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Visualization  
■ Simple 3D visualization 
  – Postage-stamp sized images in 3D. 
    – 3D coordinates given on the 3D manifold. 
  – A click for a 3D-view window.  
  – Cluster of “similar” models shown on demand. 
    – k-means clustering (k=30). 

Proposed method 
■ Overview 
  – Compute n-dimensional feature vectors. 
    – Eg., n=21, 30, 256, 625, … 
   – Reduce dimension. 
    – n-dimensional feature vector → 3D coordinate 
  – Visualize in 3D space.  
    –  Postage-stamp sized images in 3D space. 
    –  Clustering of similar models to aid navigation. 

. 
  
   

Retrieval by summarization 
■ Non-linear summarization of a database 
   – Bustos 2004 
    – Self Organized Map (SOM)  
    – 2D array visualization 
  – Kobayashi 2004 
    – SOM, Learning Vector Quantizer  
    – Clustering to aid navigation 
    – 2D array visualization 
 

Try LE for the visualization-based retrieval. 

Dimension reduction  
■ Dimension reduction   
   – Linear methods 
    – PCA, MDS, ICA, … 
   – Non-linear methods 
    – SOM, LVQ, ... 
    – Kernel-PCA, ... 
        – Locally Liner Embedding, Isomap,  
       Laplacian Eigenmaps,  ...  
■ On 3D model retrieval [Ohbuchi, MIR2006]   
  – Linear methods (PCA and ICA) didn’t work. 
  – A non-linear method (LE) did work.  

■ Reconstruct an N-dimensional mesh G    
    from the input points. 
    – Using Euclidian neighborhood 
      of radius r. 
 
■ Generate a mesh-Laplacian matrix L.  
         
         W: adjacency matrix where  
 
 
         D: diagonal matrix where 
 
 
■ Eigen-analyze the matrix.  
  – M dominant eigenvectors  
      ~ bases for the M-dim. subspace,  
           i.e., manifold. 
■  Project the input vectors onto the  
    M-dimensional bases.  
  – M=3 for 3D visualization. 
 

■ Dimension reduction by using manifold learning   
   – Learn a non-linear subspace, i.e., manifold. 
   – Unsupervised learning. 
   – Better distance on the learned manifold.  
        – Geodesic distance. 

AAD feature (256D→ 3D) SPRH feature (625D→ 3D) 

Experiments and results  
■ Shape feature vectors 
  – AAD [Ohbuchi05]: 256 dimensional.  
  – SPRH [Wahl03]: 625 dimensional. 
■ Database 
  – Princeton Shape Benchmark [Shilane04] 
       – “Training set” 907 models. 
■ Shape feature vectors 
  – AAD [Ohbuchi05]: 256 dimensional.  
  – SPRH [Wahl03]: 625 dimensional. 
 

Results  
  – OK for 907 models.  
    – Easier to navigate than the SOM 2D cell. 
   – Fixed number of clusters not good.  

Future work  
■ Scalability. 
  – E.g., for 10k, or 100k models. 
■ Better dimension reduction. 
   – Manifold learning algorithm (LLE, Isomap, etc.) 
  – Others. 
■ Better clustering algorithm. 

Summary  
■ 3D model retrieval via visual search 
  – Non-linear summarization 
        – Unsupervised learning of the feature  
     subspace.  
  – 3D visualization using postage stamp images. 
    – Clustering to aid navigation. 
  – Useful for about 1000 models.  
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Shape similarity search of 3D models 
■ How to query a shape? 
   – text,   (...can’t name it.) 
   – 3D example,   (...don’t have it.) 
  – 2D sketch, (...can’t draw.) 
  – 3D sketch, (...no way.) 
  – photographs (...doesn’t exist.) 
 

 
 

■ SOM ＋ 2D cell visualization [Kobayashi 2004] 
   – Dimension reduction by SOM or LVQ 
    – Models behind a cell not apparent. 
    – Distance among cell not apparent. 
  

A click for 3D view. 
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Clustering to aid 
navigation. 
 

Postage stamp  
images in 3D. 
 

With an unexpected.  

A rather successful example... 

Cluster. 

Laplacian Eigenmaps [Belkin02] 

N-D mesh 
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Laplacian matrix 

N-D feature points 

r-neighbor 

21 31 3

22 32 3

23 33 3

2 3

1
1
1

1

k

k

k

l l kl

r r r
r r r
r r r

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M leading  
eigenvectors of L 

are the bases of the 
manifold. 
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Euclidian Geodesic 

Example of a cluster for AAD 

AAD feature (256D→ 3D) 
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