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Abstract— This paper proposes several lightweight local 3D shape 
features for 3D voxel data that yield compact binary feature 
vectors. These features are inspired by compact binary features for 
2D image, namely, Local Binary Pattern (LBP) [22], BRIEF [6] 
and ORB [26]. In addition to being compact, extraction of 
proposed 3D features is inexpensive. Furthermore, these binary 
feature vectors are very efficient to compare, as their distance in 
Hamming space can be computed very efficiently. Our 
experimental evaluation of these features in a shape-based 3D 
model retrieval setting showed that some of these 3D binary 
features perform competitively to some of existing features. 
Depending on benchmark database, proposed features are 
somewhat less accurate than or about as accurate as the state-of-
the-art 3D shape features. However, memory footprint is much 
more compact, at about 1/10 of the non-binary 3D shape features 
having comparable retrieval accuracy. 

Keywords- 3D geometric models, 3D shape comparison, local 
feature, binary feature, local binary patterns, BRIEF, ORB. 

I.  INTRODUCTION 

Increasing number of companies are offering their 3D CAD 
models of parts, mechanical or electronic, on-line. And 
increasing number of people are creating and using 3D models 
for personalized manufacturing by using 3D printers. Kinect and 
other RGBD cameras are about to realize 3D geometry capture 
for the masses, or for the industry. Medical scanners routinely 
capture anatomy in 3D. With these trends in mind, effective and 
efficient methods to compare, recognize, or retrieve 3D shape 
have become an important area of study [5, 9, 11, 12, 13, 15, 16, 
20, 23, 27, 30, 33, 34].  

Initially, a predominant approach for 3D shape retrieval used 
global shape feature per 3D model. That is, only one feature per 
3D model is extracted (e.g., [30]), and the feature is used to 
compare and retrieve 3D models. Recently, more and more 
algorithms use a set of large number of local features to describe 
shape of a 3D model. For example, [5, 9, 12, 20, 23, 31] extract 
hundreds to tens of thousands of local features per 3D model for 
3D model to 3D model comparison. In such a case, the cost of 
computing and storing local features can be significant. One 
could argue that storage cost is not an issue as these local features 
are typically aggregated into a feature vector per 3D model by 

using Bag-of-Features (BF) [7, 29] approach. However, such is 
not always the case.  

Some of the recent applications of 3D shape comparison 
demand a large number of local 3D features to be computed and 
then stored without aggregation. An example is object 
recognition in a scene, e.g., recognition of a tumor-like anatomy 
in a volume data acquired by X-ray CT scanner. Or, one may 
need to find a part having specific shape (e.g., a rotor of an 
electric motor) from an array of assembled mechanical apparatus 
(e.g., a dishwasher) in a database. In such a case, a large number 
of local 3D features extracted from a complex 3D “scene” need 
to be stored as they are, without aggregation, so that parts of the 
scene could be matched later with a query. Since location, 
orientation, and scale of the desired part in the scene are not 
known, the local features need to be aggregated or compared 
many times over for the search. Thus, costs of extracting, storing, 
and matching a large number of these local features, numbering 
easily in thousands per 3D object, become very important. To 
this end, traditional local features, such as the 2D image feature 
SIFT [17] and the 3D shape feature LSF [20] have difficulty 
satisfying one or more of these requirements. A SIFT feature, for 
example, is a 128 dimensional (D) floating point vector that 
requires 512 Byte to store per feature. LSF, a derivative of SPRH 
by Wahl [34], requires 2,500 Byte per feature for storage. An 
FPFH [27] feature, a 125D vector, requires 500 Bytes for 
storage. Furthermore, comparison among LSF or FPFH feature 
may not be fast enough for repeated re-aggregation required for 
searching through a large 3D scene for a queried partial shape. 

In this paper, we propose and compare several local 3D 
shape descriptors that are compact and very quick to compare. 
For the study described in this paper, we assume that 3D shapes 
are represented by using voxel representation. A voxel data may 
be captured, for example, by X-ray CT scan or by confocal 
microscopy. Alternatively, a voxel data can be rendered from a 
surface-based 3D model, which may or may not define a solid. 
Our proposed features are inspired by local binary 2D image 
features BRIEF [6] and ORB [26], whose feature vector are 
binary bit strings. We experimentally evaluate retrieval accuracy 
and computational cost of the proposed features by using a 3D 
shape retrieval scenario. Contribution of this paper can be 
summarized as follows; 
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 Proposal of multiple local 3D geometrical features that 
produce binary feature vector. Binary features are very 
compact. They are also very fast to compare in Hamming 
space. 

 Experimental evaluation of proposed 3D features by using 
a shape-based 3D model retrieval scenario. The evaluation 
showed that the proposed features are very compact and fast 
to compare, while retaining most of the accuracy of features 
that have much larger memory footprint.  

II. RELATED WORK 

In the domain of 2D image analysis, SIFT [17], SURF [4] 
and other feature descriptors have been used extensively, which 
is invariant, to varying degrees, to geometrical transformations 
including scaling, translation, and rotation. However, these 
descriptors are rather expensive to compute. In addition, their 
feature vectors have large memory footprints, as they use high 
dimensional floating point vectors. For example, a SIFT vector 
having 128D has 512 Byte, or 4,096 bit, memory footprint. For 
object localization or image retrieval, hundreds to thousands of 
these features per image are sampled, occupying megabytes of 
memory. 

For 3D shape comparison and retrieval, the situation could 
get worse. If the method is view-based, and performs multi-view 
rendering to achieve 3DOF rotation invariance, a large number 
of 2D features are produced. For example, in [9], about 10k SIFT 
features are computed per 3D model. One may use a 3D shape 
feature densely sampled on a 3D model or a 3D scene.  3D shape 
features SPRH [34] and its localized derivatives LSF [20], FPFH 
[27] are computed from oriented point set. The LSF has a 
dimensionality of 625 and requires 2,500 Byte. FPFH feature, 
which is very similar to SPRH above, occupies 500 Bytes. 3D 
shape features VSIFT [23] and 3DSURF [11] are computed from 
voxel representation of 3D shape. Features of VSIFT and 
3DSURF are floating vectors having 1,280D and 162D, 
respectively. 

If an entire 3D model is compared with the whole of the other 
3D model, one could aggregate a set of a large number of local 
features into a feature vector per 3D model, e.g., by using Bag-
of-Features (BF) [7, 29] or Fisher Vector [24]. However, if the 
task is to recognize a sub-part of a 3D model or a scene by using 
a scheme similar to moving sub-window, local features are often 
retained as they are for they need to be aggregated repeatedly for 
each sub-part. In such a case, cost of storing and aggregating 
thousands or tens of millions of local features becomes critical. 

Recently, a class of “compact binary” features are proposed 
that are lightweight to compute, compact, and efficient to 
compare. These features employ binary vector having tens to 
hundreds of bits for their feature. Binary Robust Independent 
Elementary Features (BRIEF) [6], Oriented FAST and Rotated 
Brief (ORB) [26] are two of the examples of this class of features. 
In this paper, we try to extend these binary 2D image features 
into the domain of 3D shape represented by voxels. 

III. LIGHTWEIGHT 3D SHAPE FEATURES FROM VOXELS 

In this paper, we propose three voxel shape features 3D 
Local Binary Pattern (3DLBP), 3DBRIEF, and 3DORB that 
produce binary feature vectors. The last, 3DORB, includes four 

variations, 3DORB-PCA, 3DORB-CG, 3DORBL-CG, and 
3DORBL-R-CG, depending on the way rotation normalization 
is performed and the way features are computed. These features 
are evaluated by using a 3D shape retrieval scenario explained 
below. 

A. Surface-based 3D Shape Model Retrieval Pipeline 

The steps for 3D model to 3D model shape comparison are 
as follows. Please refer to Figure 1 for block diagram of the 
pipeline. Our 3D shape retrieval scenario converts, for feature 
extraction, input surface-based 3D models into one of two kinds 
of voxel-based 3D shape models; either volume voxel model or 
surface voxel model. A volume voxel model represents volume 
of a 3D model by voxels. A volume voxel model can only be 
computed if the original surface-based 3D model defines a solid. 
If the original surface based 3D model is not solid, e.g., if it is an 
open mesh or a polygon soup, it can only be converted to a 
surface voxel model that uses voxels to represent surfaces. For a 
benchmark database consisting only of solids, retrieval 
experiments are done using both volume voxel model and 
surface voxel model of the database. On the other hand, if the 
database contains non-solid 3D models, retrieval experiments 
are done using surface voxel model only. 

1. Surface to voxel conversion: A surface-based 3D model is 
centered at coordinate origin, and scaled to fit in a unit 
sphere. It is then converted into a voxel representation 
having size 1283 in a voxel buffer of size 1503. A non-solid 
surface-based 3D model is converted to a surface-based 
voxel model. A solid model is converted to either surface 
voxel model or solid voxel model for comparison. 

(a) Voxel pyramid generation (optional): For 
3DBRIEF and 3DORB, a voxel scale space, or voxel 
pyramid, is generated by repeated low-pass filtering 
and 2-to-1 down sampling for multi-scale feature 
extraction. 

(b) Gaussian smoothing (optional): Surface voxel 
model is blurred by using Gaussian filter prior to 
feature computation so that voxelized surfaces have 
thicknesses more than one voxel. A feature works 
better with these thicker surfaces. Final size of a 3D 
voxel model after filtering becomes 1323.  

2. Sample point selection: Features are extracted from M 
sample points randomly and densely selected from non-zero 
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Figure 1. A set of local, voxel-based 3D shape features is extracted from the 
voxel representation of a 3D model. Local features are aggregated into a 

feature vector per 3D model for 3D-model-to-3D-model comparison. 
Proposed binary features use Hamming distance for vector quantization. 
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voxels within the voxel buffer. In the experiments described 
later, we use M=3,000 and 5,000.  

3. Feature extraction: A cubic Volume Of Interest (VOI) of 
size lll is set around the sample point, and a feature is 
computed. For 3DBRIEF and 3DORB, this is done at each 
resolution level of the pyramid. Details of the feature 
extraction algorithms will be described later. 

(a) VOI rotation normalization (optional): For 
3DORB, each VOI is rotation normalized prior to 
feature extraction. We compare two rotation 
normalization algorithms that will be described later. 
The other two features, 3DLBP and 3DBRIEF, do not 
perform rotation normalization. 

4. Feature aggregation: A set of M local features are 
aggregated into a feature vector per 3D model by using Bag-
of-Features (BF) approach.  

5. Ranking: Database 3D models are ranked against the query 
3D model based on the similarity between the aggregated 
feature vectors of the query and the target (DB) 3D models. 

B. Converting Polygonal Surface Model into Voxel Model 

Features used in this paper are extracted from voxel, or 3D 
pixel, representation of 3D shapes. Thus, prior to feature 
extraction, our algorithm converts input 3D models represented 
as polygonal mesh into their voxel representations. As described 
above, for a surface-based 3D model defining a solid, two 
variations to voxel representations, surface voxel model and 
volume voxel model, are generated. Models found in McGill 
Shape Benchmark [19], for example, define solids. For a non-
solid surface-based 3D model, only a surface-based voxel model 
is generated. A 3D model is converted into a cubic volume 
having size n×n×n. Based on preliminary experiments, we chose 
n=128, inset a voxel buffer of size 1503. 

To generate a surface voxel model, we use Out-Of-Core 
Sparse Voxel Octree (OOC-SVO) algorithm by Baert et al [3]. It 
exploits octree data structure for fast voxelization. As an option, 
a surface voxel model may be Gaussian smoothed using a kernel 
having size 53 to produce a surface voxel model having surface 
thickness more than 1 voxels. (The Gaussian smoothing makes 
a voxel model to expand to the size 1323.) To generate a solid 
voxel model, we use the algorithm by Abdellah et al [1]. The 
algorithm first generates a voxel model of closed surface, then 
run a flood-fill to convert it into a filled, solid voxel model.  

C. Dense Local Voxel Feature Extraction 

In case of 2D image features, features are often extracted at 
interest points detected by such interest point detectors as FAST 
[25] or Difference of Gaussian (DoG) detector in SIFT [17]. 
Interest point detection is a must if matching of local features 
among images (or 3D models) is the objective. For object 
recognition and retrieval, however, dense sampling of features 
often outperforms interest-point based feature sampling. As our 
objective is retrieval and recognition of 3D object, we assume 
dense sampling of 3D features on or near the 3D object. We 
randomly and densely select voxels having non-zero value, and 
use them as “forced” (v.s. detected) keypoints. Then, at each 
keypoint, one of the following features is computed.  

1) 3DLBP 

This feature, called 3D Local Binary Pattern (3DLBP), is a 
3D counterpart to a variation of Local Binary Pattern (LBP) 
feature for 2D images [21, 22]. A 3DLBP feature is computed 
from a cubic Volume Of Interest (VOI) of size l×l×l=l3. Within 
the VOI, multiple Sub-Local Binary Patterns (SLBPs) are 
computed at every (i.e., l3) voxel in the VOI. Each SLBP, a 6 bit 
string, is computed by comparing the value of the SLBP center 
voxel with the values of its 6 neighboring voxels using a fixed 
voxel traversal order (Figure 2). The bit corresponding to a 
neighboring voxel becomes ‘1’ (‘0’) if its value is less than 
(greater or equal to) the center voxel. Total of l3 SLBP bit strings 
are aggregated into a 3DLBP feature vector for the VOI having 
64 dimensions by counting population of 64 (0~63) possible 
values of the 6 bit SLBPs.  A 3DLBP is thus not a binary feature 
but a 64D integer-valued vector. This aggregation per VOI for 
the 3DLBP may be considered as a very simple form of Bag-of-
Features with a fixed 64 word vocabulary. 

 

The number of SLBPs per 3DLBP feature, or the size of 
VOI, l3 is a parameter that affects performance and 
computational cost of the 3DLBP feature. It is possible to use 
neighborhood size of SLBP larger than 6, e.g., 18, but the 
dimensionality of the aggregated 3DLBP feature per the VOI 
quickly becomes too large (e.g., 218=262,144) with little or no 
gain in accuracy. 

To gain certain degree of invariance to scale, we apply the 
3DLBP to a multi-scale voxel pyramid.  To form a multi-scale 
pyramid of voxels, we simply down sample the object having 
1283 resolution by half in each axis, producing 4 levels of 
representations having voxel size 1283,  643,  323, and 163  
(Figure 3), before applying 3DLBP at each resolution level. 

 

2) 3DBRIEF 

3DBRIEF is a simple 3D binary feature based on the BRIEF 
feature [6], and is very lightweight to extract. An N bit BRIEF 
feature vector is produced by comparing values of N randomly 
selected pairs of voxels. If a pair of voxels at locations a and b 
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Figure 2. The 3D Local Binary Pattern (3DLBP) feature computes a binary 
string based on comparison of local voxel values within the volume of 

interest about the feature center. 

163 643 323 

1283 

Figure 3. Feature extraction from multi-scale (4 levels) voxel pyramid.
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is selected, their values vox(a)  and vox(b) are compared 
according to equation (1) to yield a bit of the N bit feature vector. 
Typically, number of bits N of the descriptor is in the range tens 
to hundreds of bits. In the experiments that follow in this paper, 
we used N=256 based on the preliminary experiments.  

 1, ( ) ( )
( , )

0,

if vox vox
a b

otherwise






a b  

3DBRIEF does have invariance against translation, but it 
lacks invariances against rotation and scaling. We extract 
3DBRIEF on a voxel image pyramid to provide for certain 
invariance against scaling (but not rotation). All the features 
extracted from multiple scales are later aggregated together into 
a feature vector by using BF approach. 

3DBRIEF is very fast to compare, as it is a binary vector and 
the comparison is made by computing Hamming distance. 
Hamming distance between a pair of binary strings can be 
computed very efficiently by using a combination of (SIMD) an 
XOR instruction and a population count instruction. 

3) 3DORB 

Adding rotation invariance to 3DBRIEF by 3DOF 
orientation normalization produces 3D ORiented Brief or 
3DORB. The rotation normalization is applied to each local VOI, 
not for the entire voxel model.  

We experimented with two approaches for orientation 
normalization; one is called 3DORB-CG for its use of Center of 
Gravity (CG) for orientation normalization, and the other is 
called 3DORB-PCA for its use of Principal Component Analysis 
(PCA). There are two variants to feature computation method. 
3DORB compares a pair of individual voxel values to derive 
feature vector, as in 3DBRIEF. A variant, called 3DORBL with 
suffix “L”, uses a smoothed (averaged) value computed from a 
small (e.g, 3×3×3) Volume of Smoothing (VOS) of size k×k×k, 
k<<l, for the comparison. 3DORBL with smoothing exhibits 
higher accuracy than 3DORB, albeit at a higher computational 
cost. 3DORBL-CG has a subtype called 3DORBL-R-CG. The 
3DORBL-R-CG has less cost of rotation normalization than the 
3DORBL-CG.  Figure 4 illustrates these variants. 

2D image version of the ORB [26] employs a simple learning 
strategy to determine most effective N pairs of pixels for its N 

bit descriptor. We did not employ this learning, as our 
preliminary experiments showed that the learning did not 
improve accuracy. We simply select N randomly selected pairs 
of voxels for 3DORB signature. 

a) 3DORB-CG 
The 3DORB-CG employs the same strategy as 2D version of 

the ORB for rotation normalization. We first compute 0th and 
1st order moment mpqr of the voxels in a cubic VOI, whose 
length of an edge is n voxels. Moment m000 is 0th order, that is, 
sum of all the voxel values in the VOI [25]. Three 1st order 
moments m100, m010, m001 are 1st order moments along x, y, and 
z axes, respectively [10]. 
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Then, we compute a vector from the CG to the center of VOI 
as a rotational axis, and align the VOI along the direction. We 
then find and compensate for the rotation about this axis, by 
finding a farthest non-zero voxel (the green sphere in Figure 5), 
and rotate the VOI about the axis. Note that the rotation 
normalization is not effective if the estimated displacement 
vector from the center of VOI to the CG is unreliable. In our 
implementation, we forego the rotation normalization if the 
length of computed displacement vector is less than 1/5 of the 
size n of side of the VOI. 

After the rotation normalization, a feature vector, in the form 
of a bit string, is extracted in the manner similar to 3DBRIEF. 
As with the case of 3DBRIEF, for scale invariance, features are 
extracted from multi-scale pyramid of voxels. Based on our 
preliminary experiment, number of bits N=256 for the 3DBRIEF 
is used in the following. 

b) 3DORB-PCA 
For rotation normalization, the 3DORB-PCA applies PCA to 

the 3×3 covariance matrix of voxel values within the VOI. 
Principal axes obtained from the PCA indicate orientation, but 
directions of the vectors are left undefined. Direction of the axes 
is disambiguated by comparing the center of gravity and the 
(geometric) center of the VOI. After the rotation normalization, 
feature vector is extracted in the manner similar to 3DORB-CG 
(or 3DBRIEF). We use, in the following experiment, the feature 
vector length N=256 bit. 

 

4) 3DORBL-CG and 3DORBL-R-CG 

Comparing a pair of individual voxels, as in BRIEF, 
3DBRIEF and 3DORB, is somewhat prone to noise. To improve 

CG (Centroid) 

Center of VOI 

Farthest non-
zero voxel 

from the CG 

Figure 5. Rotation normalization of voxels for the 3DORB-CG feature. This 
rotation normalization is performed for each local VOI, not for the entire 3D 

model. (Best viewed in color.) 
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voxels (red cubes) 

within a cubic Voxel 
of Interest (VOI) 
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values. Each value is 
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Volume Of Smoothing 
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feature extraction. 

Figure 4. Three variants to 3DORB. 
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robustness against noise, we tried a variation of 3DORB that 
uses an average of voxel values in a small cubic region called 
Volume of Smoothing (VOS) for the comparison. It amounts to 
box-filtering voxel values, and we employ the (3D) integral 
image for fast computation of local sum of voxel values in a 
VOS. We identify the smoothing by adding letter “L” to the 
name of the methods, as in 3DORBL-CG and 3DORBL-R-CG.  

For 3DORBL-CG, rotation normalization is done by using 
all the voxels in the VOI of size l×l×l for feature computation. 
For a larger VOI size, this leads to a rather high cost of rotation 
normalization. We thus created a variation of 3DORB-CG called 
3DORBL-R-CG (“R” stands for “reduced cost”) that has 
reduced cost of rotation normalization. In 3DORBL-R-CG, the 
(cubic) region used for rotation normalization is smaller than that 
of the VOI for feature computation.  

D. Local Feature Aggregation by using Bag-of-Features  

Local features described above are aggregated into a feature 
vector per 3D model by using the Bag-of-Feature (BF) approach 
[7, 29]. The BF approach learns, at its preprocessing stage, a set 
of vocabulary, or codebook, from the 3D shape descriptors 
extracted from a set of 3D models either identical or similar to 
the retrieval target. The codebook is typically learned by 
clustering the features, e.g., by using k-means clustering 
algorithm. Since the features above are binary bit string, instead 
of k-means in Euclidian space (i.e., using L2-norm), we run k-
means in Hamming space (i.e., Hamming distance.). We 
modified the code of k-means++ [2], which performs clustering 
in Euclidian space in its original form, so that the clustering in 
Hamming space can be computed. 

After the dictionary is learned, a descriptor is vector 
quantized, in Hamming space, into a word from the dictionary. 
Histogram of words, whose dimension is the number of words 
in the dictionary, becomes the descriptor for the 3D model. The 
size of k, or the number of words in the codebook, significantly 
affects retrieval accuracy. A feature vector per 3D model thus 
created is a histogram whose element is an integer, and most of 
the elements are zero. 

E. 3D Model-to-3D Model Dsitance Computation 

A distance among a pair of per-3D-model feature vectors 
(that is, features after aggregation) is computed, per database, by 
using either L1-norm, L0.5-norm, or (symmetricized) Kullback-
Leibler Divergence (KLD). For each database, we try all the 
three distances, and choose the best performing one to derive 
retrieval accuracy indices for the database. (The KLD may face 
divide-by-zero error as a BF-aggregated feature vector would 
contain many elements with value zero. To circumvent the error, 
we replace a zero with a very small non-zero value, e.g., 
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IV. EXPERIMENTS AND RESULTS 

In this section, we evaluate accuracy, computational cost, 
and memory footprint of the proposed binary features by using 
four benchmarks for shape-based 3D model retrieval. We used 
MSB [19] for highly articulated but less detailed shapes defined 
as solid. The MSB consists of 255 models in 10 classes. The 
MSB includes such articulated shapes as “humans”, 
“octopuses”, “snakes”, “pliers”, and “spiders”. We used PSB 
[28] test set for a set of non-solid 3D models (many of them 
polygon soup model) having quite diverse but mostly rigid 
shapes. The PSB test-set contains 907 models partitioned into 92 
classes. The PSB contains a very diverse, mostly rigid 3D 
shapes, including cars, chairs, potted plants, airplanes, range-
scanned (open-mesh) faces, insects, etc. For the MSB and PSB, 
query models are drawn from the retrieval targets, and every pair 
of models in the database are queried to compute retrieval 
accuracy. As the third benchmark, we used ESB [8] database, 
which consists of 867 mechanical CAD models of machine 
parts, including gears, pipes, screws, flanges, etc., divided into 
45 classes. Fourth benchmark is SHREC 2011 Non-Rigid 
(SH11NR) [14], which contains 600 non-rigid, solid 3D models 
in 30 classes extracted from MSB and other dataset. As with the 
MSB, ESB and PSB, in SH11NR, query models are drawn from 
the retrieval targets, and every pair of models in the database are 
queried to compute retrieval accuracy. Examples of 3D models 
from these four benchmark databases are shown in Figure 6.  

As performance indices, we use Mean Average Precision 
(MAP) [18]. 

 
（a）MSB. （b）PSB. 

 
（c）ESB. （d）SH11NR. 

Figure 6. Example 3D models from the four benchmark databases, MSB, 
PSB, ESB, and SH11NR.  

A. Retrieval accuracy of features 

Figure 7 compares retrieval accuracy of 8 features as recall-
precision plots. Bar graphs of Figure 8 compare retrieval 
accuracy of 8 features measured as MAP [%] by using the four 
benchmarks. 3D models of MSB, ESB, and SH11NR define 
solids. These models are converted to both solid voxel and 
surface voxel representations in order to compare performances 
of features among these two representations. Then, two of the 
features, 3DORBL-CG and 3DORBL-R-CG, are tested on both 
solid voxel and surface voxel representations. (3D models in 
PSB can only be converted to surface voxel representations.) 
Consequently, there are 10 “algorithms” listed in the graph. Top 
two algorithm, LSF [20], and BF-DSIFT [9], are used as 
baseline.  
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Figure 8. Comparison of retrieval accuracy in MAP [%] by using four 

benchmarks, eight algorithms, and two voxelization methods. 

According to some SHREC tracks [15], the BF-DSIFT is one 
of better performing features, especially for rigid polygon soup 
models of PSB as well as for non-rigid models of MSB. Overall, 
view-based BF-DSIFT performs the best for PSB containing 
many polygon soup models. LSF, which captures 3D structure 
by sampling surface by points, does well for ESB, SH11NR and 
MSB.  

3DORB-CG, with its rotation normalization, clearly 
outperforms BRIEF and 3DLBP, as well as 3DORB-PCA. Of 
rotation normalized 3DORB-CG variations, 3DORBL-CG, 
which compares locally smoothed voxel values, did better. 
3DORBL-R-CG, a variation of 3DORBL-CG with less stringent 
but faster rotation normalization, did slightly worse than 
3DORBL-CG for the ESB, but almost as well as on the other 
two benchmarks. 

Figure 9 compares, using 3 benchmarks consisting of solid 
3D models, 6 proposed algorithms for their retrieval accuracy on 
solid voxel and surface voxel representations of 3D shapes. 
Overall, for all the three benchmarks, there is only small 
difference between solid voxel and surface voxel representations.  

Our observations is that, at voxel resolution of 1283, solid 
voxel and surface voxel models become nearly identical, 
especially for ESB whose mechanical parts, e.g., flanges, panels, 
gears, or tubes have thin walls. In the case of SH11NR, with its 
solid models of animals etc. having thick body, solid voxel 
representation worked for 3DORBL-CG and 3DORBL-R-CG 
features.  

B. Spatial and Temporal Costs 

Table 1 shows execution timings, per query, of the features 
for the 3D model retrieval task using PSB benchmark. The cost 
of feature extraction includes Gaussian filtering and multi-scale 
voxel pyramid construction. For each algorithm (row), timing 
for voxelization (VX), feature extraction (FE), vector 
quantization (VQ), distance computation (DC), and total time for 
retrieval (RET) are shown in seconds [s]. Time for voxelization 
includes Gaussian filtering, if applicable, and feature extraction 
includes time for voxel pyramid construction 

In terms of feature extraction, 3DBRIEF is very fast, 
requiring only 0.12s per 3D model, while 3DORB-CG and 
3DORBL-CG requires about 10s per 3D model. The latter two 
spend most of their time performing rotation normalization.  In  
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Figure 7. Recall-precision plots for four benchmark databases.
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(a) MSB. 

 
(b) ESB. 

 
(c) SH11NR. 

Figure 9. Retrieval accuracy in MAP for 3D model benchmark databases that 
consists only of solid models. 

Table 1. Execution timings for processing a query.  Timings are measure 
for PSB benchmark by using surface voxel representation. Retrieval 

accuracy in MAP [%] for PSB is also shown.  

Algorithm VX  
[s] 

FE  
[s] 

VQ  
[s] 

DC  
[s] 

RET 
[s] 

MAP 
[%] 

LSF  1.54 6.11 0.002 7.65 35.8 
BF-DSIFT (CPU)  33.06 0.02 0.030 33.11 50.4 
BF-DSIFT (GPU)  1.12 0.02 0.030 1.17 50.4 

3DLBP 0.05  0.60  0.78 0.002 1.43 29.7 
3DBRIEF 0.05  0.12  0.24 0.002 0.41 33.2 

3DORB-PCA 0.05 2.49 0.24 0.002 2.78 36.2 
3DORB-CG 0.05 9.36 0.24 0.002 9.65 40.1 

3DORBL-CG 0.05 10.35 0.24 0.002 10.64 45.6 
3DORBL-R-CG 0.05 0.76 0.24 0.002 1.05 45.1 

 

Table2. Memory footprints of features in typical usage. 

Features Size per 
feature [Byte] 

# features / 
3D model 

Memory 
footprint per 3D 

model [Byte]
LSF 2,500 2,048 5,120k 

BF-DSIFT (CPU) 512 12,600 6,451k 
BF-DSIFT (GPU) 512 12,600 6,451k 

3DLBP 256  3,000 768k 
3DBRIEF 32  5,000 160k 

3DORB-PCA 32 5,000 160k 
3DORB-CG 32 5,000 160k 

3DORBL-CG 32 5,000 160k 
3DORBL-R-CG 32 5,000 160k 

 

comparison, 3DORBL-R-CG is quite economical, requiring 
only 0.76s for both rotation normalization and feature extraction. 
Total execution time of 3DORBL-R-CG is also fast among the 
features compared. Yet, as noted in the previous section, 
retrieval accuracy of 3DORBL-R-CG is only slightly worse than 
much slower 3DORBL-CG. 

Table 2 compares memory footprints of the features. Here 
the comparison is not as easy, since the best performing number 
of features per 3D model varies depending on the benchmark 
database, etc. Still, it is apparent that 3DBRIEF and 3DORB are 
compact, requiring only 32 Bytes per feature. In terms of 
memory footprint per 3D model, which assumes all the local 
features need to be retained, binary features of 3DORB and 3D 
BRIEF require much less (1/10) space than floating point feature 
vectors of LSF, etc. 

V. SUMMARY AND CONCLUSION 

With increasing popularity of 3D shape models, shape 
similarity search of such 3D models is about to become an 
important tool. In this paper, we have proposed local, 
lightweight, binary 3D shape features. We have experimentally 
evaluated their retrieval accuracy, computational cost, and 
storage cost. Our evaluation experiments are set in the context 
of 3D shape retrieval. According to the experiments, one of the 
proposed features, 3DORBL-CG, produced very compact 
feature and performs only slightly worse than some of the state-
of-the-art 3D model retrieval algorithms. An appearance based 
retrieval algorithm, BF-DSIFT [9], outperforms proposed 
3DORBL-CG for retrieval accuracy for the PSB benchmark. 
However, BF-DSIFT feature requires memory footprint of 
6.4 MByte, while that of 3DORBL-CG is only 1/10 at 160 
Kbyte. 

In the future, we intend to improve the proposed binary 
features both in terms of computational cost and retrieval 
accuracy. For example, we plan to explore a faster rotation 
normalization algorithm and GPU implementation. We also 
would like to try Fisher Vector for binary features [32] for an 
aggregation method better than Bag-of-Features.  
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