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Abstract 

 
This paper describes a 3D shape model retrieval method 

that accepts, as a query, a 3D mesh obtained by a range 
scan from a viewpoint. The proposed method visually 
compares single depth map of the query with depth maps of 
a 3D model rendered from multiple viewpoints. 
Comparison of the depth maps employs bag-of local visual 
features extracted by using a modified version of Lowe’s 
Scale-Invariant Feature Transform (SIFT). The method is 
capable of retrieving 3D models having diverse shape 
representations and is robust against articulation and 
global deformation of 3D shapes thanks to location-free 
integration of local visual features. Two modifications to 
the SIFT are made to avoid ill effects of range scanning 
artifacts, such as jagged edges and cracks, that exist in the 
query mesh. The two modifications are; (1) dense and 
random feature placement, and (2) importance sampling of 
low-frequency images in the SIFT’s Gaussian image 
pyramid. Our experimental evaluation showed that the 
proposed method significantly outperforms previous 
methods.  

1.  Introduction 
Interest in content based 3D model retrieval has been 

increasing recently in the recent years due to popularity of 
3D models used in game, movie special effect, mechanical 
design, medicine, architecture, and many other applications 
[6, 9]. Most of existing 3D model retrieval methods accepts 
a 3D model and returns a set of 3D models ranked by their 
similarity to the query. In some of the applications, 
however, the query is not a complete 3D model, but a range 
scan of a 3D object from a view (or from a few views). 
Examples of partial view retrieval include navigation of a 
robot using Laser range scanners and retrieval of 
archaeological artefacts. This paper proposes and evaluates 
a method for retrieving 3D objects from a partial view 3D 
mesh model obtained from a single range scan. 

An international 3D model retrieval contest SHape 
REtrieval Contest was initiated in 2006, and its 2009 

edition included, for the first time, a track on 3D model 
retrieval by using a partial 3D model generated from a 
viewpoint as a query. Figure 1 shows examples of the 
queries for the track. The track is organized by Afzal Godil 
of the National Institute of Standard Technology [1]. Two 
methods, the Compact Multi-View Descriptor (CMVD) by 
Axenopoulos and Daras [1, 4] and our Bag-of-Features 
SIFT (BF-SIFT) [1, 8], participated in the sub-track. Both 
methods are appearance-based, so that 3D shapes are 
compared based on the 2D renderings, e.g., binary and/or 
depth images, of the 3D models.  View based methods (e.g., 
[3], [4], and [8]) have an advantage of being applicable to a 
diverse class of 3D shape representations, be it solid, 
manifold mesh, point set, or polygon soup. So far as a 
model can be rendered, its shape can be compared. In 
comparison, other 3D shape comparison methods often 
require the models to be defined by a specific 3D shape 
representation.  

The result of the SHREC 2009 Partial View Retrieval 
Track showed that the best performing variations of the 
CMVD and the BF-SIFT virtually tied in various 
performance scores. Favourable classes are also split in half, 
each bettering the other on 10 out of 20 queries.  

 To compare between 3D models, the CMVD method by 

(a)  Partial-view 3D mesh models used as queries. 

  
(b) Cracks. (c)  Jagged edges. 

Figure 1: Examples of the SHREC 2009 Partial Model Retrieval 
Track query models generated by Laser range scan (a). Cracks and 
jagged edges in query models ((b) and (c)). 
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Axenopoulos and Daras [1, 4] renders, after normalizing 
for size and position, a set of multi-view 2D images of a 3D 
model from a set of viewpoints located uniformly in the 
solid angle. For each view, the CMVD renders both binary 
and depth images. From each 2D image, the method 
computes three rotation invariant global 2D image 
descriptors, 2D Polar Fourier Transform, 2D Zernike 
Moments, and 2D Krawtchouk Moments. To compare a 
single view 3D model of the query with full 3D models, the 
method treat as if the binary and depth images of the query 
model is one of the many views of a full 3D model. 

The BF-SIFT method used for the contest is a variant of 
our previous view-based method for full 3D model to full 
3D model comparison with the same name [8]. The original 
BF-SIFT renders, after normalizing for size and position, a 
set of depth images of a 3D model from 42 viewpoints 
distributed uniformly in solid angle. The BF-SIFT then 
computes, for each depth image, a set of multi-scale, local 
2D image descriptors by using Lowe’s Scale Invariant 
Feature Transform (SIFT) [7]. The SIFT first finds a few 
dozen interest points in its multiscale image pyramid, and 
then computes 128D features with scale and orientation 
information for each of the interest point. About a thousand 
SIFT features from 42 views per 3D model are integrated 
into a feature vector for the 3D model by using 
bag-of-features approach [2], through vector quantization 
into “visual words” of SIFT features followed by 
accumulation of the visual words into a histogram. A 
histogram per 3D model then becomes a feature vector for 
the model. An advantage of the BF-SIFT is its robustness 
against articulation and global deformation of 3D models to 
be compared, due to the use of local features and their 
location-free integration into a feature vector per 3D model 
by using the bag-of-features approach. 

We entered the SHREC 2009 Partial View Retrieval 
track [1] with two variations of the original BF-SIFT. The 
first is the original BF-SIFT with its distance computation 
step modified. We call the method Partial view 
Bag-of-Features Interest point SIFT (P-BF-ISIFT) in this 
paper. The P-BF-ISIFT has 42 feature vectors per full 3D 
model, corresponding to 42 depth images. The 42 feature 
vectors are compared against a feature vector computed 
from the depth image of the single-view query 3D model. 
The comparison of a full 3D model with a partial view 
model thus requires 42 distance computations.  

The second variation is created in an attempt to improve 
the retrieval performance of the P-BF-ISIFT above. The 
variation combines grid sampling and interest point 
sampling of local visual features; high frequency images 
are sampled using the original SIFT with its interest point 
detector while low frequency images are sampled at regular 
grid points. We call this variation Partial view 
Bag-of-Feature Interest point and Grid sampling SIFT 
(P-BF-IGSIFT ) in this paper. Two reasons for the 
modification are; (1) to avoid effects of unwanted feature 

points at cracks and jagged edges found in range scanned 
3D models, and (2) to increase number of samples in a 
depth image of a view. Experiments showed that the hybrid 
sampling P-BF-IGSIFT performed better than the interest 
point based P-BF-ISIFT. 

Figure 2a and 2d show interest points of the P-BF-ISIFT, 
which are attracted to high frequency features such as the 
attachments of legs to the insect’s body, or to the leaves of 
the potted plant. However, the body of the insect or the pot 
attracted only small number of interest points. Figure 2b 
and 2e show feature points on grid point of the 
P-BF-IGSIFT for low frequency images. Body and legs of 
the insect, or the pot and leaves of the potted plant are 
sampled more evenly in the grid sampling. 

In this paper, we propose a method for partial-view to 
full 3D model comparison based also on our original 
BF-SIFT [8]. The method is multi-view based, and employs 
bag-of local visual features, which makes it robust against 
articulation and global deformation of 3D shapes. However, 
unlike the P-BF-ISIFT or P-BF-IGSIFT, the proposed 
method uses dense and random placement of a large 
number of SIFT features. This increases the number of 
features per view and avoids ill effects of falsely detected 
(e.g., at the cracks) interest points. Furthermore, the method 
emphasizes low-frequency or larger scale features in the 
images by placing more samples in low frequency images 
in the Gaussian image pyramid of the SIFT. This enables 
the method to suppress high-frequency noise introduced by 
range scan, and to capture more global shape features. We 
call the method Partial view Bag-of-Features Dense SIFT, 
or P-BF-DSIFT in this paper. 

 Our experimental evaluation using the SHREC 2009 

(a) P-BF-ISIFT, 
Np=72 

(b) P-BF-IGSIFT, 
Np=336 

(c) P-BF-DSIFT,
Np=306 

(d) P-BF-ISIFT, 
Np=88 

(e) P-BF-IGSIFT, 
Np=336 

(f) P-BF-DSIFT,
Np=305 

Figure 2: SIFT sample points of the original P-BF-SIFT (a)(d), 
P-BF-IGSIFT for low frequency images (b)(e), and our proposed 
P-BF-DSIFT-L (c)(f). Np indicates the number of SIFT features 
per image.  



Ryutarou Ohbuchi and Takahiko Furuya, Scale-Weighted Dense Bag of Visual Features for 3D Model Retrieval from a Partial View 
3D Model, accepted, Proc. ICCV 2009 workshop on Search in 3D and Video (S3DV) 2009, Sept. 27, Kyoto, Japan. 

 

 

Partial Models Retrieval benchmark showed that our 
method significantly outperforms both the CMVD and our 
previous method P-BF-IGSIFT. Using the SHREC 2009 
Partial View Retrieval benchmark, our proposed method 
scored 37% in Mean First Tier. In comparison, both CMVD 
and P-BF-IGSIFT scored 22% in Mean First Tier in the 
same benchmark. 

2. Method  
 Figure 3 shows the processing pipeline of the proposed 

P-BF-DSIFT method. The process starts with depth-image 
rendering; from 1 view for the partial view query 3D model 
and from Ni views for the full 3D model. The method then 
randomly and densely places sample points, and extract 
SIFT feature at each sample point. This gives a bag of SIFT 
features per view, that is, per depth image. For each view, 
the SIFT features are vector quantized using pre-learned 
codebook, and accumulated into a histogram for the view. 
Finally, a histogram for the partial view query and a set of 
Ni multiple histograms for the 3D model is compared, 
producing Ni distances. The minimum of the Ni distances 
becomes the distance between the query and the 3D model. 
We will explain the detail of each step in the following. 

2.1. Multi-View Depth Image Rendering 
For a full 3D model, after normalizing for position and 

scale, the method renders the model from Ni viewpoints 
uniformly spaced in solid angle into Ni depth images per 
model. The method achieves approximate rotation 
invariance against two out of three rotational degrees of 
freedom via this multi-view rendering. Invariance to 
remaining one rotational degree of freedom is achieved via 
the rotation invariance of the SIFT. We will experimentally 
evaluate the effect of Ni on retrieval performance. For the 
experiment described in this paper, image size of 256 ൈ
256 pixels is used to render a full 3D model. 

For a partial view 3D model, we render the model into an 
image of size 1024 ൈ 1024 pixels, which is then down 
sampled with low-pass filtering to 256 ൈ 256  pixels in 
order to reduce aliasing artifacts. We use GPU for depth 
image rendering.  

2.2. Scale-Weighted SIFT Feature Extraction 
In this step, a set of SIFT features are extracted from 

each depth image rendered. The SIFT [7] is a scale and 
rotation invariant local visual feature having dimension of 
128. By employing a multiresolution image pyramid, the 
SIFT feature capture multi-scale and multi-orientation 
image features. The original BF-SIFT [8] employed 
Lowe’s SIFT without modification, which starts with 
interest point detector, followed by the feature extraction at 
these interest points. The SIFT places interest points at the 
points having high gray level gradient across the scale. As 
mentioned before, this causes problem if the rendered depth 
image of the query model contains cracks and/or jagged 
edges that are the result of Laser range scan. 

On one hand, a large portion of the interest points are 
placed at these cracks and jagged edges. On the other hand, 
important yet smooth or feature-less parts of the model tend 
to be undersampled as they generate much smaller number 
of interest points. To counter these problems, our proposed 
method introduced the following two changes:  

(1) Dense and Random Sampling: The proposed method 
discards the interest point detector, and places a large 
number of sample points at random locations for all the 
images in the multi-scale image pyramid. 

(2) Low-Frequency Emphasis: Noise in range scanned 
query models, such as jagged perimeter edges and 
cracks are mostly of high-frequency, that is, smaller 
scale, features. To disregard the noise, our sampling 
method emphasize low frequency component in the 
image by importance sampling, that is, by allocating 
more samples in the low-frequency images. 
Low-frequency emphasis also enables the method to 
capture more of global shape features. 

Figure 4 shows examples of depth images in the 
multiresolution image pyramid. In this example, legs of the 

Figure 3: Overview of the proposed Partial view Bag-of-Feature 
Dense SIFT (P-BF-DSIFT) method. 

Extract 
SIFT 

features 

Vector 
quantize 

（Nv clusters） 

Histogram

Feature vector

Local 
features 

Generate 
histogram 

(Vocabulary 
size Nv) 

Visual 
words 

Render 
depth images Ni  views 

……

Compute 
minimum of  
Ni distances 

Overall distance 

…

… 

…

  

 
query 

 
3D model 

view 1 view 1 viewNi

(3, 7, 1) (2, 6, 3) (5, 2, 4)



Ryutarou Ohbuchi and Takahiko Furuya, Scale-Weighted Dense Bag of Visual Features for 3D Model Retrieval from a Partial View 
3D Model, accepted, Proc. ICCV 2009 workshop on Search in 3D and Video (S3DV) 2009, Sept. 27, Kyoto, Japan. 

 

 

insect model are visibly detached from the body in the 
image having size 256 ൈ 256. However, the discontinuity 
become less noticeable as the image is low-pass filtered and 
down sampled. For example, at the 64 ൈ 64 image, while 
the legs are still recognizable, they appear to be connected 
to the body. At each scale, sample points for the dense 
sampling are placed randomly at pixels having non-zero 
pixel values to concentrate samples on or near the 
foreground object.  

Allocation of samples across the scale is controlled by a 
scale weighting parameter W. If we have M randomly 
placed samples at a scale having image size ܰ ൈ ܰpixels, 
the next lower (i.e., larger scale) frequency image of image 
size  ܰ/2 ൈ ܰ/2 has ܯ/ܹ randomly located samples. By 
altering W, either high frequency or low frequency images 
is emphasized. At ܹ ൌ 4.0 the number of samples is even 
across the scale. High frequency is emphasized if ܹ ൐ 4.0, 
and low frequency is sampled more if ܹ ൏ 4.0. 

We compare the P-BF-DSIFT with our previous 
methods P-BF-ISIFT and P-BF-IGSIFT. Additionally, we 
implemented a variation called Partial view Bag-of Grid 
SIFT (P-BF-GSIFT) that uses grid sampling only. In 
comparison, the P-BF-IGSIFT switches from grid sampling 
at low-frequency to interest-point sampling at high 
frequency. In our P-BF-GSIFT, location of the grid points 
are the same across the scale; in other words, the same 
spatial location is sampled at various scale. In comparison, 
the random placement of the P-BF-DSIFT is so that the 
sample positions are different from one scale to the other. 
Figure 2c and 2f show examples of sample points for the 
proposed P-BF-DSIFT. 

To speed up extraction of SIFT features, we use a GPU 
implementation of SIFT named SiftGPU by Wu [10] for all 
of the P-BF-DSIFT, P-BF-GSIFT, and P-BF-DSIFT. Since 
the SiftGPU is a SIFT with interest point detector, we 
modified it for the P-BF-DSIFT and P-BF-GSIFT so that 
SIFT sample locations can be specified.. For the 
P-BF-ISIFT, the original SiftGPU is used. With the 
increase in the number of sample point for the 
P-BF-IGSIFT and P-BF-DSIFT sampling, acceleration by 
using GPU brings significant speedup. 

2.3. Vector quantization and histogram generation 
Following the bag-of-features approach, the proposed 

method performs Vector Quantization (VQ) of the SIFT 
features generated from a range image into code vectors in 
the pre-computed codebook. After the VQ, the frequencies 
of code vectors, or “visual words”, are counted to create a 
histogram. The histogram then becomes the feature vector 
for the range image. 

The codebook for the VQ is learned by clustering local 
features generated from 3D models in the database. Vector 
quantization then is a process of finding a code vector 
closest to a feature to be quantized among ௩ܰ code vectors. 
The clustering for codebook learning often uses k-means 
clustering. However, k-means takes a long time especially 
if the number of features and the dimension of the feature 
increase. Furthermore, finding the closest code vector in 
high dimensional feature space for thousands of features 
per 3D model is quite time consuming. To speedup both 
codebook learning and the nearest neighbor search for VQ, 
we use the randomized decision tree algorithm by Guerts 
[5]. A tree node of the decision tree corresponds to a 
subdivision of feature space by a hyperplane perpendicular 
to a coordinate axis. The quality of cluster created by the 
randomized tree is less than that of the k-means. However, 
randomized tree is much faster than the k-means in learning 
codebook and performing vector quantization. 

After the VQ, the visual words generated are 
accumulated into a histogram per range image (i.e., view) 
whose dimension is equal to vocabulary size, or number of 
clusters, ௩ܰ. 

2.4. Distance computation 
A feature vector of the partial view query 3D model is 
compared with ௜ܰ  feature vectors of a 3D model in the 
database. The minimum of the  ௜ܰ   distances computed 
becomes the distance between the query and the 3D model. 
For the distance measure, our method uses a symmetric 
version of the Kullback-Leibler Divergence, or KLD. The 
distance ܦሺܠ, ሻܡ  between the ௩ܰ dimensional feature 
vectors ܠ ൌ ሺݔ௝ሻ and ܡ ൌ ሺݕ௝ሻ due to KLD is computed as 
follows; 

,ܠሺܦ ሻܡ ൌ෍ሺݕ௝ െ ௝ሻlnݔ
௝ݕ
௝ݔ

௡

௝ୀଵ

 

Note that the distance computation above is performed 
per view, so that a larger number of  ௜ܰ means a longer time 
to compare a full 3D model with a query. 

To speed up the distance computation, we replace the 
function call to ln() with a table lookup. As the histogram is 
very sparse and a histogram bin has a small integer value, 
the table is quite compact, having only 100 entries. The 
table is small enough to easily fit in a cache memory of a 
modern CPU. 

256 ൈ 256 128 ൈ 128 64 ൈ 64 32 ൈ 32 16 ൈ 16

Figure 4: Example of images in the multiresolution image
pyramid. (“ܰ ൈ ܰ” indicates the image size in pixels.) 
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3. Experiments and Results 
We evaluated the method through the following five 

experiments; 

(1) Sampling pattern and retrieval performance: 
Compares the P-BF-DSIFT with P-BF-ISIFT and 
P-BF-GSIFT for their retrieval performance. 

(2) Scale-weighting and retrieval performance: 
Quantifies effect of the scale-weighted sampling on 
retrieval performance for the P-BF-DSIFT. 

(3) Number of views and retrieval performance: 
Quantifies effect of number of rendered views ௜ܰ per 
3D model on retrieval performance for the 
P-BF-DSIFT. 

(4) Vocabulary size and retrieval performance: 
Quantifies effect of visual word vocabulary size ௩ܰ on 
retrieval performance. 

(5) Performance comparison with other methods: 
Compares the retrieval performance of the 
P-BF-DSIFT with other methods.  

(6) Computational cost: Quantifies computational costs 
for the four processing steps of the P-BF-DSIFT. 

For evaluation, we used the database and ground truth 
categories of the SHREC 2009 Partial 3D Models Track [1]. 
The database consists of 720 models divided into 40 classes, 
such as plant, furniture, and airplane. The query set is 20 
partial view 3D models generated by range scanning real 
objects using a viewpoint per model. As the numerical 
performance index, we used Mean First Tier (MFT). First 
Tier is the ratio of 3D models retrieved from the correct 
class in the top ݍ  retrievals, where ݍ  is the size of the 
correct class. The number is averaged over all the queries to 
yield Mean First Tier. 

Throughout the experiments, we used the following 
parameters. We fixed the number of viewpoint ௜ܰ for the 
multi-view rendering to ௜ܰ ൌ 42 , except for the third 
experiment in which ௜ܰ is varied. In rendering, 3D models 
are rendered into 256 ൈ 256 pixels. Partial view 3D model 
is first rendered into 1024 ൈ 1024  pixels, followed by 
smoothing and down sampling into 256 ൈ 256  pixels 
before SIFT feature extraction. The codebook for vector 
quantization is learned from a set of 500k SIFT features. 
The set is a randomly selected subset of SIFT features 
extracted from 3D models in the retrieval target database.  

3.1. Sampling Pattern and Retrieval Performance 
Figure 5 shows, for P-BF-ISIFT, P-BF-GSIFT, and 

P-BF-DSIFT, the relationship between number of samples 
௣ܰ and retrieval performance measured by MFT.  
The plot for the P-BF-ISIFT is a point since its ௣ܰ is 

determined automatically by the interest point detector.  
For the P-BF-GSIFT and P-BF-DSIFT, we varied ௣ܰ from 
about 100 to 3,600. In this set of experiments, for all the 

sampling methods, scale weighting factor is set at W=4.0 
for even sampling across the scale.  

The best performing was the proposed P-BF-DSIFT, 
followed by the P-BF-GSIFT. The performance of 
P-BF-DSIFT increased with ௣ܰ, but is saturated at around 
௣ܰ ൌ 1,200 with MFT = 32.5%. The P-BF-GSIFT gained 

performance as ௣ܰ is increased, reaching MFT = 27.2% at 
௣ܰ ൌ 3,600. However, its performance never matched that 

of P-BF-DSIFT in the range of ௣ܰ we have experimented 
with. We suspect that the same regular grid points across 
the multi-scale image pyramid of the P-BF-GSIFT 
produced features having limited diversity. In comparison, 
P-BF-DSIFT places samples at different positions across 
the scale, presumably improving feature’s diversity.  

Original SIFT with its interest point detector performed 
the worst with its MFT ൌ 9.2%. Two primary reasons for 
its low performance are the small sample counts per image 
( ௣ܰ ൌ 66) and the misplacement of samples around range 
scanning artifacts such as cracks and jagged edges.  

 
Figure 5: Number of samples  ௣ܰ per depth image and retrieval 
performance plotted for three sampling methods. 

3.2. Scale-Weighting and Retrieval Performance 
In this experiment, we evaluated the relationship 

between the scale weighting parameter W and retrieval 
performance. We use the P-BF-DSIFT, and its number of 
samples is set at ௣ܰ ൌ 1,200. We then tried various value 
of W in the range 1.0~12.0 to modify the allocation of 
samples over the scale space.  

 Figure 6 shows the result of the experiment. There is a 
performance peak at W=1.5 with MFT = 37.2% where 
low-frequency image has more samples than 
high-frequency images. The performance at W=1.5 is about 
5% better than when even sampling density is employed 
across the scale.  

Interestingly, there is little change in retrieval 
performance between even sampling (W=4.0) and 
high-frequency emphasized sampling (W>4.0) across the 
scales. 
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Figure 6: Scale weighting parameter W and retrieval performance. 
Importance sampling low-frequency images (W=1.5) improved 
retrieval performance. 

3.3. Number of Views and Retrieval Performance 
It is expected that an increased number of views ௜ܰ  to 

render depth images will provide better approximation to 
rotational invariance, at the expense of higher cost of 
distance computation. Figure 7 shows the relationship 
between the number of views ௜ܰ   to the retrieval 
performance. As the graph shows, performance jumps 
when ௜ܰ is increased from 20 to 42, while the performance 
change from 42 to 80 is negligible. In the following 
experiments, we fix the number of views ௜ܰ ൌ 42. 
 

 
Figure 7: Number of views  N୧ and retrieval performance for the 
P-BF-DSIFT. 

3.4. Vocabulary Size and Retrieval Performance 
Figure 8 shows the effect of vocabulary size ௩ܰ  on the 
retrieval performance. We compared four different method 
and parameter combinations; 
(1) P-BF-ISIFT: P-BF-ISIFT with average ௣ܰ ൌ 66. 
(2) P-BF-GSIFT: P-BF-GSIFT with ௣ܰ ൌ 1,200. 
(3) P-BF-DSIFT (Even): P-BF-DSIFT with even sampling 

(W=4.0) and ௣ܰ ൌ 1,200. 

(4) P-BF-DSIFT (LFE): P-BF-DSIFT with low frequency 
emphasis (W=1.5) and ௣ܰ ൌ 1,200. 

 

 
Figure 8: Vocabulary size and retrieval performance. 

 
Note that each plot is not smooth due to the randomized 

nature of the clustering algorithm [5].  
P-BF-SIFT peaks out at a small  ௩ܰ for it has a small 

average number of sample points ௣ܰ ൌ 66. P-BF-GSIFT 
has its peak at about ௩ܰ ൌ 10,000, and the performance 
drops as the  ௩ܰ increases past that point. P-BF-DSIFT also 
appears to have a peak past ௩ܰ ൌ 10,000, but the peak is 
less evident than in the case of P-BF-GSIFT. Compared to 
the interest point sampling of the original P-BF-ISIFT, the 
dense sampling of the P-BF-DSIFT, and to some extent the 
grid sampling of the P-BF-GSIFT appear to improve the 
diversify SIFT features extracted, thereby increasing the 
vocabulary size having maximum retrieval performance. ,  
At around ௩ܰ ൌ 10,000, histograms for both P-BF-DSIFT 
and P-BF-GSIFT are very sparse, dominated by bins 
having 0 values. This is because the number of samples 
௣ܰ ൌ 1,200  is smaller than the number of bins ௩ܰ ൌ

10,000 
If we compare among peak retrieval performances of the 

methods, the P-BF-DSIFT with low emphasis has the 
highest retrieval performance, followed by the 
P-BF-DSIFT with even weighting. 

3.5. Comparison with Other Methods 
In this set of experiments, performances of the following 
six variations of methods are compared;  

(1) CMVD: The method used by Axenopoulos and Daras 
[1, 4] for SHREC 2009. We used the best performing 
one that uses depth map image for feature extraction. 

(2) P-BF-IGSIFT: The method used by Furuya and 
Ohbuchi [1] for the SHREC 2009 that combines grid 
points and SIFT interest points. 

(3) P-BF-SSIFT: Our implementation of P-BF-SIFT, 
which uses interest-point only, i.e., original SIFT. 
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(4) P-BF-GSIFT: This method uses grid sampling only.  
(5) P-BF-DSIFT (Even): This method uses dense 

sampling and even weighting in scale space (W=4.0). 
(6) P-BF-DSIFT (LFE): This method uses dense 

sampling and low-frequency emphasis (W=1.5). 

Figure 9 shows the recall-precision plots, and Table 1 
shows the Mean First Tier (MFT) figures for the six 
methods. The exact numbers plotted in Figure 9 and 
tabulated in Table 1 for the CMVD and the P-BF-IGSIFT 
were obtained from the SHREC 2009 Partial View Model 
Retrieval web page. The availability of detailed 
performance evaluation results at the web site enabled us 
these direct performance comparisons.  

Clearly, P-BF-DSIFT(LFE) with its MFT=37.2% 
performed the best. If we look at Figure 9, 
P-BF-DSIFT(LFE) has significantly better precision at 
low-recall region compared to the runner-up 
P-BF-DSIFT(Even).  

Three methods, the P-BF-IGSIFT (MFT=22.5%), the 
P-BF-GSIFT (MFT=23.6%), and the CMVD 
(MFT=21.7%) are about equal in terms of MFT. Our 
proposed method P-BF-DSIFT(LFE) with its 
low-frequency emphasis performed about 15% better, at 
MFT=37.2%, than these three methods.  

Figure 10 shows retrieval examples for two queries from 
the class “potted plant” and “nonflying insects”. In these 
examples, the proposed method with low-frequency 
emphasis P-BF-DSIFT (LFE) performed better than the 
other two methods shown, the CMVD and the 
P-BF-IGSIFT from the SHREC 2009. 

 
Figure 9: Comparison of retrieval performance among various 
methods using recall-precision plots. 

Table 1: Comparison of Mean First Tier among various methods. 

Methods Mean First Tier [%] 
CMVD (SH09) 21.7
P-BF-IGSIFT (SH09) 22.5
P-BF-ISIFT 9.2
P-BF-GSIFT 23.6
P-BF-DSIFT (Even)  32.5
P-BF-DSIFT (LFE) 37.2

3.6. Computational cost 
In this experiment, we look into the computational cost 

breakdown for the proposed P-BF-DSIFT method. 
Computational cost of the method can be split into the 
codebook learning phase and query phase.  

To learn a VQ codebook from 500k SIFT features, our 
implementation of the randomized decision tree algorithm 
took 63.2s. This is tolerable considering it is a one-time 
cost spent during pre-processing of the database. 

Our method took 1.47s to process a query for the SHREC 
2009 Partial View Retrieval benchmark. Table 2 list the 
cost breakdown for various steps of the method. To produce 
the table, ௣ܰ ൌ 1,200 and ܹ ൌ 1.5 are used. 

Talbe 2 shows that the cost of computing distance to 
search through the database containing 720 models 
dominated the overall computation time. This is because 
the number of comparison par 3D model is not 1 but the 
number of views ௜ܰ . The cost of distance computation 
would increase further as the number of object in the 
database increases. 

 
Table 2: Computational cost in seconds at various steps during the 
query processing phase of the proposed method. 

Render 
depth 
maps 

Extract 
SIFT 

features 

Quantize 
SIFT 

features 

Compute 
distance Total 

0.074 0.150 0.037  1.209 1.470 

4. Conclusion 
In this paper, we proposed and experimentally evaluated 

a view-based algorithm for partial-view 3D model to full 
3D model comparison named Partial view Bag-of-Features 
Dense SIFT (P-BF-DSIFT). The method compares a view 
of range image from the query model with multi-view 
range images of a full 3D model. To deal with artifacts due 
to range scan, such as cracks and jagged perimeter edges, 
the method employed dense sampling and low-frequency 
weighted importance sampling of local visual features. 
Experimental evaluation showed that the proposed method 
significantly outperformed our previous methods on which 
the proposed method is based. The proposed method 
outperformed the other methods we have compared against 
by 15% in Mean First Tier.  

Future work would include further exploration of 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

CMVD (SH09) P-BF-IGSIFT (SH09)
P-BF-SSIFT P-BF-GSIFT
P-BF-DSIFT (Even) P-BF-DSIFT (LFE)

Recall

Pr
ec

is
io

n



Ryutarou Ohbuchi and Takahiko Furuya, Scale-Weighted Dense Bag of Visual Features for 3D Model Retrieval from a Partial View 
3D Model, accepted, Proc. ICCV 2009 workshop on Search in 3D and Video (S3DV) 2009, Sept. 27, Kyoto, Japan. 

 

 

scale-space weighting and its effect on various shape 
retrieval benchmarks, e.g., those with and without 
articulation. For example, low frequency emphasis might 
impact the performance for articulated models. We also 
would like to improve computational efficiency of the 
method, especially by improving the distance computation 
step. 
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Figure 10. Retrieval examples for the two classes “potted plant” and “nonflying insect”. The proposed method P-BF-DSIFT (LFE) 
performed better than the others in these examples. 
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