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ABSTRACT 
 
Retrieval accuracy in content-based multimedia retrieval can 
be improved by using distance metric learned from 
distribution of features in input feature space. One way to 
achieve this is by dimension reduction via manifold-learning, 
such as Locally Linear Embedding [8]. While effective in 
improving retrieval accuracy, these algorithms have high 
computational cost that depends on feature dimensionality d 
and number of training samples N. In this paper, we explore 
a clustering-based approach to reduce number of training 
samples; it uses L cluster centers (L<<N) computed from N 
input features as training samples. We propose to use 
extremely randomized clustering tree [3] for clustering. 
Experiments showed that the proposed approach produces 
better retrieval performance than random sampling, and that 
the randomized tree is much faster than the k-means 
algorithm.  

Index Terms— Content-based 3D model retrieval, 
distance metric learning, manifold learning, randomized tree 
clustering. 

1. INTRODUCTION 

Three-dimensional (3D) shape model has gained its status as 
a multi-media data type. It is used in designing and 
manufacturing mechanical parts, architectural design, in 
medical diagnosis, and in entertainment. User-generated 
contents are also flourishing. The Google 3D Warehouse 
now holds hundreds millions of 3D shape models. 
Accordingly, effective and efficient management of 3D 
models, especially via content based retrieval by their shape, 
has become quite important (e.g., [9]). 
Generic processing pipeline for shape-based retrieval of 3D 
models starts with extraction of shape descriptors, or feature, 
from query and database 3D models. Then, distance, or 
dissimilarity among features of the query model and 
database models are computed to rank retrieval results.  
Earlier 3D model retrieval algorithms used “fixed” distance, 
e.g., L2- or L1-norm. However, learned distance metric 
adapted to the feature distribution could significantly 
improve retrieval performance. In [6], so-called manifold 

learning algorithm such as Laplacian Eigenmaps (LE) [1] or 
Locally Linear Embedding (LLE) [8] is used for 
unsupervised non-linear dimension reduction. Given large 
enough number of feature samples in an ambient, or input, 
feature space, these algorithms find non-linear mapping onto 
lower dimensional subspace or “manifold” on which 
samples lie. By computing distance on the manifold, instead 
of the ambient feature space, better distance can be obtained. 
In addition to improved distance and thus improved retrieval 
accuracy, lower feature dimension also leads to lower 
temporal and spatial computational cost during the search 
through the database.  
However, these manifold learning algorithms are 
computationally expensive. For example, during the training 
stage, LE and LLE constructs a graph connecting feature 
points, followed by Singular Value Decomposition (SVD) 
of its graph Laplacian. Using a naïve algorithm, graph 
construction requires O(N2) distance computations. If we 
use L2-norm, each distance requires O(d) multiplications 
and additions. SVD of a graph Laplacian takes O(N3) time 
using a naïve algorithm. We have to find some way to 
efficiently learn a manifold from a training set having a 
large number of samples (e.g., 104~) and a high feature 
dimensionality (e.g., 102~105). 
Assuming that the dimensionality of feature is given, 
approaches to deal with large number of samples have been 
explored. The simplest of the approaches is to pseudo-
randomly or quasi-randomly [6, 7] down sample the training 
set. Another approach is to use Nystrom low-rank 
approximation [12, 2].  
In this paper, we propose to cluster the N input features so 
that the computed L (L<<N) cluster centers become new 
training samples. Our hope is that, cluster centers, 
themselves created by unsupervised learning of feature 
distribution, could better represent distribution of input 
features than a simple down-sampling. For the clustering, 
we propose to use Extremely Randomized Clustering tree 
(ERC-tree) of Guerts, et al [3] for the task. While k-means is 
a “standard” clustering algorithm, it is quite slow if the 
feature dimension, number of features, and/or the number of 
cluster is large. And if clustering is too slow, total cost of 
learning, which is a sum of the cost of clustering and 
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manifold learning, can’t be reduced. In addition, L2-norm 
used at the core of k-means algorithm is known to suffer in 
quality if applied to high-dimensional features. 
Experimental evaluation has shown that retrieval 
performances due to k-means and ERC-tree clustering are 
about equal, both of which are significantly better than one 
due to quasi-random sampling. In terms of computational 
cost, the ERC-tree is much faster than k-means. 

2. METHOD 

Our retrieval algorithm consists of two phases, the learning 
phase and retrieval phase. 

The learning phase: 
(1) Extract shape feature vector: Extract d-dimensional 

feature vectors from the N 3D models in the training 
database (i.e., corpus).  

(2) Select training samples: To reduce computational 
costs, subsample the training set down to L (ܮ ൑ ܰሻ  
features vectors. We compare three down-sampling 
methods, Quasi-Random Sampling (QRS), K-Means 
Clustering (kMC), and ERC-tree clustering (ERC). 

(3) Learn manifold: Perform unsupervised learning of the 
m-manifold (݉ ൑ ݊ ) spanned by the d-dimensional 

training samples by using LLE [8]. 
(4) Approximate the manifold: Construct a continuous 

approximation ෤݃  of the manifold by using the RBF 
kernel regression.  

(5) Project features of the models in the database: 
Project features of all the models in the database onto 
the m-manifold using the approximation, and store the 
results together with the corresponding 3D models.  

The retrieval phase: 
(1) Extract shape feature vector: Extract a d-dimensional 

feature vector from the query model.  
(2) Project the feature onto the manifold: Map the d-

dimensional feature vector onto the approximated m-
manifold 	෥݃ . 

(3) Compute distance on the manifold: Compute 
distances from the query model to all the models in the 
database on 	෥݃ . 

(4) Retrieve and present the top p matches: Retrieve the 
models in the database having the p-smallest distances 
from the query model. 

2.1. Training Sample Selection 

We will compare three different algorithms for sample 
reduction; one is the standard pseudo- (or quasi-) random 
sampling approach, and the other two are clustering based 
approach. We compared two clustering algorithms, k-means 
clustering and ERC-tree clustering.  
 Quasi-Random Sampling (QRS): Instead of popular 

pseudo-random sampling, we used quasi-random 
sampling, which produced slightly better retrieval 
accuracy than pseudo-random sampling [6]. The set of 
experiments that follow uses Niederreiter’s quasi-
random sequence.  

 k-means Clustering (kMC): Well known k-means 
clustering produces k clusters given the cluster number 
k as a parameter. We use standard, or Lloyds’ 
algorithm.  

 Extremely Randomized Clustering tree (ERC): The 
ERC-tree [3] is a randomized, tree-based clustering 
algorithm which subdivides the feature space into a 
half by each added tree node. Each subdivision is due 
to a hyper plane perpendicular to one of the coordinate 
axes. For each subdivision, the algorithm first 
randomly picks the dimension (or axis) to subdivide, 
and then randomly chooses the point (a scalar value) 
on the selected axis at which a separating hyperplane is 
placed. Subdivision of the feature space continues until 
the number of data points per subspace is below a set 
parameter Smin. While the Smin affects the number of 
clusters L, that is, number of reduced samples, exact 
value of L differ from a run to another due to the 
randomized nature of the algorithm. The L can also be 
controlled by pruning the tree, but we don’t perform 
any pruning. 
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Since the feature space is subdivided into subspaces by a set 
of orthogonal hyperplanes, the quality of the clusters 
produced by ERC-tree may not seem as good as those 
produced by k-means. This is true in a low-dimensional 
feature space. However, k-means algorithm is disadvantaged 
in a high-dimensional feature space, as the algorithm uses 
L2-norm and that the L2-norm is known to behave poorly in 
a high-dimensional feature space. Consequently, clusters 
produced by ERC-tree could be better than k-means clusters. 
In terms of computational cost, ERC-tree is much faster than 
k-means.  

2.2. Unsupervised Dimension Reduction  

To obtain learned distance metric, we used manifold-based, 
unsupervised dimension reduction by LLE [8]. Given a set 
of N unlabeled e-dimensional ambient (original) features, 
LLE algorithm learns the d-dimensional subspace S spanned 
by the ambient feature set. The resulting S maps an input e-
dimensional feature onto the d-dimensional feature in which 
d e . For LLE, the manifold S is defined only for the 
trained features points. Thus, to handle out-of-sample 
features, e.g., that of query, manifold S must be 
approximated so that it is defined everywhere in the input 
space. Following [4], we used RBF-network algorithm for 
the approximation. 
The retrieval algorithm stores, in the database, the 
(projected) d-dimensional feature together with the 
corresponding 3D model for later retrieval. As the 
dimension d is much smaller than the dimension e of the 
corresponding ambient feature, cost of distance computation 
and feature storage are significantly reduced.  
We used the LLE implementation available in the MatLab 
Statistical Learning Toolbox. Mesh of the features for the 
LLE is computed by proximity in L2-norm, and the weight 
for the edges of the mesh is 0/1 (as opposed to the heat 
kernel). The MatLab Neural Network Toolkit is used for 
RBF-network. Parameters for the LLE and RBF-network, 
such as neighbourhood size for the LLE, reduced dimension 
d, bandwidth of the RBF, are found experimentally to have 
the best retrieval performance among the tested. 

3. EXPERIMENTS AND RESULTS 

We experimentally evaluated the efficacy of sample 
selection methods, both in terms of retrieval accuracy and 
computational cost, using LLE in 3D model retrieval setting. 
As shape feature, the experiment uses Surflet-Pair Relation 
Histograms (SPRH) [11] having d=625. To evaluate, we use 
SHREC 2006 [10] 3D model retrieval benchmark 
containing 1,814 of diverse 3D shape models. All the 
models in the SHREC 2006 benchmark database are 
classified into ground truth classes. The SHREC 2006 query 
set contains 30 out-of-sample models. To train LLE, we 
need large number of 3D models. Ideally, we’d like to have 
a large dataset, e.g., a database having >100k 3D models. 

However, as we can’t obtain such a large benchmark dataset, 
we settled for the National Taiwan University (NTU) 
database [5] containing 10,908 unlabeled models. From the 
NTU database, we created/selected smaller number of 
features for LLE to learn by using the method described in 
Section 2.1.  As numerical indices of retrieval performance, 
we use Mean Average Precision (MAP). 
Figure 1 shows, for three sample reduction methods tested, 
retrieval performance in R-Precision. Due to the randomized 
nature of the ERC-tree, retrieval performance varies. Note 
also that, for ERC-tree, the number of clusters L also 
scatters a bit, as it can only be controlled indirectly by Smin. 
For k-means, on the other hand, the number of samples can 
be set exactly by the parameter k. In cases of QRS and kMC 
the number of training samples can be controlled precisely, 
and retrieval performances indicated are averages of 5 trials.  
The figure shows that distance metric learning in the form of 
unsupervised dimension reduction by using LLE does 
improve retrieval performance, compared to the case using 
fixed distance as well as the case using LLE combined with 
QRS. It also shows that, in terms of retrieval performance, 
for the number of samples tested, ERC-tree is equal or better 
than the much slower k-means clustering. “Raw” 
performance of MAP=0.248 using fixed distance is pushed 
up to MAP=0.32~0.33 for the ERC-tree clustering.  
 

 
Figure 1. Training sample reduction methods and retrieval 
performance.  
 
Figure 2 compares total cost of distance metric learning, that 
is, sum of time required for sample reduction and LLE 
learning. Broken lines are for clustering only, while solid 
lines are for total learning time. Total learning time includes 
clustering for sample reduction and LLE learning. The latter 
includes LLE learning, RBF approximation, and projection 
of 1,814 database features. 
It is clear from the graph that kMC is too expensive; sample 
reduction by kMC took more time than manifold learning 
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itself. As the number of output samples (i.e., clusters) 
increases, computation time for k-means increases very 
rapidly. On the other hand, temporal cost of ERC is 
significantly smaller than LLE learning, efficiently reducing 
number of samples. Temporal cost of ERC clustering is only 
a fraction of that of kMC. 
Overall, sample reduction by ERC combined with LLE-
based dimension reduction performed well both in terms of 
retrieval accuracy and computational cost.  
 

 
Figure 2. Number of training samples (i.e., clusters) after 
sample reduction to time needed for sample reduction.  

4. SUMMARY AND FUTURE WORK 

In this paper, we proposed a clustering-based sample 
number reduction to improve efficiency of manifold-
learning based unsupervised distance metric learning. 
Experimental evaluation showed that proposed reduction 
method using Extremely Randomized Clustering (ERC) 
trees [3] significantly outperforms (quasi-) random sampling 
in terms of retrieval accuracy. If compared to k-means based 
sample reduction, ERC-tree based approach is much faster, 
while attaining equal or better retrieval accuracy.  
To quantify the efficiency and efficacy of sample reduction 
methods for large scale 3D model retrieval, we need to scale 
up the training as well as benchmark database. We also need 
to experiment with other features, e.g., those having higher 
dimensionality. To process even larger number of samples, 
or to process even higher dimensional features, proposed 
approach is not efficient enough. We are currently 
investigating improvements to further reduce computational 
cost without losing retrieval accuracy.  
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