IEEE 3DV 2014 talk slides: Hashing Cross-Modal Manifold for Scalable Sketch-based 3D Model Retrieval (Poster : 3-29)

2015/3/13

Introduction

- 3D models are widely used.
 - Mechanical CAD, Games,...
 - 3D range scanners, 3D printers,...
 - User generated.
 - Trimble 3D warehouse, ...
- 3D model retrieval is essential.
 - Ease of use.
 - Efficiency.
 - High retrieval accuracy.

Introduction

- 3D models are widely used.
 - Mechanical CAD, Games,...
 - 3D range scanners, 3D printers,...
 - User generated.
 - Trimble 3D warehouse, ...
- 3D model retrieval is essential.
 - Ease of use.
 - Efficiency.
 - High retrieval accuracy. **EXAMPLE** Better feature similarities

- Sketch-based query
- **Binary features**

Why sketch-based ?

Keywords

- ✓ Accessible for most people.
- × 3D models lack keyword tags.

3D model

- ✓ Sufficiently accurate for certain applications.
- × 3D models often unavailable.

2D sketch

- ✓ Accessible for most people.
- ✓ Intuitively specify 2D shape.
- × Inaccurate.
- × Inefficient.

Approach 1 : Image feature-based comparison.

- Renders 3D models into lines.
 - e.g., Suggestive contour [DeCarlo03], ...
- Adopted by most ([Yoon10], [Shao11], [Eitz12], ...).

Approach 1 : Image feature-based comparison.

Time-consuming for large-scale database.

Approach 1 : Image feature-based comparison.

Approach 2 : Semantic label-based comparison.

Approach 2 : Semantic label-based comparison.

Learning sparse labeling is difficult.

Our approach

Efficiently & effectively combine features and labels.

✓ Matching by image feature-based similarity.

✓ Matching by semantic label-based similarity.

Outline

>

- Our previous work
 - Cross-Domain Manifold Ranking [Furuya13]
 - Algorithm for cross-modal similarity metric learning
- Proposed method
- Experiments and results
- Conclusion and future work

 Ranking by diffusion distance on a Cross-Modal Manifold (CMM) [Furuya13].

Lack of scalability.

Costly relevance diffusion per query.

Insufficient accuracy.

"Outdated" visual features.

Lack of scalability.

Costly relevance diffusion per query.

Hashing CMM (comparison by binary codes)

Better features

Insufficient accuracy.

"Outdated" visual features.

Outline

- Our previous work
- Proposed method
 - Cross-Modal Manifold Hashing (CMMH) algorithm
- Experiments and results
- Conclusion and future work

Hashes the CMM to generate compact binary codes.

- 1. Generates the CMM.
- 2. "Flattens" the CMM by Laplacian Eigenmaps (LE).
- 3. Hashes the flattened CMM by Iterative Quantization (ITQ).

Hashes the CMM to generate compact binary codes.

- 1. Generates the CMM.
- 2. "Flattens" the CMM by Laplacian Eigenmaps (LE).
- 3. Hashes the flattened CMM by Iterative Quantization (ITQ).

CMM (e.g., 10K sketches + 100K 3D models)

flattend CMM

(e.g., 512 dim. real-valued space)

Hashes the CMM to generate compact binary codes.

- 1. Generates the CMM.
- 2. "Flattens" the CMM by Laplacian Eigenmaps (LE).
- 3. Hashes the flattened CMM by Iterative Quantization (ITQ).

CMM (e.g., 10K sketches + 100K 3D models) Randomized SVD [Halko11]

for LE on large CMM. (7 minutes to flatten the CMM by using GPU).

Hashes the CMM to generate compact binary codes.

- 1. Generates the CMM.
- 2. "Flattens" the CMM by Laplacian Eigenmaps (LE).
- 3. Hashes the flattened CMM by Iterative Quantization (ITQ).

Proposed method Improved feature similarity

Proposed method Improved sketch-to-3D-model similarity

bSV-MGALIF

- Multi-scale GALIF + Super Vector (SV) for accuracy.
- ITQ hashing for efficiency.

Outline

- Our previous work
- Proposed method
 - Cross-Modal Manifold Hashing (CMMH) algorithm
- Experiments and results
- Conclusion and future work

Experiments

>

Evaluate accuracy and efficiency.

- Visual features for CMM.

- Cross-modal similarity metric learning algorithms.

Experiments Small-scale benchmark database

S-PSB [Eitz12]

Experiments Medium-scale benchmark database

SHREC2014 sketch-based 3D shape retrieval (SH14) [Li14]

Experiments
Large-scale benchmark database

SH14X (100K 3D models)

2015/3/13

Experimental results Effectiveness of new visual features (S-PSB)

Proposed visual features (NFS) are more accurate.

Experimental results Efficiency of CMMH

CMMH is efficient even for 100K-model database.

- About 1 second per query.
- Less than 1 GByte memory footprint.
- CDMR has a large memory footprint.

Algorithms	Computation time per query [s]	Memory footprint for retrieval [GBytes]
CDMR		53.66
CMMH (512 bit)	1.25	0.78

Comparison of efficiency for SH14X.

measured by using two Intel Xeon E5-2650 CPUs 256 GB RAM, Nvidia GeForce GTX 770 GPU

Experimental results Comparison with other retrieval algorithms (SH14)

More accurate than state-of-the-arts.

Conclusion and Future work

Conclusion

- Efficient & accurate sketch-based 3D model retrieval.
 - Cross-Modal Manifold Hashing (CMMH)
 - About 1 second to query 100K-model database.
 - More accurate than state-of-the-arts.
- Future work
 - Further improvement in retrieval accuracy.
 - Evaluation using realistic large-scale database.
 - No "imposters".

