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Abstract 

We have previously proposed a multiple-view, 
densely-sampled, bag-of-visual features algorithm for 
shape-based 3D model retrieval [2]. The method 
achieved good retrieval performance for moderately 
sized benchmark datasets (~1,000 3D models), 
including both rigid and articulated 3D shapes. It is 
also much faster than the other methods having similar 
retrieval performance. However, the method does not 
exploit semantic knowledge. We want the retrieval 
results to reflect multiple (e.g., ~100) semantic classes. 
Also, if applied to a larger database (e.g., ~1M 
models), search through the database can be expensive 
due to its large feature vector size (e.g., 30k 
dimensions). This paper proposes a method to 
“squeeze” its length feature vector by projecting it 
onto a manifold that incorporates multiple semantic 
classes. Experimental evaluation has shown that 
retrieval performances equal or better than original 
feature can be achieved while reducing feature vector 
size, e.g., from 30k down to less than 100. 

1. Introduction 
Effective and efficient content-based retrieval of 3D 

models, especially by their shape, is about to become 
an important tool in such diverse areas as mechanical 
design, medical diagnosis, as well as movie, game, and 
3D TV content production [6][16].  

We have previously proposed a shape-based 3D 
model retrieval algorithm that performed quite well for 
both articulated and rigid 3D models [2][12]. An 
advantage of the algorithm is its ability to accept many 
and often mutually incompatible 3D shape 
representations, such as polygon soup and point set, 
since the algorithm is appearance based. It extracts tens 
of thousands of local visual features from a set of range 
images of a 3D model rendered from dozens of 
viewpoints. Combination of multiple viewpoint 
rendering and a rotation invariant local image feature 

enables the retrieval algorithm to achieve 3D rotation 
invariance. Another advantage is its invariance to 
articulation and global deformation of 3D shapes. 
Invariance to articulation has been dealt with by only a 
small number of algorithms, and for a limited subset of 
shape representation, such as manifold mesh. 
Articulation invariance can be important, for example, 
to retrieve a human figure in different pose. The 
algorithm integrates tens of thousands of local visual 
features into a feature vector per 3D model by using 
bag-of-features (BoF) approach. The BoF integration 
of local features gives the algorithm its articulation 
invariance. The integration also makes comparison 
among a pair of 3D models much less expensive. 
Without the integration, comparison among sets, each 
containing thousands of features, need to be carried out. 
Experimental evaluation of the algorithm has shown 
that the method achieves high retrieval performances 
for several different benchmark databases. For the 
Princeton Shape Benchmark (PSB) [14] containing 
rigid yet diverse 3D models, retrieval performance 
measured in R-precision is 56%. For the articulated 
shapes in the McGill Shape Benchmark (MSB) [20], R-
precision of 76% is achieved. 

Despite its high retrieval performance, the algorithm 
left issues to be solved, namely, (1) incorporation of 
multi-class semantics, and (2) scalability in searching 
through a database. Incorporation of semantic 
knowledge from multi-class semantic labels obviously 
benefits retrieval. In a classical object recognition 
setting, classifiers such as Support Vector Machine 
(SVM) are used to recognize a semantic class. The 
framework has been extended to recognize multiple 
classes. However, classification is not necessarily 
desirable for similarity based 3D shape retrieval. We 
sometimes want objects that are not in the “correct” 
class but have similar enough shape and/or semantics. 
Thus, we do not want a cut-off at the classification 
boundary. A distance metric space we aim for retrieval 
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is a smooth, continuous one that reflects dozens or 
even hundreds of semantic classes.  

The scalability issue arises since the dimension of 
the feature vector is high; in case of the PSB, for 
example, optimal feature vector size is ~30k 
dimensions [2]. Computing 10M distances among 10M 
pairs of such vectors by using L1-norm or Kullback-
Leibler divergence would take significant amount of 
time. In addition to computational cost, (on-memory) 
storage cost for a high dimensional feature vector is 
also an issue, especially if we want to recruit CPU 
cache memory or Graphics Processing Unit (GPU) for 
an efficient computation. There are studies (e.g., [7]) 
that address ccompression of BoF feature vectors, for 
example, via binary quantization or inverted files. 
While these approaches aim only for compression, we 
also aim to incorporate semantic knowledge for an 
improved retrieval results. 

This paper addresses the issues of feature 
compression and semantic similarity-based retrieval 
(not recognition) by means of supervised feature 
dimension reduction. Empirical evaluation showed that 
the dimension of the feature may often be reduced 
from 30k down to about 50 by semi-supervised 
dimension reduction, while achieving significantly 
better retrieval performance.  

2. Algorithm 
We first outline the 3D model retrieval algorithms, 

the Bag-of-Features Salient SIFT (BF-SSIFT) [12] and 
the Bag-of-Features Dense SIFT (BF-DSIFT) [2]. A 
feature vector per 3D produced by either of these 
algorithms then goes through dimension reduction, 
whose methods are described in Section 2.2.  

2.1. Multi-view bag-of SIFT features 
Both BF-SSIFT and BF-DSIFT are based on bag-of 

visual features. After normalizing the model for its 
position and scale, a set of depth images of the model 
is generated by using multiple virtual cameras looking 
inward at the model. From each depth image, dozens of 
local visual features are extracted.  

In the BF-SSIFT algorithm [12], we used a 
saliency-based local image feature Scale Invariant 
Feature Transform (SIFT) by David Lowe [9] with its 
interest point detector enabled. Typically, a 3D model 
is rendered into 42 depth images, each one of which 
then produces 30 to 50 interest points. Thus, a 3D 
model is described by a set of 1.5k SIFT features. 
Directly comparing a pair of such feature sets would be 
too expensive, especially to search through a 3D model 
database containing a large number of models. To 
reduce the cost of model-to-model similarity 
comparison, the set of thousands of visual features is 

integrated into a feature vector per model by using BoF 
approach. The BoF approach vector quantizes, or 
encodes, the SIFT feature into a representative vector, 
or “visual word”, using a previously learned codebook. 
The visual words are accumulated into a histogram, 
which becomes the feature vector.  

The BF-DSIFT algorithm employs dense and 
random sampling of each range image without using 
interest point detector [2]. The “random” sampling 
actually employs a prior so that the samples are on or 
near the 3D models to be compared in the images. 
With the dense sampling, number of SIFT features per 
range image increased from a few dozens to a few 
hundreds. That is, number of SIFT features per 3D 
model increased about tenfold, from thousands to tens 
of thousands. These features are again integrated into a 
feature vector by using BoF approach.  

To bring down the query processing time, we 
employed two accelerations. For SIFT feature 
extraction, we employed a fast GPU-based 
implementation of SIFT called SiftGPU by Wu [19]. 
We modified the SiftGPU for dense sampling for the 
BF-DSIFT. We adopted Extremely Randomized 
Clustering Tree, or ERC-Tree, by Guerts, et al [3], for 
both feature set clustering during codebook learning 
and for vector quantization (VQ) of SIFT features 
during retrieval. The ERC-Tree is much faster than the 
combination of k-means clustering and naive linear 

SIFT
feature 

extraction 
ERC-tree 
encoder 

( )1,... kx xFeature 
vector

Histogram
generation 

Bags-of-
visual 
words 

Multi-view
range image 

rendering

k  clusters 

Vocabulary 
size k 

… 

Distance 
computation

Distance 

Figure 1. Local visual features from multiple viewpoints are 
integrated into a vector by using BoF approach. Dimension 
reduction produces a compact feature vector.  
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search for the nearest representative vector. 

2.2. Dimension Reduction Algorithms 
For dimension reduction, we compared three 

dimension reduction algorithms (Figure 2) below. 
They are adopted from our earlier work [9].  
(1) Unsupervised Dimension Reduction (UDR): 

Extract a k-dimensional feature from each model 
in the unlabeled set of 3D models ULM  of size p 
for learning manifold for the UDR. Given the set 
of p unlabeled features, an UDR algorithm learns 
the l-dimensional subspace UDRS  spanned by the 
set. The resulting UDRS  maps an input k-
dimensional feature to the interim, l-dimensional 
feature in which  l k< . For the LLE [13], we must 
approximate the UDRS  so that it is defined 
everywhere in the input space. We used RBF-
network algorithm for the approximation, as 
proposed by He, et al [5]. 

(2) Supervised Dimension Reduction (SDR): 
Extract k-dimensional features from the set of 
labeled 3D models SLM  for learning manifold for 
the SDR. Note that the size q of the SLM  is 
typically much smaller than the size p of the ULM . 
A SDR algorithm then learns categories from the q 
labeled features in a batch and encodes the 
knowledge into the m-dimensional subspace SDRS  
to be used for later SDRs. The manifold maps k-
dimensional input feature onto salient, m-
dimensional feature used for retrieval. We used 
Supervised Locality Preserving Projections 
(SLPP) [4] for the SDR.  

(3) Semi-Supervised Dimension Reduction (SSDR): 
Semi-supervised dimension reduction performs the 
UDR and the SDR in tandem. For each k-
dimensional input feature of all the models in the 
database DM , employ the UDR and SDR in 
succession to produce m-dimensional salient 
feature that incorporates semantic concepts 
learned from the labeled models in the training set 

SLM .  
For retrieval, store the salient feature together with the 
corresponding 3D model for later retrieval. As the 
dimension m of a salient feature is much smaller than 
the dimension k of the corresponding input feature, 
cost of distance computation and feature storage are 
significantly reduced.  

For the UDR, we used the LLE code available in the 
Statistical Learning Toolbox for the MatLab. For the 
LLE, we used the 0/1 weights (as opposed to the heat 
kernel) on the edges during the mesh construction step. 
The algorithm employs RBF-network to continuously 
approximate the discrete map of the LLE. We used the 
implementation of RBF-network included in the 
Neural Network Toolkit for the MatLab. Parameters of 
the RBF-network, such as neighbourhood size, are 

found experimentally. We used the code provided by 
Xaofei He at his web site [4] for the SLPP. 

3. Experiments and Results 
We evaluate, for UDR, SDR, and SSDR, the 

relationship between feature dimension reduction and 
retrieval performance. We also evaluate, for 
comparison, effectiveness of a simple quantization 
level reduction of BoF histogram for feature 
compression.  

Evaluation experiments were performed using three 
benchmarks, the McGill Shape Benchmark (MSB) [20] 
for highly articulated but less detailed shapes, the 
SHREC 2006 (SHREC) [17] for a set of diverse and 
detailed shapes, and the SHREC 2007/2008 CAD track 
(CAD) [10][18] for mechanical parts. Examples of 3D 
models found in these databases are shown in Figure 3. 
The MSB consists of 255 models categorized into 10 
classes. The MSB include such highly articulated 
shapes as “humans”, “octopuses”, “snakes”, “pliers”, 
and “spiders”. The SHREC 2006 uses the 1814 
Princeton Shape Benchmark (PSB) [14] models as the 
target, and has 30 out-of-sample queries. The SHREC 
2007 CAD track employs the Engineering Shape 
Benchmark (ESB)[7], which includes 867 models 
divided into 45 classes. The SHREC 2007/2008 CAD 
track uses 45 out-of-sample queries for evaluation. The 
SHREC benchmark models (that are, those in the PSB) 
are more diverse in shape and are generally more 
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Figure 2. Three dimension reduction approaches used in this 
paper; Unsupervised Dimension Reduction (UDR) (a), 
Supervised Dimension Reduction (SDR) (b), and Semi-
Supervised Dimension Reduction (SSDR) (c).  
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detailed than those in the CAD and the MSB 
benchmarks.   

The same database is used for VQ codebook 
training and VQ during retrieval experiments. That is, 
the VQ codebook generated by using the ESB, for 
example, is used to query the ESB in the SHREC 2007 
CAD track benchmark. We used the training set size 

50,000tN = of SIFT features extracted from multi-
view images of models in a database. Size of each 
range image is 256 256×  for both codebook training 
and for query experiments. 

We use R-precision as the performance index, 
which is a ratio, in percentile, of the models retrieved 
from the desired class kC  (i.e., the same class as the 
query) in the top R retrievals, in which R is the size of 
the class kC .  

 

(a) 
 

(b) 

(c) 

Figure 3. Examples of 3D models from the Princeton Shape 
Benchmark (a) [12], the McGill Shape Benchmark (b) [20], 
and the Engineering Shape Benchmark (c) [7][10].  

3.1. Feature compression via quantization level 
reduction 

In the first experiment, we evaluated simple feature 
vector compression via reduction in quantization levels 
of each bin of the BoF histogram. The method simply 
clips a value in a histogram bin to the maximum a 
given number of bits could represent. That is, if 4 bit is 
allotted to the bin, any counts larger than 15 will be 
clipped to 24=15.  

Figure 4 shows the effect of number of bits per bin 
on retrieval performance (in R-Precision). We used 
BF-DSIFT feature having 30,125 dimensions for this 
experiment. To maintain retrieval performance of full 
quantization levels (8bit/bin), the PSB requires 
3 bit/bin, while the MSB requires 2 bit/bin. Higher 
diversity and/or higher model complexity of the PSB 
than the MSB could explain this discrepancy.  

As the original feature used a 32bit integer for a bin, 
a feature having 30,125 dimensions required 964 kbits 
to represent. For the PSB, this simple quantization 
level reduction produced a feature of size 90 kbits, or 
about 10 to 1 compression, without losing retrieval 
performance.   

  
Figure 4. Number of histogram bin quantization bits and 
retrieval performance for BF-DSIFT.  

3.2. Feature compression via dimension 
reduction  

Second set of experiments evaluated the 
effectiveness of the proposed feature compression 
using manifold-based dimension reduction algorithms. 
Bar graphs in Figure 5 shows, for both BF-SSIFT and 
BF-DSIFT, retrieval performances due to three 
dimension reduction methods for three retrieval 
benchmarks. Figure 5(a), Figure 5(b), and Figure 5(c) 
show, respectively, the result obtained by using the 
SHREC 2006 (“generic” and diverse models), the 
MSB (articulated models), and the SHREC 2007 CAD 
track (mechanical parts models). Table 1 shows the 
same performance figures for three databases, but with 
dimension of features used. Overall, the dimension 
reduction is able to compress feature significantly, 
while at the same time improving retrieval 
performance. Several observations can be made of 
these results.  

The first observation is that, for most of the cases, 
dimension reduction resulted in quite significant 
performance gain.  

If supervision is not possible, the UDR can be used 
to compress feature vector dimension while improving 
or at least maintaining the retrieval performance. For 
the MSB, the UDR produced 5 to 10% gain in R-
Precision, while decreasing the dimension nearly by 
about 1/10.  For the CAD benchmark and for the 
SHREC benchmark, small performance loss over the 
original feature is observed for the BF-SSIFT. For the 
BF-DSIFT, however, the UDR either improved or 
maintained the retrieval performance of the original 
feature vector. The UDR often suffers from insufficient 
training set. It is very likely that the 867 models of the 
CAD benchmark is not sufficient for the LLE to learn 
the structure of feature manifold. The SHREC 
benchmark has twice as many model, 1,814, as the 
CAD benchmark. But the SHREC database is more 
diverse. Thus learning manifold for the SHREC 
benchmark could have been more difficult than the 
CAD benchmark.  The MSB with it 255 models could 
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also be too small for the LLE, but lack of diversity in 
the database might have saved the LLE. The MSB 
appears to lack diversity in visual vocabulary; for the 
BF-SSIFT, the number of vocabulary, i.e., feature 
dimension for the MSB is the smallest among the three 
(See Table 1.) 

If supervision is allowed, the SDR using SLPP [4] 
produced very good retrieval performance for the MSB 
and CAD benchmarks. In case of the MSB, SDR using 
SLPP produced near perfect retrieval score of R-
Precision over 99%. In case of the CAD, R-Precision is 
82.2% for the BF-DSIFT processed with the SDR. This 
figure compares favorably with the best score of the 
SHREC 2008 CAD track with R-Precision=78.2%. 
(There was no CAD track for the SHREC 2009.) For 
the SHREC benchmark, results are a bit complex; the 
SDR worked the best for the BF-SSIFT, while the 

SSDR worked the best for the BF-DSIFT. Simple SDR 
using SLPP worked for the MSB and the CAD 
benchmarks as they are “easier” than the SHREC 
benchmark; the former two have smaller number of 
ground truth classes and larger number of models per 
class than the PSB. For the SHREC database having 
more diverse set of 3D models, and has smaller class 
(e.g., only 4 models/class), the SSDR appears to work 
better. Note that the SSDR worked for the BF-DSIFT, 
but not for BF-SSIFT. A possible explanation for this 
is the interference of interest point detector in BF-
SSIFT with the manifold estimation of the LLE.  

Figure 6 shows, for the case of SDR using SLPP, 
retrieval performance of BF-DSIFT for three databases 
as a function of compressed feature dimension. A plot 
with “baseline” shows the performance of the original 
feature vector. For both MSB and CAD, dimension 
reduced feature wins over the original everywhere. For 
the MSB benchmark, the SDR produced very high 
score regardless of feature dimension. The plot for the 
CAD benchmark has a clear peak. The plot for the 
SHREC benchmark has many dips and peaks, a 
possible indication of its difficult nature. 

 
Table 1. Dimensions of compressed features and retrieval 
performance.  

Data-
base 

Dimension 
reduction 

BF-SSIFT BF-DSIFT 
Dim R-P Dim R-P 

SHREC
2006 

SSDR 30 45.0 60 65.6 
SDR 140 48.5 110 56.9 
UDR 50 36.3 50 50.0
None 1500 38.7 32236 44.6 

MSB 

SSDR 5 83.7 8 89.9 
SDR 10 99.1 10 99.8 
UDR 10 76.6 10 84.0 
None 900 70.3 75581 74.5 

SHREC
2007 
CAD 

SSDR 15 39.4 40 47.2 
SDR 70 71.7 40 82.2 
UDR 25 41.6 100 41.5 
None 1200 40.0 32362 42.1 

 
The second observation is that, as Table 1 shows, 

very significant reduction in feature size has been 
achieved. Such reduction should reduce the feature 
storage feature comparison costs. For example, for the 
SHREC benchmark, 32,236 dimensions of the BF-
DSIFT is reduced to only 50 using the UDR with 
performance gain of 5%, from 44.6% to 50.0%.  When 
supervision is allowed, the SSDR produced a 60 
dimensional feature having a significantly better R-
Precision of 65.6%. Note that the dimension reduction 
produces floating point numbers, so that a 60D feature 
would consume 60 32 1,920 bit.× =  However, this is 
still significantly smaller than 32,236 3 96,708 bit× =  

 (a) SHREC benchmark. 

 (b) MSB benchmark.  

 (c) CAD benchmark. 

Figure 5. Dimension reduction methods and retrieval 
performance for three features applied to three benchmarks. 
Horizontal axis indicates retrieval performance in R-Precision. 
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of the original, uncompressed feature encoded using 
reduced quantization levels of 3 bit/bin.  

 

 
Figure 6. Dimensions after supervised dimension reduction 
(SDR) using the SLPP [4] and retrieval performance.  (BF-
DSIFT)  

4. Conclusion and Future Work 
In this paper, we proposed, in a similarity-based 3D 

shape retrieval setting, a method to reduce size of 
feature vector produced by bag-of-features approach 
while incorporating semantics provided by multiple 
class labels. We wanted to reduce the feature size for 
computational efficiency in searching though a large 
database. We also wanted the reduced feature vector to 
have better retrieval performance by exploiting 
semantics.  We employed supervised and semi-
supervised dimension reduction algorithms for the task.  

Empirical evaluation showed that the proposed 
approach often boosted retrieval performance while 
compressing the feature very significantly. Reduced 
size of compressed features would allow efficient us of 
CPU cache or Graphics Processing Units (GPU) 
memory. The reduced feature also showed significantly 
improved retrieval performance.  

A weakness in the proposed algorithm is the 
scalability (or lack of thereof) of learning algorithms 
for dimension reduction. The dimension of original 
feature and/or the number of training samples 
determine space and time complexity of these 
algorithms. We are currently experimenting with 
methods to make these learning algorithms more 
scalable.  
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