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Abstract—Sketch-based 3D model retrieval algorithms 
compare a query, a line drawing sketch, and 3D models for 
similarity by rendering the 3D models into line drawing-like 
images. Still, retrieval accuracies of previous algorithms 
remained low, as sets of features, one of sketches and the other 
of rendered images of 3D models, are quite different; they are 
said to lie in different domains. A previous approach used 
semantic labels to establish correspondence between features 
across inter-domain gap. This approach, however, is prone to 
overlearning if dataset is difficult to learn, i.e., if labeling is 
sparse and/or if only a small subset of each class is labeled. 
This paper proposes Cross-Domain Manifold Ranking 
(CDMR), an algorithm that effectively compares two sets of 
features that lie in different domains. The proposed algorithm 
first establishes feature subspace, or manifold, separately in 
each of the domains. Then, the two feature manifolds are 
interrelated to form a unified Cross-Domain Manifold (CDM) 
by using both feature similarity and semantic label 
correspondence across the domains. Given a query sketch, 
similarity ranks of 3D models are computed by diffusing 
relevance value from the sketch over the CDM. Experimental 
evaluation by using sketch-based 3D model retrieval 
benchmarks showed that the CDMR is more accurate than 
state-of-the-art sketch-based 3D model retrieval algorithms.  

3D shape retrieval; content-based multimedia retrieval; 3D 
geometric modeling; manifold ranking; diffusion distance. 

I.  INTRODUCTION 

Number of 3D models has been exploding. In addition to 
traditional, professionally designed 3D models for industrial, 
architectural, or entertainment applications, user generated 
3D models are being accumulated [20]. These user-generated 
3D models already populate cyber-worlds and YouTube 
videos. Proliferation of inexpensive range scanners, e.g, 
Microsoft Kinect, has shifted principal method of 3D model 
creation toward capture from editing. 3D models appeared at 
the output end of the 3D model usage pipeline. These 
changes promoted development of shape-based 3D model 
retrieval systems, a technology essential in managing large 
collections of 3D models.  

Querying modality is an issue central to 3D model 
retrieval. Query-by-3D model has been the most popular 
modality so far, but a user often does not have a 3D model to 
be used as a query. A possible alternative is to use a set of 
keywords as a query [18, 19]. But most 3D model lacks text 
metadata. It is also very difficult to specify geometrical 
shape by words alone. Yet another alternative is to use line 
drawing sketches as queries for 3D model retrieval [6, 7]. 

Sketch allows relatively easy and intuitive specification of 
shapes desired.  

A challenge in sketch-based 3D model retrieval is 
bridging a gap between the domain of 2D line drawings 
sketched by human and the domain of 3D shape models. To 
bridge the gap, previous algorithms for sketch-based 3D 
model retrieval renders a 3D model into 2D line drawing 
images in order to compare them with a sketch query image 
[1, 2, 3, 4, 5, 6, 7]. The rendering is done from multiple 
viewpoints about the 3D model to gain rotational invariance. 
Figure 1 shows examples of query sketches, and line 
drawing renderings generated by using suggestive contour 
algorithm [8] of corresponding 3D models.  

In comparing line drawing sketch image and suggestive 
contour image rendered of a 3D model, Shao et al. [1] and Li 
et al. [6, 7] place many sample points on lines of both images, 
then compute sum of distances among corresponding sample 
points. Saavedra et al. [3] simplifies line drawing images into 
a set of straight line segments. Then, positional relationships 
of the line segments in an image are encoded into a feature 
vector for comparison. BF-GALIF [5] proposed by Eitz et al. 
employs dense sampling of Gabor local feature that detects 
orientation of line and intensity gradient. Thousands of 
Gabor features are integrated into a feature vector per image 
so that position of each local feature is ignored. To our 
knowledge, BF-GALIF performed the best among existing 
sketch-based 3D model retrieval algorithms.   

These algorithms work well for “realistic” sketches 
exemplified in Figure 1a and 1b. However, other sketches, 
e.g., those having high level of abstraction, high semantic 
content, gross simplification, or large noise (e.g., wobbling 
or disconnected lines) could be quite difficult for them to 
handle. For example, sketches shown in Figure 1c and 1d are 
highly stylized or simplified with high degrees of semantic 
influences. These sketches show little resemblance to 
suggestive contour renderings of corresponding 3D models.   

An effective method for bridging the inter-domain gap is 
to exploit cross-domain correspondence of semantic labels 
[13, 14, 15, 16]. Raisiwasia et al. [13] used Canonical 
Correlation Analysis to learn cross-domain correspondence 
between text and image. Choo et al. [15] used Multi-
Dimensional Scaling to find a common subspace for cross-
domain retrieval between text and speech. These two 
algorithms find a single subspace shared by features in both 
domains. However, finding a feature subspace that properly 
reflects two independent distributions of features in their 
respective domains can be difficult. Geometrical structure of 
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features in the original domain is often destroyed in the 
process, producing inaccurate similarity ranks. 

Second approach of this kind creates separate feature 
manifold for each domain. Algorithms by Zhai et al. [14] and 
by Wang et al. [16] form a feature subspace, or manifold, in 
each of the text feature and image feature domains. A 
manifold here is a graph having features as vertices and 
edges weighted by similarities among these features. These 
two manifolds in separate domains are then coupled into a 
single cross-domain manifold by linking features in the two 
domains that share semantic labels. Distances from a vertex 
of text feature to vertices of image features are computed by 
diffusion of relevance from the vertex of text feature to other 
vertices. This approach leaves manifold structure in two 
separate domains intact, and thus could result in a better 
ranking performance than a shared common subspace 
approach. This approach works well if the training set 
contains sufficient number of text-image feature pairs that 
share semantic labels and if the labeled feature pairs are 
distributed evenly across semantic classes. However, the 
approach tends to fail due to overlearning if labeling is 
uneven, that is, if only a subset of categories is labeled, or if  
sparse, that is, overall number of labels is small. 

In this paper, we propose a semi-supervised cross-
domain similarity ranking algorithm called Cross Domain 
Manifold Ranking (CDMR). The CDMR algorithm is similar 
to algorithms by Zhai et al. [14] and Wang et al. [16] above 
in that it creates separate feature manifolds in two 
heterogeneous feature domains. The CDMR, however, uses 
both semantic label similarity as well as feature similarity 
among the features in the two domains in integrating these 
two manifolds into a single Cross-Domain Manifold (CDM). 
Similarities from a sketch query to 3D models are computed 
by using diffusion of relevance value from the sketch query, 
over the CDM graph encompassing the domains, to the 
features of 3D models. The CDMR algorithm is expected to 
be less prone to overlearning caused by sparse or uneven 
labeling as our CDM is formed by using both feature 
similarity and semantic label similarity.  

We experimentally evaluated the proposed algorithm by 
using two cross-domain retrieval scenarios. First set of 
experiments employed a sketch-based 3D model retrieval 

benchmark by Eitz et al. [5]. The benchmark, which is called 
S-PSB in this paper, has semantic labels added to only a 
subset of sketches and 3D models. Labeling in S-PSB is 
skewed so that overlearning is likely. Without the CDMR, 
the BF-fGALIF feature, a variation of BF-GALIF by Eitz, et 
al. [5], yielded Mean Average Precision (MAP) of 17.5%.  
With CDMR, MAP score improved significantly to 31.9%.  

Second set of experiments used SHape REtrieval Contst 
(SHREC) 2013 Large-Scale Sketch-Based 3D Shape 
Retrieval (SH13) [7] benchmark. This dataset can be used to 
test effect of densely labeled supervised learning across the 
domains, as all the sketches and 3D models in this dataset 
have labels intended for evaluation. Furthermore, each 
semantic category consists of a fair number of training 
samples. The BF-fGALIF feature alone produced 11.3% in 
MAP for this benchmark. When CDMR is applied with 
dense labeling, MAP score improved to 65.7% 

 Contribution of this paper can be summarized as 
follows; 

 Proposal of Cross-Domain Manifold Ranking (CDMR) 
algorithm. It exploits both feature similarity and 
semantic-label similarity to couple heterogeneous 
feature manifolds formed in separate feature domains 
(e.g., 2D sketch and 3D shape model) for relevance 
ranking. 

 Experimental evaluation of the CDMR algorithm by 
using human line drawing sketch to 3D shape model 
cross-domain retrieval problem. Evaluation by using 
multiple benchmark datasets showed that the proposed 
algorithm performs well for a difficult-to-learn cross-
domain retrieval benchmark in which semantic labels 
are sparse or skewed.  

The next section presents description of proposed CDMR 
algorithm, followed in Section III by experiments and results 
to evaluate the algorithm. We conclude the paper in 
Section IV with summary and future work. 

 
(a) “dining_chair” class (b) “sedan” class 

 
(c) “human” class (d) “pig” class 

Figure 1.  Pairs of sketches and 3D models in identical classes. The 3D 
models are shown in their suggestive contour rendered images. Figure 2. Proposed CDMR algorithm computes similarity from a sketch to

3D models on a Cross-Domain Manifold (CDM). A CDM consists of a
manifold of sketch features (WSS) and a manifold of 3D model features
(WMM) coupled by the cross-domain link WSM. WSM is determined from
both feature similarity and semantic similarity among the sketches and 3D
models. 
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II. PROPOSED ALGORITHM 

This section describes the Cross-Domain Manifold 
Ranking algorithm for line drawing sketch to 3D model 
matching and retrieval. It first forms a Cross Domain 
Manifold (CDM) which encompasses features in the sketch 
and the 3D model domains. Similarities from a query sketch 
to 3D models are computed by using Manifold Ranking 
algorithm proposed by Zhou et al. [17]. 

A. Cross-Domain Manifold Ranking 

1) Generating Cross-Domain Manifold 

The Cross-Domain Manifold, or CDM, is a graph W 
whose vertices are the features from both domains. Given the 
number of sketches NS and the number of 3D models NM, the 
matrix W has the size (NS+NM) × (NS+NM).  

 










MMMS

SMSS
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WW
W  (1)

The submatrix WSS having size NS×NS is the manifold of 
sketch features produced by linking features of sketches 
produced by the BF-fGALIF, a variation of the BF-GALIF 
feature used in [5]. (See Figure 3b.) We will describe the BF-
fGALIF in the following section. An edge of the graph WSS 
connecting vertices i and j is undirected and has a weight, 
which is a similarity w(i, j) among the vertices. The 
similarity w(i, j) is computed by using the equation (2) after 
normalizing the distance d(i, j) of features i and j to range 
[0,1].  
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The submatrix WMM having size NM×NM is a manifold of 
features of 3D models. (See Figure 3c.) It is created in a 
similar manner as the manifold of sketch features. An edge 
of the graph WMM is undirected and has a weight reflecting 
similarity of features at the endpoints of the edge. 
Computation of a similarity of an edge in WMM is like that of 
WSS. Per-3D model features for 3D model-to-3D model 
comparison are computed by using BF-DSIFT [11].  

The submatrix WSM of size NSNM couples two 
submanifolds WMM and WSS that lie in different domains, 
that are, sketch feature domain and 3D model feature domain. 
An edge in the graph WSM bears a weight p(i, j) in equation 
(3) that is determined by using both semantic similarity and 
feature similarity.  

 
　　　　　

　　　　　　　



 


otherwizejiw

jCiCif
jip

),(

)()(1
),( (3)

In this equation, C(i) and C(j) denotes class for the sketch 
i and class for the 3D model j. That is, if a sketch has the 
same semantic label as a 3D model, the distance among the 
two is forced to zero.  

To compute a feature similarity w(i, j) among a sketch 
image i and a 3D geometric model j, a common ground is 
found. (See Figure 3a.) The 3D model is rendered from 
multiple viewpoints into a set of suggestive contour [8] 
images that resemble human sketches. The slightly modified 

BF-GALIF algorithm [5] is then applied to rendered 
suggestive contour images for per-viewpoint features of a 3D 
model. As for the sketch image, the same BF-GALIF 
algorithm is applied directly to the sketch to extract a feature. 
Finally, feature similarity w(i, j) is computed as the distance 
between a feature for a sketch i and a feature for a suggestive 
contour image rendered of a 3D model j.  

Submatrix WMS of size NMNS is a zero matrix as we 
assume no diffusion of similarity occurs from 3D models to 
sketches.  

Using a naive algorithm, creating a graph representing a 
CDM requires 2(( ) )S MO N N  time. It can be accelerated, 
for example, by using kd-tree, but the operation is still costly. 

2) Diffusing Relevance Over Cross-Domain Manifold 

Ranking of 3D models to a query sketch is done by 
diffusing relevance value from the query to the 3D models 
over the CDM by using Manifold Ranking [17] algorithm. 
The ranking is very robust, as diffusion from the query 
sketch to the 3D models occurs via multiple paths. For 
example, the relevance value may first diffuse quickly 
through sketches similar to the query before reaching to the 
3D models. In such a case, the CDMR embodies a form of 
query expansion.  

We normalize W by using the following equation; 
2121  WDDS  (4)

where D is a diagonal matrix whose diagonal element is 
.ii ijj

 D W  We use the following equation to find rank 

values in F given initial value, or “source” matrix Y; 

  YSIF 1     (5)

Y is a diagonal matrix of size (NS + NM) × (NS + NM) that 
defines source(s) of relevance value diffusion. If a vertex i is 
the source of diffusion 1i i Y and, if not, 0 .ii Y  In our case, 
the vertex corresponding to the query sketch becomes the 
source of diffusion. Fij is the relevance value of the 3D 
model j given the sketch i. The higher the relevance value Fij, 
the higher the rank of the 3D model j in the retrieval result. 
Cost of computing (5) is 3(( ) )S MO N N  if a naive 
algorithm is used for the matrix inversion.  

The parameter σ in equation (2) controls diffusion of 
relevance value across the CDM. We use different values σSS，
σMM，and σSM for each of the submatrices WSS, WMM, and 
WSM as optimal value of σ depends on each submatrix.  The 
parameter  0,1  in equation (5) controls regularization.  

B. Computing feature similarities for CDM 

As described above, formation of CDM W requires 
computation of edge weights in the submatrices WSS, WMM, 
and WSM. For WSS and WMM, an edge weight is computed 
from a similarity, hence distance, among a pair of features. 
For WSM, an edge weight is computed from both feature 
similarity and semantic label similarity of the pair of features.  

1) Computing similarities for WSM 

The BF-GALIF feature [5] is used to compute WSM 
consisting of similarity values between a sketch and multi-
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view suggestive contour renderings of 3D models. To our 
knowledge, the BF-GALIF is among the best performing 
algorithms for sketch-to-3D model comparison. We used our 
own implementation of slightly modified BF-GALIF in the 
experiments below. We call our version BF-fGALIF, which 
uses black background for the suggestive contour images [8] 
and normalizes image rotation. We verified the BF-fGALIF 
using the benchmark in [5]; our implementation produced 
Nearest Neighbor (NN) score of 29.1%, while the score in 
the original paper [5] is nearly identical at 28.8%.  

Given a 3D model, the BF-fGALIF renders it from 
multiple viewpoints into suggestive contour images. We 
used 162 viewpoints spaced uniformly in solid angle and 

image resolution of 256256 pixels. Note that our algorithm 
renders white object on black background with black 
suggestive contour lines (Figure 3a). We found this to be 
better than white object on white background with black 
suggestive contour lines scheme used in [5]. The reason is 
that, using the algorithm in [8] object contours (silhouette 
edges) often don’t appear for polygon soup models. Strong 
silhouette of a white object on a black background produces 
better GALIF orientation features.  

Each rendered images is then normalized for rotation. To 
do so, the algorithm computes gradient vector at all the 
pixels in the image using 3 Sobel filter. First principal 
vector produced by principal component analysis of the 22 
covariance matrix of the 2D gradient vectors becomes an 
overall orientation vector for the image. The image is then 
rotated to the direction of the orientation vector. After 
normalizing for the rotation, GALIF features are extracted 
densely at regular grid points on the image. GALIF feature 
captures orientation of lines and intensity gradient in the 
image by using Gabor filter. Bandwidth and other parameters 
for Gabor filter we used in this paper are the same as in Eitz 
[5]. Our implementation uses, as with Eitz [5], a relatively 
large region of interest having 114114 pixels for the GALIF. 
This corresponds to about 20% of the area of the entire 
image. Using too small an area lowers retrieval accuracy as 
GALIF becomes too sensitive to wobbling, displacement, 
and other noise in line drawing sketches. Our algorithm 
samples GALIF at grid points of 88 pixels interval, 
resulting in 1,024 GALIF feature per image.  

For each sketch image, GALIF features are extracted in 
an almost identical manner for the suggestive contour images 
of 3D models after the sketch image is resized down to 
256256 pixels.  

The set of 1,024 GALIF features extracted from an image 
is integrated into a feature vector per image by using a 
standard bag-of-features (BF) approach. This integration 
reduces cost of image-to-image matching significantly 
compared to directly comparing a set of features to another 
set of features. We used vocabulary size k=2,500 for the 
experiments. We used k-means clustering to learn the 
vocabulary, and used kd-tree to accelerate vector 
quantization of GALIF features into words of the vocabulary.  

A BF-fGALIF feature of a sketch image is compared 
against every one of 162 BF-fGALIF features of a 3D model 
computed for 162 viewpoints. Distance between the sketch 
and the 3D model is the smallest of the 162 distances 
computed of the pair. Symmetric version of Kullback-
Leibler Divergence (KLD) in (6) is used to compute distance 
between a pair of features x and y. In the equation, k is the 
number of BF-fGALIF feature dimension, i.e., its vocabulary 
size. KLD performs well when comparing a pair of 
probability distributions, i.e., histograms. 

 
1

, ( ) ln
k

i
KLD i i

i i

y
d y x

x

 x y  (6)

2) Computing similarities for WSS 

Similarities for the submatrix WSS are computed, again, 
by the BF-fGALIF algorithm (Figure 3b). Sketch-to-sketch 
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3D model 

(a) Computing a sketch-3D model feature similarity for WSM. 
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comparison differs slightly from the sketch-to-3D model 
comparison. Sketch-to-sketch comparison doesn’t require 
rotational normalization step, as most sketches drawn by 
human are already aligned to a canonical orientation. 
Distances between BF-fGALIF features of the sketches are 
computed using KLD. All the parameters of the BF-fGALIF 
to compute WSS are the same as those used to compute WSM. 

3) Computing similarities for WMM 

Feature similarities among 3D models are computed by 
using the BF-DSIFT [11] (Figure 3c). Given a 3D model, the 
BF-DSIFT renders range images of size 256256 pixels 
from multiple (we used 42 in this paper) viewpoints placed 
uniformly in the solid angle. From each range image, about 
300 SIFT [9] features are extracted at densely and randomly 
placed feature points on and around the image of the 3D 
model. Having multiple viewpoints and using (in-plane) 
rotation invariant SIFT feature provide 3D rotation 
invariance. A set of 13k SIFT features is extracted from a 3D 
model, which is then integrated into a feature vector per 3D 
model having 30,000 dimensions by using bag-of-features 
approach. We used ERC-Tree [12] clustering for finding of, 
and encoding into, words of visual vocabulary. Combination 
of SIFT, a multi-scale local visual feature, and bag-of-
features integration enables the BF-DSIFT to have 
invariance against articulation and global deformation of 3D 
models. Distance among a pair of BF-DSIFT features is 
computed by using KLD. An advantage of the BF-DSIFT is 
that it accepts any shape representations that can be rendered 
into depth images. And yet, the BF-DSIFT is among the best 
performer in comparing 3D model to 3D model [21]. We 
used our original implementation of the BF-DSIFT [11].  

III. EXPERIMENTS AND RESULTS 

We experimentally evaluated effectiveness of the 
proposed CDMR algorithm in a sketch-based 3D model 
retrieval setting. We used two sketch-based 3D model 
retrieval benchmark databases, the S-PSB by Eitz et al. [5] 
and the SH13 used for SHREC 2013 Large Scale Sketch-
Based 3D Shape Retrieval track [7]. Figure 4 shows 
examples of sketch queries and retrieval target 3D models 
for the two benchmarks.  

The S-PSB contains a train set and a test set, each of 
which consists of a set of 907 sketch queries and a set of 907 
retrieval target 3D models. The set of 3D models is adopted 
from the Princeton Shape Benchmark [10]. Each of the train 
set sketches and the train set 3D models is partitioned into 90 
semantic classes.  Similarly, each of the test set sketches and 
test set 3D models is partitioned into 92 classes. Note that the 
labeling is rather sparse; of 90 test set classes and 92 train set 
classes, only 21 classes are shared. Numbers of training 
samples are uneven among classes, varying from 4 to 50. 
These characteristics make the dataset difficult to learn.  

The SH13 dataset contains a set of 1,258 models as 
retrieval target, which is a subset of 1,814 models of the PSB 
[10]. Those 1,258 models are partitioned into 90 classes. The 
SH13 contains 2,700 sketches as its set of queries for 
evaluation. The SH13 also contains 4,500 “train set” 
sketches classified into 90 classes. Note that this train set 

contains sketches only, so that correspondence of labels 
between sketches and 3D models can’t be established for the 
train set. This so-called train-set of the SH13 is presumably 
for bag-of-feature vocabulary training. As we wanted to 
quantify effectiveness of CDMR-based supervised learning, 
we perused, for supervised learning using CDMR, the class 
labels attached to the target 3D models for retrieval accuracy 
evaluation. That is, for learning CDM, we fed CDMR the 
labeled 4,500 “train set” sketches and the labeled 1,258 3D 
models. Retrieval accuracy for the SH13 is evaluated by 
using 2,700 “test set” query sketches, which are disjoint from 
the labeled 4,500 “train set” sketches. That is, the algorithm 
is evaluated using “never seen” sketches.   

In the experiments below, we compare the BF-fGALIF 
with following three variations of the proposed algorithm; 

(1) CDMR-BF-fGALIF (F): WSM in CDM is produced by 
using feature similarity only. 

(2) CDMR-BF-fGALIF (L): WSM in CDM is produced by 
using class label only for semantic similarity. 

(3) CDMR-BF-fGALIF (F+L): WSM in CDM is produced 
by using both feature similarity and class label for 
combined feature and semantic (label) similarity. 

Parameters σSS, σMM, σSM, and α are determined through a 
set of preliminary experiments so that the retrieval accuracy 
is the highest among the combinations we tried. We first 
searched for an optimal σSS via sketch-to-sketch retrieval 
experiment. We did the same for σMM by using 3D model-to-
3D model retrieval experiment to find best σMM. These values 
are show in Table 1. After σSS and σMM are fixed, we searched 
for the best pair of values for σSM and α.  

We use Nearest Neighbor (NN) [%], Mean Average 
Precision (MAP)[%], and Recall Precision plot for 
quantitative evaluation of retrieval accuracy.  

A. Effectiveness of CDMR 

Figure 5 and Figure 6 compare, for the S-PSB and for the 
SH13, respectively, retrieval accuracies of BF-fGALIF and 
three variations of algorithms using proposed CDMR.  

Figure 5 shows that CDMR-BF-fGALIF (F+L), which 
uses both feature similarity and semantic similarity, 
significantly outperformed the others, that are, original BF-
fGALIF, CDMR-BF-fGALIF (F) and CDMR-BF-fGALIF 
(L). CDMR-BF-fGALIF (F+L) produced MAP=31.9% for 
the “overall” score evaluated by using both labeled and 
unlabeled classes. In comparison, the original, BF-fGALIF, 
came in the last with overall MAP=17.5%. The CDMR-BF-
fGALIF (F), which uses feature similarity only, and CDMR-

S-PSB 

 

SH13 

 
Figure 4. Sketch queries and retrieval taget 3D models for the S-PSB and 
SH13 benchmark databases. Both benchmarks contain shapes in diverse 
categories, such as animals, plants, furnitures, vehicles.  
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BF-fGALIF (L), which uses semantic similarity only, 
essentially tied at the second place, with their MAP at about 
28%. Note that the CDMR-BF-fGALIF (L), which uses 
semantic similarity only, suffers from overlearning; it 
produced the highest accuracy of all for labeled classes  with 
“labeled” MAP=58.4%, but did the worst for unlabeled 
classes with “unlabeled” MAP=6.6%. 

Figure 6 shows the results for the SH13 benchmark. With 
dense labeling, both CDMR-BF-fGALIF (L) and CDMR-
BF-fGALIF (F+L) produced MAP=66%. As mentioned 
above, the SH13 is easier than the S-PSB to learn; its training 
set is densely and evenly labeled with coverage of 100%.  
Consequently, CDMR-BF-fGALIF (L) that relies on labels 
worked well. Interestingly, even without using labels, the 
CDMR-BF-fGALIF (MAP=19.4%) did significantly better 
than the baseline BF-fGALIF. This may be explained by the 
diffusion of relevance through a corpus of sketches, a 
process reminiscent of automatic query expansion.  

Figure 7 and Figure 8 show, for the S-PSB and the SH13, 
contour plots of retrieval accuracy plotted against parameters 
σSM and α. For the S-PSB, a peak appears at around σSM=0.04, 
α=0.9, a result of relevance diffusion through both feature 
similarity and semantic similarity links. For the SH13, there 
are two peaks; one at around σSM=0.075, α=0.7 due to feature 
similarity links and the other broad peak at the lower-left 
corner, due to semantic similarity.  

 For both benchmarks, CDMR improved retrieval 
accuracy compared to the base case without any learning. 
One of the datasets, SH13, has a dense set of labels that 
connects sketches to 3D models. CDMR exploited the dense 
labels as well as feature similarities to produce very high 
retrieval accuracy. The other dataset, S-PSB, has sparse set 
of labels and the labels are added to only a subset of classes. 
Previous algorithms would have difficulty in handling this 
kind of labeling. CDMR, however, effectively utilized both 
semantic similarity derived from labels and feature similarity 
to produce retrieval accuracy higher than without learning.  

 

B.  Comparison with other algorithms  

Table 2 shows, for both S-PSB and SH13, comparison of 
retrieval accuracy of the CDMR-BF-fGALIF algorithm with 
BF-fGALIF. For the SH13 benchmark, scores for 5 
additional algorithms that participated in the SHREC 2013 
track on sketch based retrieval [7] are also shown. Every 
algorithm listed in the table employs multiple viewpoint 
rendering to compare a 3D model with sketch images. 
Similarly, Figure 9 and Figure 10 show, for the S-PSB and 
the SH13 benchmarks, respectively, recall-precision plots 
that compare the same set of algorithms. Figure 10 is 
produced by adding our experimental results for the BF-
fGALIF and several variations of the CDMR-BF-fGALIF to 
the data available from the SH13 web site.  

For the S-PSB, the BF-fGALIF serves as the baseline. As 
discussed in Section IIIA, variations of the CDMR-BF-
fGALIF, especially the one using both semantic and feature 
similarity, i.e., CDMR-BF-fGALIF (F+L), performed much 
better than the baseline BF-fGALIF.  

For the SH13, the best score among the SH13 contenders 
is MAP=11.4% by VC+SC_NUM_100 [7]. The BF-fGALIF 
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Figure 8. CDMR parameters and retrieval accuracy for the SH13. 

TABLE 1．PARAMETERS FOR CDMR-BF-GALIF (F+L). 

Benchmark σSS σMM σSM α 
S-PSB 0.0400 0.0100 0.0400 0.9000
SH13 0.0090 0.0150 0.0001 0.5000

CDMR-BF-fGALIF (L)

BF-fGALIF

CDMR-BF-fGALIF (F)

BF-fGALIF 

CDMR-BF-fGALIF (F)

CDMR-BF-fGALIF (L)

CDMR-BF-fGALIF (F+L)

MAP [%] 

MAP [%] 

σSM 

α

σSM 

α

CDMR-BF-fGALIF (F+L)
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did about as well with its MAP=11.3%. Even without using 
labels, the BF-fGALIF(F) (MAP=19.4%) did better than 
these two. This may be due to a process similar to automatic 
query expansion; sketches similar to the query in the sketch 
manifold became secondary sources of relevance diffusion.  

When dense labeling is exploited for supervised learning 
by the CDMR algorithm, the CDMR beats all the others; 
both the CDMR-BF-fGALIF (L) and the CDMR-BF-
fGALIF (F+L) produced MAP at about 66%. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an algorithm to perform 
effective ranking of retrieval results for sketch-based 3D 
model retrieval. It is difficult to compare features from 
different domains, i.e., features from 3D models and features 
from hand-drawn sketches. A previous approach tried to find 
a common subspace, or sub-manifold, of all the features 
from both domains. However, geometrical structures of the 
originating domains are often destroyed in the common sub-
manifold, leading to lower ranking performance. Another 
previous approach first creates separate manifolds in each 
domain, and then couples them into a manifold by using 
semantic labels. Coupling of manifold using semantic labels 
only tend to fail, however, if labeling is sparse and/or skewed. 

To solve these issues, we proposed Cross-Domain 
Manifold Ranking (CDMR) algorithm. The CDMR 
algorithm first forms two independent manifolds of features 
based on feature similarity in each of the sketch feature and 
3D model feature domains. These two manifolds are then 
linked into a unified Cross-Domain Manifold (CDM) by 
using both semantic label similarity and feature similarity. 
Retrieval ranks are computed robustly by diffusing relevance 
value from the query (i.e., a sketch) to the target objects, (i.e., 
3D models) via multiple paths over the CDM. 

We experimentally evaluated the proposed algorithm by 
using two sketch-based 3D model retrieval benchmarks. If a 
combination of semantic and feature similarity is used to link 
the domains, retrieval accuracy improved very significantly. 
Smaller but significant improvement in retrieval accuracy is 
observed even if feature similarity only is used for coupling 
the domains. With or without semantic labels, our algorithm 
outperformed state-of-the-art sketch-based 3D model 
retrieval algorithms such as BF-GALIF [5] and 
VC+SC_NUM_100 in [7].   

As future work, we’d like to compare our approach with 
other cross-domain retrieval algorithms such as [13] using 

the same dataset. We also would like to improve 
computational efficiency of our algorithm by modifying the 
CDM graph creation step and the relevance diffusion step.  
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Figure 11a. Retreival results for “human” class. The “human” class exists in both train and test sets. 
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Figure 11b. Retrieval results for “glass_with_stem” class. The “glass_with_stem” class exists only in the test set. 

Figure 11.  Retrieval examples using the S-PSB benchmark. For the “human” class, which exists both in training and test sets, use of semantic similarity 
improved retrieval accuracy for  CDMR-BF-fGALIF(L) and CDMR-BF-fGALIF(F+L). For the “glass_with_stem” class, which exists only in the test set, 
retrieval accuracy of CDMR-BF-fGALIF(L) that uses semantc similarity only suffers. Using both semantic and feature similarities, CDMR-BF-
fGALIF(F+L) does well for the “glass_with_stem” class.  
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