchmark. In
SMI (2004), pp. 167–178.2

[SPdC12] SÁNCHEZ J., PERRONNIN F., DE CAMPOS T.: Model-
ing the spatial layout of images beyond spatial pyramids.Pattern
Recognition Letters 33, 16 (2012), 2216–2223.7

[SZM∗08] SIDDIQI K., ZHANG J., MACRINI D., SHOKOUFAN-
DEH A., BOUIX S., DICKINSON S. J.: Retrieving articulated 3-
D models using medial surfaces.Mach. Vis. Appl. 19, 4 (2008),
261–275.2

[TA09] TATSUMA A., AONO M.: Multi-Fourier spectra descrip-
tor and augmentation with spectral clustering for 3D shape re-
trieval. Vis. Comput. 25(2009), 785–804.3, 6

[TKA12] TATSUMA A., KOYANAGI H., AONO M.: A large-
scale shape benchmark for 3D object retrieval: Toyohashi Shape
Benchmark. InProc. of 2012 Asia Pacific Signal and Information
Processing Association (APSIPA2012)(2012).2

[Vra04] VRANIC D.: 3D Model Retrieval. PhD thesis, University
of Leipzig, 2004.2, 4, 6

[VtH07] V ELTKAMP R. C., TER HAAR F. B.: SHREC 2007 3D
Retrieval Contest. Technical Report UU-CS-2007-015, Depart-
ment of Information and Computing Sciences, Utrecht Univer-
sity, 2007.2

[WBK09] WESSEL R., BLÜMEL I., KLEIN R.: A 3D shape
benchmark for retrieval and automatic classification of archi-
tectural data. In3DOR (2009), Spagnuolo M., Pratikakis I.,
Veltkamp R. C., Theoharis T., (Eds.), Eurographics Association,
pp. 53–56.2

[YKTL09] Y ANG X., KÖKNAR-TEZEL S., LATECKI L. J.: Lo-
cally constrained diffusion process on locally densified distance
spaces with applications to shape retrieval. InProceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recog-
nition (June 2009), pp. 357–364.7

[ZBL∗03] ZHOU D., BOUSQUET O., LAL T. N., WESTON J.,
SCHÖLKOPF B.: Learning with local and global consistency. In
NIPS (2003), Thrun S., Saul L. K., Schölkopf B., (Eds.), MIT
Press.5

[ZL01] ZHANG D., LUO G.: A comparative study on shape re-
trieval using Fourier Descriptors with different shape signatures.
In Proc. of International Conference on Intelligent Multimedia
and Distance Education (ICIMADE01)(2001), pp. 1–9.6

[ZWG∗04] ZHOU D., WESTON J., GRETTON A., BOUSQUET

O., SCHÖLKOPF B.: Ranking on data manifolds. InAdvances
in Neural Information Processing Systems 16, Thrun S., Saul L.,
Schölkopf B., (Eds.). MIT Press, Cambridge, MA, 2004.7

[ZYZH10] ZHOU X., YU K., ZHANG T., HUANG T.: Image
classification using super-vector coding of local image descrip-
tors. InComputer Vision - ECCV 2010, Daniilidis K., Maragos
P., Paragios N., (Eds.), vol. 6315 ofLecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 141–154.6

c© The Eurographics Association 2014.


