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Abstract 
With recent popularity of 3D models, retrieval and recognition of 3D models based on their shape has become an 
important subject of study. This paper proposes a 3D model retrieval algorithm that is invariant to global defor-
mation as well as to similarity transformation of 3D models. The algorithm is based on a set of local 3D geometrical 
features combined with bag-of-features approach. The algorithm employs a novel local feature, which is a combina-
tion of local geometrical feature enhanced with its spatial context computed as histogram of diffusion distance com-
puted over mesh surface. Experimental evaluation of retrieval accuracy by using benchmark databases showed that 
adding positional context significantly improves retrieval accuracy. 

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Content 
Analysis and Indexing, I.3.m [Computer Graphics]: Miscellaneous 

 

1. Introduction 

As three-dimensional (3D) shape model become ubiqui-
tous, effective and efficient management of them, 
especially via content based retrieval by their shape, has 
become quite important.  

In this paper, we propose a 3D model retrieval algorithm 
that accepts 3D models as query and has invariance to 
global deformation and similarity transformation of 3D 
models. Invariance to global deformation is important for 
almost all animal and many mechanical parts. Proposed 
algorithm employs Bag-of-Features (BoF) integration of a 
set of simple, 3D, local, geometrical features, so a 3D mod-
el is described by an integrated feature vector per 3D model. 
If each local geometrical feature is invariant to 3D similari-
ty transformation, BoF integration of a set of such features 
that discards (3D Euclidian) coordinate of the features 
made the algorithm invariant to global deformation. The 
BoF integration also make comparison among 3D models 
more efficient, as each model is described by a feature 
vector, instead of a set of local features.  

While quite popular and powerful, BoF has a shortcom-
ing; it discards all the positional information of local fea-
ture so that no contextual information is used. The pro-
posed algorithm attempts to better BoF by augmenting 
each local geometrical feature with its spatial context. As a 
spatial context of a point on a 3D model, the algorithm 
employs statistics of diffusion distance (e.g., [SOG09]) 
measured over the surface of a 3D model. Such statistics is 
invariant to articulation and/or deformation of the mesh 
surface as well as to similarity transformation. Experi-
mental evaluation of the proposed 3D model retrieval algo-
rithm has shown that adding spatial context to local geo-
metrical feature do improve retrieval accuracy.  

We will briefly review related work in the next section. 
Section 3 and Section 4 will present the proposed algorithm 
and its evaluation results. Summary and future work will 
be presented in Section 5.  

2. Related work 

A predominant approach in the field of image recogni-
tion and retrieval is Bag-of-Features (BoF) integration of 
local visual features (e.g., [CDF*04]). In such an approach, 
local features are combined into a feature vector per image 
without regard to absolute or relative positions of each 
local feature. However, importance of context in object 
recognition is well known [OT07]. Thus, many recent 
works have tried to incorporate contextual information for 
object recognition. e.g., matching of (sets of) local features 
organized in grid [LSP06] or graph [DJP11].  

Bag-of-features approach has also become popular in the 
field of 3D object retrieval (e.g., [OOF*08][FO09] 
[TDV*11]). A set of 2D image local features [OOF*08] 
[FO09] or 3D local features [FSB09] are extracted from a 
3D model to be compared, and then integrated into a fea-
ture vector per 3D model by using bag-of-features ap-
proach. These algorithms, however, do not employ contex-
tual information. One of possible reasons is difficulty in 
finding canonical orientation and parameterization for a 3D 
model. A photograph typically has a global orientation, an 
important cue for spatial context, and parameterization of 
the image is relatively easy (e.g., as pixel grid.). In 3D 
model recognition and retrieval, however, invariance 
against 3D similarity transformation is expected. Further-
more, invariance to global deformation or articulation is 
often required. In such a case, finding canonical orientation 
of a 3D model and finding global parameterization of local 
features are quite difficult.  
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One of the ways to establish intrinsic coordinate system 
on a deformable 3D mesh surfaces is local statistics of 
geodesic-like distances computed on the surface, e.g., 
[SOG09]. Such local statistics of distances among points 
on the mesh may be used by itself as a feature for 3D ob-
ject retrieval. Our proposed method uses it as spatial or 
positional context that enhances local geometrical feature.  

3. Algorithm 

Proposed algorithm follows the steps below to retrieve 
3D models.  

1. Remeshing: A 3D model is remeshed into a singly-
connected graph G having Ns vertices.  

2. FoG extraction: At each of Nk vertices ( k sN N ) on 
graph G, which are called keypoints, Local Geometrical 
Feature (LGF) Ki and its positional context Local Dis-
tance Feature (LDF) Li are extracted. A Feature on Geo-
desics (FoG) feature vector hi at interest point j (j=1...Ns) 
is a concatenation hi=(Ki, Li) of Ki and Li (Figure 1). 
Both LGF and LDF have finite support defined in 3D 
Euclidian space. 

3. Bag-of-words integration: A set of Nf  FoG features are 
integrated into a feature vector per 3D model by using 
Bag-of-Features (BoF) approach. 

4. Distance computation: Given a feature vector of a que-
ry 3D model, features vectors of 3D models in a database 
are ranked by their similarity to the query.  

Figure 1. A Feature-on-Geodesics, or FoG, combines a 
local geometrical feature with its positional context. 

3.1 Remeshing 

The remeshing step is added so that the algorithm could 
compare models in polygon soup representation or models 
having highly non-uniform sampling densities, e.g., models 
found in Princeton Shape Benchmark [SMK*04]. If the 
algorithm deals only with 3D models represented as 
densely and uniformly sampled manifold mesh, the 
remeshing should not be used, as remeshing introduces 
errors. For example, in Figure 2b, tip of a rotar blade is 
connected to the tail by remeshing. Such unintended edges 
would degrade retrieval accuracy.  

To remesh, the surface based 3D model is first sampled 
by Ns oriented points placed at locations on the faces 
determined by using Sobol’s low-discrepancy sequence 
(LDS) [PTV*92]. An LDS, or quasi-random sequence, is a 
deterministic sequence that produces sample points more 
uniformly distributed than a pseudo-random sequence. 
Surface normal of a face becomes the orientation of points 

on the face. Points are generated so that the number of 
point per unit area of faces is uniform over the 3D model. 
These points are connected by their proximity into a singly 
connected graph R per 3D model. 

(a) Point sampled (b) Remeshed 

Figure 2. A surface-based 3D model is sampled by oriented 
points (a) and remeshed (b).  

3.2 Feature Extraction 

FoG features are computed on mesh G at Nk keypoints, 
each of which is a vertex on G. Keypoints are generated by 
sub-sampling all the vertices of G using, again, low-
discrepancy sequence.  

3.2.1 Local Geometrical Features (LGF) Extraction 

Any local geometrical feature invariant to 3D similarity 
transformation can be used as LGF. We used what we call 
Localized Absolute Angle Distance (LAAD) feature as LGF. 
An LAD centered at vertex xi (i=1...m) is computed from a 
set of p oriented points within a sphere (in 3D Euclidian 
distance) of influence of radius R centered at vertex i. As-
sume that a FoG (and LAAD) keypoint is  ܠ୧ and its nor-
mal vector is ܖ୧ . Assume also that point ܠ୨  with normal 
vector ܖ୨ is a point within radius R of  ܠ୧. Using ܠ୧ and ܠ୨, 
a 2-tuple ሺߙ, ሻߚ ൌ ൫ܖ୧ ∙ ,୨ܖ หܠ୨ െ  ൯  is computed. If there	୧หܠ
are p vertices in the sphere, (p-1) tuples are computed, and 
their  and values are accumulated into a 2D joint histo-
gram. For most of the experiments described below, num-
ber of bins for the LAAD are 7 for both  and resulting 
in a 49-dimensional LAAD vector. The histogram is nor-
malized so that the sum of all the bins is 1.0. 

The radius R of the sphere of influence defines locality 
of LAAD. The smaller the R, the local the LAAD feature is. 
The value R is defined as R Dr , where r is a parameter 
and D is the raduis of the smallest sphere centered at the 
barycenter of the 3D model that encloses the model. Thus a 
parameter r=1.0 means that the support of LAAD has the 
size of enclosing sphere of the 3D model.  

3.2.2 Local Distance Feature (LDF) Extraction 

LDF Li  is a 1D histogram of distances from the FoG in-
terest point  ܠ୧ to all the sample points on mesh G. Each 
distance is a geodesic distance between a pair of points 
over the graph G, compass a diffusion distance by using 
Manifold Ranking (MR) algorithm [ZBL*03][WHY*07]. 
The interest point  ܠ୧ is used as the source of diffusion of 
ranking score for the MR. Ranking scores at every sample 
points on G computed by MR are accumulated into 1D 
histogram having DG  bins. In the experiments below, we 
used DG=100, which is determined by preliminary experi-
ments. LDF histogram is normalized so that values in the 
bins add up to 1.0.  Li is computed at the same keypoints  
 ୧ as Ki. MR has two parameters and . The parameter ܠ
is a scale parameter for diffusion. A large  makes the rank 
value to diffuse faster and farther, so that LDF captures 
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larger scale feature. A small , on the other hand, makes 
diffusion slower so that small scale feature is captured. 
Cost of MR increases with number of sample points Ns. 
MR requires O(Ns

2) of storate and O(Ns
 3) to compute rank-

ing rank values by means of matrix inversion.  

3.3 Bag-of-Features Integration 

A set of FoG features hi is integrated into a feature vec-
tor Fs for 3D model s by using BoF approach. In the fol-
lowing, LDF, LGF, and FoG integrated by using BoW 
approach are called BoLDF, BoLGF, and BoFoG, respec-
tively. For the integration, FoG (or LDF or LGF) features 
extracted from the 3D model are vector quantized into 
visual words by using a pre-formed codebook of vocabu-
lary size Nv. Resulting visual words are accumulated into a 
(1D) histogram having Nv  bins. This histogram becomes 
the feature vector of the 3D models. The codebook is pre-
computed by clustering FoG features obtained from the 
database to be retrieved. Each cluster center corresponds to 
a code vector, that is, a visual word. We employed k-means 
clustering algorithm for the clustering, by giving vocabu-
lary size Nv as number of clusters.  

3.4 Distance Computation 

Distance between a pair of feature vectors Fp and Fq 
is 

computed by using a symmetric version of Kullback-Leibler 
Divergence (KLD);.  
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(1)  

BoFoG features may be computed at multiple scales, that 
is, multiple values of . Combining BoFoG features at 
multiple scales may improve retrieval accuracy. We com-
bined multi-scale BoFoG features by their distance. That is, 
an overall distance is a sum of inter-3D model distances 
computed by using different values of  

4. Experiments and Results 

We performed experiment to quantify (1) the effect of 
adding positional context (i.e., LDF) to LGF to form FoG, 
(2) the effect of multi-scale LDF (Section 3.4), and (3) to 
compare retrieval accuracy with the other algorithms. Re-
trieval experiments are performed by using two benchmark 
databases: McGill Shape Benchmark (MSB) [SZM*08] for 
highly articulated (non-rigid) but less geometrically de-
tailed shapes, and Princeton Shape Benchmark (PSB) 
[SMK*04] for a set of quite diverse, rigid, and relatively 
detailed shapes. MSB contains models represented as 
densely sampled closed manifold mesh, while PSB con-
tains 3D models represented by using polygons soup, 
meshes having high variance in sampling density, etc. PSB 
test set is used for evaluation. We use performance index R-
Precision, which is a ratio, in percentile, of the models re-
trieved from the desired class kC  (i.e., the same class as the 
query) in the top R retrievals, in which R is the size of the 
class |௞ܥ| . Throughout the experiments presented below, 
LGF is 7×7=49 dimensional, LDF is DG =100 dimensional, 
and FoG, which is a concatenation of LGF and LDF vec-
tors, is 149 dimensional. 

4.1 FoG v.s. LDF and LGF  

First experiment compares BoLGF, BoLDF, and BoFoG 
using PSB and MSB. Parameters used are Ns=3,000, 
Nk=500 R=0.5, σ = 2, μ = 0.01, and Nw=500. Suffix “_S” 
for BoFoG means that it is a single-resolution version 
computed using single value of  Figure 3 shows that 
BoFoG_S outperformed both BoLDF and BoLGF. Adding 
positional context did improve retrieval accuracy. Note that, 
for mostly rigid models of PSB, BoLGF worked better than 
BoLDF. On the other hand, for deformable models of MSB, 
BoLDF worked better than BoLGF.  

 
Figure 3. Retrieval accuracies of BoFoG is better than 
BoLDF and BoLGF.  

4.2 Comparison with Other Methods 

This experiment compares retrieval accuracy of BoFoG 
with several previous algorithms; Light Field Descriptor 
(LFD) [CTS*03], Spherical Harmonic Descriptor (SHD) 
[KFR03] and Bag-of-Features Dense SIFT (BF-DSIFT) 
[FO09]. Executables for LFD is downloaded from the au-
thor’s web site. We implemented BF-DSIFT. We used both 
single-scale and multi-scale versions of BoFoG. For single-
scale version, we usedσ = 2. Multi-scale version used seven 
values = {0.25, 0.5, 1, 2, 4, 8, 16} to obtain seven 
distances, which are then added with equal weight to 
produce an overall distance. All the other parameters are 
the same as in Section 4.1. 

Table 1 shows retrieval accuracy (R-Precision) for the 
methods compared. Figure 4a and Figure 4b show their 
recall-precision plots of 5 algorithms. In the table and plots, 
BoFoG_S and BoFoG_M indicate, respectively, single-
scale and multi-scale versions of BoFoG algorithm. Multi-
scale BoFoG_M has small but consistent advantage over 
single scale BoFoG_S.   

For MSB database, BoFoG algorithm performed the best 
among those compared. As MSB contains highly deforma-
ble models represented as densely sampled manifold mesh, 
our proposed algorithm is expected to do well. BoFoG 
algorithm did not fare well for the PSB database, however. 
Possible reasons include lack of descriptive power of local 
feature LAAD, and degradation of geometrical feature due 
to remeshing. Note that BF-DSIFT is a very powerful con-
tender for PSB-like benchmark, judging from SHREC 
2012 Generic 3D Track results. 

We entered SHREC 2011 Non-Rigid 3D Watertight 
Meshes track [LGB*11] with BoFoG_S and BoFoG_S 
combined with distance metric learning. For the distance 
metric learning, we used MR [ZBL*03] in its original form. 
In the track, BoFoG_S and its MR version placed at about 
4th among 9 entrants.  
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Table 1. Retrieval accuracy of various algorithms. 

Methods 
R-precision [%] 

MSB PSB 
SHD [KFR03] 55.6 39.6
LFD [CTS*03] 55.5 44.7
BF-DSIFT [FO09] 75.4 54.1
BoFoG_S 80.1 36.4
BoFoG_M 82.1 40.2

 
Figure 4a. Recall-precision plot for MSB. 

 
Figure 4b. Recall-precision plot for PSB. 

5. Conclusion 

This paper proposed a 3D model retrieval algorithm that 
is invariant to global deformation and similarity transfor-
mation of 3D models. Basis of the algorithm is a popular 
bag-of-features approach combined with 3D local geomet-
rical feature. Novelty of the proposed algorithm is an addi-
tion of spatial context to the local geometrical feature. The 
positional context is a histogram of distribution of diffusion 
distances between points on the 3D model. Experiments 
showed that adding spatial context significantly improves 
retrieval accuracy, especially for deformable models of 
MSB [SZM*08]. For rigid and diverse models of PSB 
[SMK*04], which contains polygon soup models, the algo-
rithm did not perform well.  

In the future, we’d like to evaluate proposed approach 
without the remeshing step, assuming dense manifold mesh 
models as input. We’d also like to try more powerful local 
geometrical feature coupled with proposed positional 
context.   
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