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IntroductionIntroduction

3D models are widely used 3D models are widely used.
– Mechanical CAD, Games,…

3D 3D i t– 3D range scanners, 3D printers,…
– User generated.

T i bl 3D h• Trimble 3D warehouse，...

 3D model retrieval is essential.
– High retrieval accuracy.
– Efficiency.
– Ease of use.
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– High retrieval accuracy.

t– Efficiency.
– Ease of use.

accurate
and

easy to use

2013/11/25 3

easy to use



Why sketch-based ?Why sketch based ?

 Keywords Keywords
 Accessible for most people.
× 3D models lack textual tags.

human search

3D models lack textual tags.

 3D model
 S ffi i tl t f t i li ti Sufficiently accurate for certain applications.
× 3D models often unavailable.

 2D sketch
 Accessible for most people.
 Intuitively specify 2D shape.
× Inaccurate.

• Even the best method yields MAP = 11%• Even the best method yields MAP = 11%
using SHREC 2013 benchmark.
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Cross-domain matching problemCross domain matching problem

How do we compare a 2D sketch and a 3D model? How do we compare a 2D sketch and a 3D model?

Can’t be compared directlyCan’t be compared directly. 

2D sketch 3D model2D sketch 3D model
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Cross-domain matching problemCross domain matching problem

Approach 1 : Image feature based comparison Approach 1 : Image feature-based comparison.
– Renders 3D models into lines.

S ti t• e.g., Suggestive contour [DeCarlo03], …
– Adopted by most.

Can be compared.

2D sketch 2D sketch like image2D sketch 2D sketch-like image
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Cross-domain matching problemCross domain matching problem

Approach 1 : Image feature based comparison Approach 1 : Image feature-based comparison.

Can’t handle abstraction,,
semantic influence and noise.

2D sketch 2D sketch like image2D sketch
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Cross-domain matching problemCross domain matching problem

Approach 2 Semantic label based comparison Approach 2 ： Semantic label-based comparison.

“human”“human”
Can be retrieved.

2D sketch 3D model2D sketch 3D model
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Cross-domain matching problemCross domain matching problem

Approach 2 Semantic label based comparison Approach 2 ： Semantic label-based comparison.

Learning sparse labels is difficult.Learning sparse labels is difficult.

“human”“human”

“chair”

2D sketches 3D models
“chair”

2D sketches 3D models
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Our approachOur approach

Combination of features and labels Combination of features and labels.
 Matching by image features. 

 Matching by semantic labels.

“human”“human”
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OutlineOutline

 Related work Related work
– BF-GALIF [Eitz12]

• Algorithm for sketch-based 3D model retrievalgo t o s etc based 3 ode et e a
– Manifold Ranking [Zhou03]

• Algorithm for distance metric learning

 Proposed method

 Experiments and results

 Conclusion and future work
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Related work : Sketch-to-3D model matching algorithm
BF GALIF

Efficiently compares sets of local features

BF-GALIF [Eitz12]

 Efficiently compares sets of local features.
1. Densely extracts Gabor filter-based local features.  
2 I t t l l f t i t t b B f F t2. Integrates local features into a vector by Bag-of-Features.

about 1,000 features ,
per image

＊

2D k t h b filt b k

local feature

t f2D sketch gabor filter bank
(4 orientations)
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Related work : Sketch-to-3D model matching algorithm
BF GALIF

Efficiently compares sets of local features
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2 I t t l l f t i t t b B f F t2. Integrates local features into a vector by Bag-of-Features.








1
4








1
1





3

2D sketch

k t h 3D d l

… view 1 …
















1
2
3

…

sketch-3D model
feature distance

view 200
3D model

















4
0
2 distance

computation

multi-view
rendering

local feature 
extraction

BF
integration



2013/11/25 14



Related work : Sketch-to-3D model matching algorithm
BF GALIF

Efficiently compares sets of local features

BF-GALIF [Eitz12]

 Efficiently compares sets of local features.

Robust against articulation of 2D shapeRobust against articulation of 2D shape. 

Among the most accurate methods. g

Yet, insufficient …

O hOur approach 
・ better feature comparison.

semantic labels・ semantic labels.
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Improving single-domain feature comparisonImproving single domain feature comparison

Learns feature adaptive distance metric on manifold Learns feature-adaptive distance metric on manifold.

Euclidean distance feature-adaptive distancep

feature space of 3D model feature space of 3D model
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Related work : Distance metric learning 
M if ld R ki [Zh 03]Manifold Ranking [Zhou03]

Diffusion distance on a feature manifold graph Diffusion distance on a feature manifold graph.
generate diffuse relevance

a manifold graph on a graph

feature space

query query

feature space

Our approach 
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Improving cross-domain feature comparisonImproving cross domain feature comparison

BF GALIF [Eit 12] BF-GALIF [Eitz12]
– Structure of feature manifold is ignored.

sketch-3D model
feature similarity

query
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OutlineOutline

 Related work Related work

P d th d Proposed method
– Cross-Domain Manifold Ranking (CDMR) algorithm

 Experiments and results

 Conclusion and future work
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Improving cross-domain feature comparisonImproving cross domain feature comparison

Ranking by diffusion distance on a Cross Domain Ranking by diffusion distance on a Cross-Domain 
Manifold (CDM).

sketch-sketch 3D model-3Dmodelsketch-3D model
feature similarity feature similarityfeature similarity

query
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Improving cross-domain feature comparisonImproving cross domain feature comparison

Ranking by diffusion distance on a Cross Domain Ranking by diffusion distance on a Cross-Domain 
Manifold (CDM).

sketch-sketch 3D model-3Dmodel
feature similarity feature similarity

query

semantic label
similarity
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Improving cross-domain feature comparisonImproving cross domain feature comparison

Ranking by diffusion distance on a Cross Domain Ranking by diffusion distance on a Cross-Domain 
Manifold (CDM).

sketch-sketch 3D model-3Dmodelsketch-3D model
feature similarity feature similarityfeature similarity

query

semantic label
similarity
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Proposed method
C D i M if ld R ki (CDMR)Cross-Domain Manifold Ranking (CDMR)

Ranking by diffusion distance on the CDM Ranking by diffusion distance on the CDM.
1. Generates a feature manifold on each domain.
2 Li k th t if ld b f t d l b l i il it2. Links the two manifolds by feature and label similarity.
3. Diffuses relevance from the query.

f i il i f t i il itfeature similarity
( weight [0, 1] )

feature similarity
( weight [0, 1] )
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Proposed method 
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query
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Proposed method 
C D i M if ld R ki (CDMR)Cross-Domain Manifold Ranking (CDMR)

Feature comparison methods Feature comparison methods.

sketch to sketch sketch to 3D model 3D model to 3D modelsketch-to-sketch sketch-to-3D model 3D model-to-3D model
BF-fGALIF

(based on [Eitz12])
BF-DSIFT

[Furuya09]
BF-fGALIF

(based on [Eitz12])
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 Related work Related work
– BF-GALIF [Eitz12]

• Algorithm for sketch-based 3D model retrievalgo t o s etc based 3 ode et e a
– Manifold Ranking [Zhou03]

• Algorithm for distance metric learning

 Proposed method
– Cross-Domain Manifold Ranking (CDMR) algorithm
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Conclusion and future work Conclusion and future work
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ExperimentsExperiments

Evaluate retrieval accuracy Evaluate retrieval accuracy.
– BF-fGALIF (≒[Eitz12])

No distance metric learning• No distance metric learning.
• Baseline

– CDMR-BF-fGALIF (F)– CDMR-BF-fGALIF (F)
• Unsupervised learning.

– CDMR-BF-fGALIF (L)
• Supervised learning.p g

– CDMR-BF-fGALIF (F+L)( )
• Semi-supervised learning.
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Experiments
B h k d t bBenchmark databases

 S-PSB [Eitz12] S-PSB [Eitz12]

・Test set (90 categories)

Difficult to learn

907 sketches 907 models

Difficult to learn
labels.
・21 shared categories21 shared categories.
・As few as 4 labels
per category.

・Training set (92 categories)
907 sketches 907 models
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Experiments
B h k d t bBenchmark databases

 S-PSB [Eitz12] S-PSB [Eitz12]

・Test set (90 categories)
Difficult to learn labels

Learning labels

907 sketches 907 models

f t i il it

Difficult to learn labels.

Learning labels
is difficult.
・21 shared categories

feature similarity

21 shared categories.
・As few as 4 labels
per category.

・Training set (92 categories)
907 sketches 907 models

2D sketch domain 3D model domain
label similarity
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Experiments
B h k d t bBenchmark databases
 SHREC2013 sketch-based 3D shape retrieval (SH13) [Li13] SHREC2013 sketch-based 3D shape retrieval (SH13) [Li13]

・Test set (90 categories)

Easy to learn

2,700 sketches 1,258 models

y
labels.
・share all categories

“ant” “duck”
share all categories.
・50 labels per category.・Training set (90 categories)

4,500 sketches

“ant” “duck”
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Experiments
B h k d t bBenchmark databases
 SHREC2013 sketch-based 3D shape retrieval (SH13) [Li13] SHREC2013 sketch-based 3D shape retrieval (SH13) [Li13]

・Test set (90 categories)
Easy to learn labels

Learning labels

2,700 sketches 1,258 modelsEasy to learn labels.

f t i il it g
is relatively easy.
・share all categories

“ant” “duck”

feature similarity

share all categories.
・50 labels per category.・Training set (90 categories)

4,500 sketches

“ant” “duck”2D sketch domain 3D model domain
label similarity
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Experimental results 
Eff ti f CDMR f S PSBEffectiveness of CDMR for S-PSB

CDMR is effective CDMR is effective.
0 10 20 30 40 50 60MAP [%]

17.5 全カテゴリall classes
BF-fGALIF

27.5 
CDMR-BF-fGALIF (F)

27.7 
CDMR-BF-fGALIF (L)

31.9 
CDMR-BF-fGALIF (F+L)
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Eff ti f CDMR f S PSBEffectiveness of CDMR for S-PSB

CDMR is effective CDMR is effective.
0 10 20 30 40 50 60MAP [%]

17.5 全カテゴリall classes
BF-fGALIF

27.5 

+ 10%CDMR-BF-fGALIF (F)

27.7 
CDMR-BF-fGALIF (L)

31.9 
CDMR-BF-fGALIF (F+L) + 14%
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Experimental results 
Eff ti f CDMR f S PSBEffectiveness of CDMR for S-PSB

CDMR (F+L) effectively learns sparse labeling CDMR (F+L) effectively learns sparse labeling.
0 10 20 30 40 50 60MAP [%]

17.5 
13.6 

23.1 

全カテゴリ

ラベルなしカテゴリ

ラベルありカテゴリ

all classes
unlabeled classes
labeled classes

BF-fGALIF

27.5 
20.0 

38 5
CDMR-BF-fGALIF (F)

27.7 
6.6 

38.5 

58 4
CDMR-BF-fGALIF (L)

31.9 
20.6 

58.4 

CDMR-BF-fGALIF (F+L)
48.3 
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Eff ti f CDMR f S PSBEffectiveness of CDMR for S-PSB

CDMR (F+L) effectively learns sparse labeling CDMR (F+L) effectively learns sparse labeling.
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all classes
unlabeled classes
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BF-fGALIF

27.5 
20.0 

38 5
CDMR-BF-fGALIF (F)

27.7 
6.6 

38.5 

58 4

over-fits to labels.
CDMR-BF-fGALIF (L)

31.9 
20.6

58.4 

+ 35%7%CDMR-BF-fGALIF (F+L)
48.3+ 35%- 7%
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Experimental results 
Eff ti f CDMR f S PSBEffectiveness of CDMR for S-PSB

CDMR (F+L) effectively learns sparse labeling CDMR (F+L) effectively learns sparse labeling.
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BF-fGALIF

27.5 
20.0 

38 5
CDMR-BF-fGALIF (F)

27.7 
6.6 

38.5 

58 4+25%+7%
avoids over-fitting. 

CDMR-BF-fGALIF (L)

31.9 
20.6 

58.4 +25%+7%

CDMR-BF-fGALIF (F+L)
48.3 
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Experimental results 
Eff ti f CDMR f SH13Effectiveness of CDMR for SH13

Large improvement of MAP due to dense labeling Large improvement of MAP due to dense labeling.
0 10 20 30 40 50 60 70MAP [%]

11.3 全カテゴリall classesBF-fGALIF

19.4 CDMR-BF-fGALIF (F)

66.1 CDMR-BF-fGALIF (L)

65.7 CDMR-BF-fGALIF (F+L)
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Large improvement of MAP due to dense labeling Large improvement of MAP due to dense labeling.
0 10 20 30 40 50 60 70MAP [%]

11.3 全カテゴリall classesBF-fGALIF

19.4 CDMR-BF-fGALIF (F)

66.1 

+ 55%
CDMR-BF-fGALIF (L)

65.7 
+ 54%

CDMR-BF-fGALIF (F+L)
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Conclusion and Future workConclusion and Future work

Conclusion Conclusion
– More accurate sketch-based 3D model retrieval.

C D i M if ld R ki (CDMR)• Cross-Domain Manifold Ranking (CDMR)
– Combines feature similarity and semantic similarity.

Outperforms previous methods– Outperforms previous methods.

 Future work Future work
– Faster computation (e.g., approximation of diffusion).

M t f t i– More accurate feature comparison.
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