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Abstract. Distance measures, along with shape features, are the most critical 
components in a shape-based 3D model retrieval system. Given a shape feature, 
an optimal distance measure will vary per query, per user, or per database. No 
single, fixed distance measure would be satisfactory all the time. This paper 
focuses on a method to adapt distance measure to the database to be queried by 
using learning-based dimension reduction algorithms. We experimentally 
compare six such dimension reduction algorithms, both linear and non-linear, 
for their efficacy in the context of shape-based 3D model retrieval. We tested 
the efficacy of these methods by applying them to five global shape features. 
Among the dimension reduction methods we tested, non-linear manifold 
learning algorithms performed better than the other, e.g. linear algorithms such 
as principal component analysis. Performance of the best performing 
combination is roughly the same as the top finisher in the SHREC 2006 contest. 

1. Introduction 

Research on shape-based retrieval of 3D models [24, 13, 26] has recently gained 
attention. A shape-based 3D model retrieval system retrieves, given a query, a set of 
shape models ranked by their shape-based similarity to the query. The query may be 
texts, 2D sketches, 3D sketches, or 3D models. In this paper, we assume the query is a 
3D model defined, for example, as a set of polygons and that the system retrieves 3D 
models similar in their shape to the query. 

Two of the most significant technical challenges for shape-based retrieval of 3D 
models are feature extraction and distance computation. We first have to device a 
compact yet expressive shape feature that can be extracted and compared with 
reasonable computational cost. In feature extraction, compatibility of the shape 
feature with various shape representations, e.g., polygon soup and voxel enumeration 
solid, is an important factor to be considered. Then, distance, or dissimilarity among a 
pair of models to be compared must be computed. It is desirable that the feature and 
distance measure be adaptive to a database, to a user, or even to a specific query. For 
example, a combination of feature and distance metric that works well for comparing 
human face models may be sub-optimal for comparing screws. Or, the bunny model I 
wanted yesterday may be different from a bunny model I want today. So-called “curse 
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of dimensionality”, which discourages higher dimensional shape feature vectors, also 
comes into play as the dimensionality of 3D shape feature tend to be quite high.  

In our previous work [20], we adopted Xhaofei He’s approach [12], producing 
significant improvement in retrieval performance. Instead of the distance in the 
original feature (or input) space, the method uses geodesic distance on a subspace, or 
a manifold, spanned by the features of 3D models in a database. He’s method used the 
Laplacian Eigenmaps [3] for learning a manifold from the set of features for learning-
based dimension reduction.  

Our previous work [20] has several limitations, however. The experimental results 
are derived using only one non-linear dimension reduction algorithm, LE. And the LE 
is combined with only two shape features, the AAD [19] and SPRH [28]. Also, the 
training set size in our previous work [20] was limited to about 4000 samples, mostly 
due to memory space limitation. 

In this paper, we try to experimentally explore the approach further in the 
following three aspects;  

 
1. How do various subspace learning methods compare?  
2. How well does the approach work when it is applied to various shape features?  
3. What is the impact of the number of learning samples? 
 

To answer the first question, we compared five dimension reduction methods, all 
of which are based on unsupervised subspace learning. The set of dimension 
reduction methods we compared are the Principal Component Analysis (PCA), Kernel 
PCA (KPCA) [10], Locality Preserving Projections (LPP) [11], Laplacian Eigenmaps 
(LE) [3], Locally Linear Embedding (LLE) [21], and Isometric feature mapping 
(Isomap) [25]. To answer the second question, we experimented with five shape 
features and their respective multiresolution variations [18]. The five features we 
compared are; the Ray-based Spherical Harmonics (RSH) [27], Exponentially-
decaying EDT (EDEDT) [27], Spherical Harmonics (SH) [14], Absolute Angle-
Distance histogram (AAD) [19], and the Surflet-Pair Relation Histogram (SPRH) 
[28]. We also applied the multiresolution shape feature extraction approach by 
Ohbuchi et al [18] on these shape features; all in all, we experimented with 16 
different shape features. To answer the third question, we increased the number of 
training samples from 4,000~6,000 to 10,000, by using CPU, OS, and application 
codes that support 64bit addressing.  

Measured using the PSB [22] test set, the original, single-resolution (SR-) SPRH, 
which uses Kullback-Leibler divergence for its distance, has R-Precision of 37.4%, 
while its multiresolution SPRH has R-Precision of 42.5%. After the dimension 
reduction using the LLE, multi-resolution (MR) SPRH clicked in at 49.3% for R-
Precision, a 12% overall increase in performance from the original. The best 
performing combination we have experimented with, the MR-SPRH feature 
dimension reduced by using the LLE trained by 10,000 samples, tied with the best 
performer in the SHREC 2006 contest, the method by Makadia et al [26]. 

This paper is organized as follows. In the following section, we will review 
learning-based approach to 3D model retrieval. In Section 3, our algorithm is 
described. In Section 4, we will report on the results of experimental evaluations. We 
conclude the paper in Section 5 with some remarks on future work. 
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2. Previous Work 

Learning based approach to similarity retrieval can be classified into on-line learning 
and off-line learning. The on-line learning approach tries to learn human intentions 
interactively, e.g., through iterative relevance feedback or by interactive grouping of 
examples. An advantage of this approach is its capability to adapt to personal 
preference or even to changes in personal preference over time or occasion. The off-
line learning approach learns from a prescribed training database prior to actual 
retrieval. The learning may be unsupervised to learn the structure of subspace on 
which the measured features exist. Or, the learning may be supervised, e.g., by using 
a pre-categorized database. 

Relatively small number of work exploiting learning has so far been published for 
shape-based 3D model retrieval. Interactive relevance feedback, a form of on-line 
interactive learning, has been explored by several re-searchers for 3D model retrieval 
[8, 1, 15, 16]. Elad et al. is among the first to apply Support Vector Machines (SVM) 
learning in an on-line learning setting to improve 3D model retrieval [8]. Leifman et 
al. [15] performed Kernel Principal Component Analysis (Kernel PCA) [10] for an 
unsupervised learning of a feature subspace before applying a relevance feedback 
technique that employs Biased Discriminant Analysis (BDA) or Linear Discriminant 
Analysis (LDA) on the learned subspace. Novotni et al. [16] compared several 
learning methods, SVM, BDA, and Kernel-BDA, for their retrieval performance in a 
relevance feedback setting. Unlike relevance feedback, unsupervised off-line learning 
has seen very little attention in 3D model retrieval. The Kernel-PCA employed by 
Leifman et al. [15] is an example. The purity proposed by Bustos et al. [5] can also be 
considered as a weak form of unsupervised off-line learning. Purity is an estimate of 
the performance of a shape descriptor determined by using a pre-classified training 
database. Bustos used the purity to weight distance obtained from multiple shape 
descriptors.  

Classical methods for unsupervised learning of sub-space includes Principal 
Component Analysis (PCA) and Multi-Dimensional Scaling (MDS), both of which 
are quite effective if the feature points lie on or near a linear sub-space of the input 
space. However, if the subspace is non-linear, these methods do not work well. Many 
non-linear methods have been proposed for unsupervised learning of subspace; Self-
Organizing Map (SOM) and Kernel-PCA are some of the well-known examples [10]. 
Recently, a class of geometrically inspired non-linear methods, called “manifold 
learning” has been proposed for learning the m-manifold of measured feature vectors.  

Some of the examples of non-linear manifold learning algorithms are Isomap [25], 
Locally Linear Embedding (LLE) [21], Laplacian Eigenmaps (LE) [3], and Local 
Tangent Space Alignment (LTSA) [29].  

Manifold learning algorithms aim at preserving their own metric for spatial 
distortion. The LLE, LE, and LTSA are classified as a “local” approach, which tries 
to preserve local geometry of the feature space in the learned manifold. These 
methods might not preserve global geometric shape of the original feature space in the 
lower dimensional embedding. However, they tend to preserve local metric structure 
better than a “global” approach such as the Isometric feature mapping (Isomap) [25]. 
“Global” approaches, such as Isomap tries to preserve metric at both global and local 
spatial scales. In doing so, however, Isomap may incur more local distortions. Also, 
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Isomap could only be applied to flat manifold, e.g., a cylinder, embedded in a higher-
dimensional space.  

For our purpose, which is to rank 3D shape features based on their similarity, we 
expect the locality preserving nature of the LLE, the LE, or the LTSA is preferable to 
global approaches. What we want are good matches in the top k retrievals, whose 
features must be positioned close to the feature of the query on the manifold. A 
property (drawback) of the LE, the LLE, and the Isomap is that the mapping they 
produce is defined only at the feature vectors in the training set. To query a 3D model 
outside of the training set, however, its feature vector must have an image on the 
manifold. In a 2D image retrieval setting, He et al [12] solved this problem by using 
Radial Basis Function (RBF) network [10] for a continuous approximation of the 
manifold.   

3. The Method 

The method employed in this paper is essentially that of Xhaofei He’s approach for 
2D image retrieval [12] with some modifications. The method first learns, 
unsupervised, the subspace spanned by the 3D shape features computed from the 
models in the training database. The subspace is then used for dimension reduction of 
the features in the database, to be used for distance computation at the retrieval step. 
(See Fig. 1.) As mentioned before, we compared the total of six dimension reduction 
algorithms based on subspace, or manifold learning, linear and non-linear, for their 
effectiveness. In case of the LE, LLE, and the Isomap, the manifolds learned by using 
these methods are defined only at the input samples. As we need the manifold defined 
at an out-of-sample (i.e., out-of-training-set) query models, the learned manifold is 
approximated continuously and smoothly by using RBF network [10] as in [12].  

The following explains the steps the method uses for 3D model retrieval; 

Learning:  

(1) Extract feature: Extract n-dimensional feature vectors from the K models in the 
training database (i.e., corpus).  
(2) Select training samples: To reduce computational costs, sub-sample, if 
necessary, the training set down to L ( L K≤ ) feature vectors.  
(3) Learn the manifold: Perform unsupervised learning of the m-manifold ( m n≤ ) 
from the n-dimensional training samples by using a manifold learning algorithm. 
Certain learning algorithms, e.g., LE and LLE, produce a manifold defined only at the 
set of training samples. In such a case, to handle queries outside of the training set, 
continuously approximate the manifold by using RBF network [6].   

Database pre-processing:  

(1) Extract feature: Extract an n-dimensional feature vector from all the models in 
the database to be retrieved.  
(2) Reduce dimension of features of the database models: Project features of all 
the models in the database onto the m-manifold (or its approximation), and store the 
resulting m-dimensional feature together with the corresponding 3D models.  
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The retrieval phase: 

(1) Extract feature: Extract an n-dimensional feature vector from the query model.  
(2) Reduce dimension: Project the n-dimensional vector of the query’s feature onto 
the (approximated) m-manifold to obtain a dimension reduced feature of the query.  
(3) Compute distances on the manifold: Compute distances from the query model 
to all the models in the database using the dimension reduced features.  
(4) Retrieve top p matches: Retrieve the models in the database having the p-
smallest distances from the query model, and present the result to the user. 
 

 
Fig. 1. An unsupervised learning approach to database-adaptive 3D model retrieval.  

We used the following five dimension reduction algorithms, all of which are based 
on unsupervised learning; (1) PCA, (2) LE [3], (3) LPP [11], (4) LLE [21], (5) Isomap 
[25], and (5) KPCA [10]. The PCA and LPP learn linear subspaces, while the others 
learn globally non-linear subspaces. The LLE, LE, and Isomap are sometimes called 
graph-based algorithms, for their computation starts with the construction of a graph 
that connects feature points in the input m-dimensional space. The LLE and LE are 
local methods that try to preserve local distance. The Isomap is a global method, 
which tries to preserve global distance as well. While LLE and LE produces a sparse 
connectivity graph, Isomap produces a dense one. The Isomap thus incur a higher 
computational cost than the others.  

Fig. 2 and Fig. 3 show examples of dimension reduction using the LE, LLE, and 
Isomap. Data points are synthetic 3D points sampled on 2D surfaces embedded in 3D 
space. Points have colours to depict the embeddings that resulted. In Figure 2, the 
PCA failed to dissolve four classes in the subspace. All three manifold learning 
methods, LE, LLE, and Isomap, mapped the data points so that the four colours do not 
overlap. Globally, the Isomap appears to produce the best result without distortion, 
albeit an increased computational cost. However, local distance metric of the Isomap 
may have suffered compared to the other two, in order to satisfy global geometric 
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constraints. In Figure 3, the original data points are distributed on a non-manifold 
surface that has no “correct” 2D embedding. As expected, all three methods failed to 
represent one of the colours (brown) properly in their 2D embeddings. Representation 
of the remaining three colours appears about the same among the three methods. The 
efficacies of these methods applied to higher dimensional data are not obvious from 
these simple, low-dimensional examples.  

 

 
(a) Original (3D) 

 
(b) PCA 

 
(c) LE 

 
(d) LLE 

 
(e) Isomap 

Fig. 2.  A toy example for dimension reduction from a 2D manifold “Swiss roll” embedded in 
3D space. The LE, LLE, and the Isomap successfully found a 2D manifold. The PCA failed, 
whose result shows points from different parts of the “Swiss roll” manifold overlapped. 

 
(a) Original (3D) 

 
(b) LE 

 
(c) LLE 

 
(d) Isomap 

Fig. 3. Another toy example for dimension reduction from a non-manifold surface embedded in 
3D space. Finding a flat 2D manifold may be quite difficult or impossible in such a case.   

We paired these five dimension reduction algorithms with the five features, the 
EDEDT [27], RSH [27], SH [14], AAD [19], and SPRH [28]. We also applied the 
multiresolution shape feature extraction approach by Ohbuchi et al [18] on these 
shape features. All in all, we experimented with 10 different shape features, which 
are, five single-resolution (SR) features and five multi-resolution (MR) features. The 
multiresolution shape comparison method [18] will be explained in the next section. 
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3.1. Multiresolution shape comparison method 

A better shape comparison may be possible if shapes are compared at multiple scales. 
For example, for some queries, trees should be compared with each other by their 
overall shape, not by the shapes of their leaves or branches. Ohbuchi et al proposed an 
approach [18] for 3D shape similarity comparison that uses a mathematical 
morphology-like multiresolution (MR) representation (See Fig. 4). The approach first 
creates a set of 3D MR shape models by using 3D alpha shapes algorithm.  The L 
alpha values for an L-level MR representation is computed from the diameter of the 
model. Once the MR set of 3D models is obtained, appropriate (single resolution) 
shape feature is extracted at each resolution level for an L-level MR feature. 

Dimension reduction may be applied to an MR set of features in several different 
ways, e.g., independently at each resolution level, or to a big feature vector created by 
concatenating feature vectors from all the resolution levels. In the experiment 
reported in this paper, a dimension reduction method is applied separately at each 
resolution level. That is, if the MR representation has L resolution levels, L 
unsupervised learning and then L dimension reductions are performed independently 
at each level. To compare a pair of 3D models, each having a set of L-level MR 
features, a distance is calculated at each of the L levels of the MR representation. The 
L distance values are then combined into an overall distance among the pair of models 
by using a fixed-weight linear combination of distances. In the experiments described 
in this paper, all the weights are fixed at 1.0. 
 

 
Fig. 4.   Multiresolution shape comparison using morphological hierarchy. 
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4.  Experiments and results 

We conducted experiments (1) to evaluate the effectiveness of the six dimension 
reduction methods, and (2) to find the best performing pair of the feature and the 
dimension reduction method.  

The experiments use 3D model databases for two purposes; (1) to train dimension 
reduction algorithms, and (2) to be queried, e.g., for performance evaluation. To train 
learning-based dimension reduction algorithms, we used the union of the training set 
of the Princeton Shape Benchmark (PSB) database [22] containing 907 models and 
the National Taiwan University 3D Model Database (NTU) ver. 1.0 containing 
10,911 models [17]. The NTU database does not have any labels. The labels in the 
PSB training set are simply ignored. By using Niederreiter sequence, we sub-sampled 
the union (12,775 models) down to 4,000, 5,000, and 10,000 models to make the 
learning tractable. We used the SHREC 2006 benchmark [26] protocol as well as its 
set of tools for computing performance indices for the experiments. Thus, the 
database to be queried is the union of the PSB training set and the PSB test set as 
specified in the SHREC 2006. The 30 queries are out-of-database models. While the 
SHREC 2006 computes six different performance figures, we show only a subset of 
them in the following.   

We computed five shape features using our own code and executables available on 
the Internet by the original authors of the methods [14, 19, 27].  Codes are also 
available on the Internet for some of the learning-based dimension reduction 
algorithms, such as LE, LLE, and Isomap. We wrote our own set of codes in C++ and 
MatLab for retrieval and a part of performance evaluation.  

Some of the learning-based dimension reduction algorithms have parameters, e.g., 
number of output dimensions m, neighborhoods size k for manifold reconstruction, 
and spreads of RBF kernels σ for the RBF-network approximation. We chose, 
through experiments, the numbers listed in Table 1 for the experiments below. 

Table 1. Features and their parameters for the learning-based dimension reduction. 

Learning 
algorithms feature Original feature 

dimension n 
Reduced feature 

dimension m 
Neighborhood 

size  k (%) 
RBF kernel 

size σ 
AAD 256 220 0.30 0.6 
SPRH 625 500 1.00 1.2 
RSH 130 90 0.55 5.5 

EDEDT 544 200 0.75 8.0 
LE 

SH 544 200 0.40 9.0 
AAD 256 220 2.00 0.3 
SPRH 625 400 2.00 0.9 
RSH 130 90 1.00 5.5 

EDEDT 544 200 0.67 8.0 
LLE 

SH 544 300 0.67 9.0 
AAD 256 60 1.30 0.6 Isomap RSH 130 90 1.30 5.5 
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4.1 Effectiveness of various learning-based dimension reduction methods 

We first compare the effectiveness of the six learning-based dimension reduction 
algorithms. Due to space limitation, we show the results for two features only, the 
AAD (Fig. 5) and the RSH (Fig. 6). Both single-resolution (SR) and multi-resolution 
(MR) versions of the features are shown in the graphs. For the PCA, we employed the 
manifold dimensions that resulted in the contribution of 99%, which are listed in 
Table 2. 

Several observations can be made. First, effectiveness of learning methods clearly 
depends on the feature. The AAD and the RSH behaved differently when dimension 
reduction methods are applied. For example, LLE method improved the performance 
of AAD by 4% for the SR case and 6% for the MR case. However, for the RSH, 
dimension reduction using LLE actually lowered the performance score, while KPCA 
produced small performance gain. Second, with or without dimension reduction, 
multiresolution shape features are better than single resolution shape features. Also, 
learning based dimension reduction methods seem to work better for multi-resolution 
features. For example, in the case of the RSH, the performance often drops after 
dimension reduction in case of the single resolution features. However, for the 
multiresolution features, the performance improves after dimension reduction using 
the LLE and LE, non-linear, local dimension reduction methods.  

Overall, the LE and the LLE, which are local, non-linear dimension reduction 
methods, produced better performance than the other dimension reduction methods. 
This tendency is more apparent for the multiresolution cases. Global non-linear 
methods such as Isomap, and global linear methods such as PCA and LPP did not 
perform well.  

Table 2. Dimensions N of the manifold that resulted in 99% contribution for PCA. 

Features Single resolution Multi-resolution 
AAD 62~58 168~151 
RSH 79~78 314~311 

 

0%
5%

10%
15%
20%
25%
30%
35%
40%

FT-HR FT-R FT-HR FT-R

SR MR

Orig. PCA KPCA LPP Isomap LE LLE
 

Fig. 5. Dimension reduction methods and retrieval performance for the SR-AAD feature. 



      Ryutarou Ohbuchi, Jun Kobayashi, Akihiro Yamamoto, Toshiya Shimizu 

0%
5%

10%
15%
20%
25%
30%
35%
40%

FT-HR FT-R FT-HR FT-R

SR MR

Orig. PCA KPCA LPP Isomap LE LLE
 

Fig. 6. Dimension reduction methods and retrieval performance for the SR-RSH feature. 

4.2 Effectiveness of the LE and LLE methods on five shape features 

In this section, we compare the five shape features processed by using two of the most 
successful dimension reduction methods, the LE and the LLE. The results are shown 
in Fig. 7 for the single resolution features and in Fig. 8 for the multi-resolution 
features.  
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Fig. 7. Retrieval performances in FT-HR [%] of various single-resolution (SR) features after 
dimension reduction using LE and LLE.  
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Fig. 8. Retrieval performances in FT-HR [%] of various multi-resolution (MR) features after 
dimension reduction using LE and LLE.  

Gain in retrieval performance depends on the shape feature. For the single 
resolution cases, all but one feature gained performance by applying dimension 
reduction using the LE or LLE method. An exception is the RSH feature, in which the 
dimension reduction produced small degradation in performance. For the 
multiresolution cases, all the features including the RSH gained performance after 
dimension reduction using the manifold estimated by using LE or LLE. There appears 
to be a synergistic relationship between the LE (or LLE) and the multiresolution 
shape comparison approach [18].  

Among the features, before the dimension reduction, and for SR features, the SH 
and the EDEDT performed the best. Comparing among the MR features without 
dimension reduction, the RSH and the SPRH almost caught up with the EDEDT and 
the SH in retrieval performance. After the dimension reduction, the MR version of the 
SPRH somehow outperformed the rest of the features. The reason is unclear, but it is 
possible that structure of the subspace produced by the SPRH feature was easier to 
estimate using the LE or the LLE than those produced by the EDEDT and SH.  

4.3 Number of training samples and retrieval performance 

In our previous paper [20], we used LE to estimate the manifold spanned by AAD and 
SPRH features having the number of samples up to 5,000 samples. The experiment 
showed that the unsupervised learning of the manifold for dimension reduction 
becomes effective if the number of training samples exceeded about 1,500 samples.  
The performance kept increasing up to 5,000 samples, which was at the time the 
maximum number of sample we were able to process using the LE running on the 
MatLab.  
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Table 3.  Performance of the EDEDT and SPRH features trained by using 5,000 and 10,000 
training samples.  

Learning 
methods SR/MR Learned

models AP-HR FT-HR
[%] DAR NCG 

@25 
NDCG 
@25 

EDEDT 
SR - 0.3250 31.46 0.4027 0.3862 0.4377 - MR - 0.3724 34.68 0.4604 0.4692 0.5135 

5,000 0.3030 28.00 0.3733 0.3749 0.4167 SR 10,000 0.3049 28.55 0.3755 0.3739 0.4198 
5,000 0.3697 36.11 0.4515 0.461 0.5005 PCA 

MR 10,000 0.3707 35.64 0.4529 0.4627 0.5022 
5,000 0.2949 28.10 0.3722 0.3832 0.4273 SR 10,000 0.3004 28.42 0.3817 0.3948 0.4437 
5,000 0.3817 38.55 0.4768 0.4955 0.535 LE 

MR 10,000 0.3785 37.28 0.4763 0.5003 0.5363 
5,000 0.3168 29.54 0.3891 0.4083 0.4573 SR 10,000 0.3088 29.14 0.3877 0.3816 0.4359 
5,000 0.3988 38.49 0.4861 0.5043 0.5442 LLE 

MR 10,000 0.3978 37.57 0.4836 0.5098 0.5469 
SPRH 

no SR - 0.2886 26.68 0.3990 0.3920  0.4384  
no MR - 0.3761 34.93 0.4631 0.4519  0.5101  

5,000 0.2726 27.20 0.3722 0.3560  0.4035  SR 10,000 0.2726 26.61 0.3718 0.3560  0.4037  
5,000 0.2726 27.20 0.3722 0.3560  0.4035  PCA 

MR 10,000 0.2726 26.61 0.3718 0.3560  0.4037  
5,000 0.2958 28.89 0.3819 0.4131  0.4423  SR 10,000 0.3234 30.27 0.4116 0.4275  0.4647  
5,000 0.4490 43.29 0.5177 0.5377  0.5759  LE 

MR 10,000 0.4586 42.24 0.5250 0.5421  0.5867  
5,000 0.2810 29.64 0.3768 0.3889  0.4295  SR 10,000 0.3097 30.32 0.4047 0.4294  0.4658  
5,000 0.4614 44.46 0.5341 0.5604  0.5966  LLE 

MR 10,000 0.4747 44.44 0.5382 0.5584  0.6013  
SHREC 2006 top 2 results (excerpts). 

Makadia (run 2) 0.4869 44.77 0.5499 0.5498 0.5906 
Daras (run 1) 0.4475 42.75 0.5242 0.5246 0.5791 

Other methods  
LFD [7] 0.4014 38.48 0.4867 0.4889 0.5426 

Hybrid [27] 0.4499 44.13 0.5136 0.5032 0.5626 
 
AP-HR: Mean Average Precision (Highly Relevant) 
FT-HR: Mean First Tier (Highly Relevant) 
DAR: Mean Dynamic Average Recall 
NCG @25: Mean Normalized Cumulated Gain @25 
NDCG @25: Mean Normlized Discounted Cumulated Gain @25 
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Here we compare the performance of the features processed using LE and LLE that 
are trained by using 5,000 as well as 10,000 training samples. We used the MatLab 
2006b having 64bit address space for the experiments below using 10,000 training 
samples. 

Table 3 shows the results of a pair of features processed by using LE and LLE 
dimension reduction methods and 5,000 as well as 10,000 training samples. Due to 
space limitations, only the results for the EDEDT and the SPRH features could be 
included. In case of the PCA, the number of training sample has had essentially no 
effect. In cases of the LE and LLE applied to the SPRH feature, the increase in the 
number of training samples from 5,000 to 10,000 increased the retrieval performance. 
In the case of the EDEDT feature, however, the increase in the number of training 
samples from 5,000 to 10,000 often resulted in a small but consistent performance 
loss.  

Table 3 also shows the performance of the 1st and 2nd finishers for the SHREC 
2006 [26]. The best performing of our methods is the multiresolution SPRH trained 
by using LLE and 10,000 samples. It performed on a par with the 1st finisher in the 
SHREC 2006, and outperformed other powerful methods such as LFD [7] and Hybrid 
[27]. (We have conducted the experiments that produced SHREC 2006 based 
performance figures for the LFD and the Hybrid (HBD) features.) 

Note that, in the table (and also in Fig. 5 and Fig. 6.) the performance of the SPRH 
feature is the same for its SR and MR versions. This is not an editorial error, but 
because the trained MR version actually ended up using only the highest resolution 
level (Level 6). At all the other levels, i.e., from Level 1 to Level 5, the PCA subspace 
collapsed due to numerical instability. Subspace learning failures also happened when 
we tried to use LE or LLE to learn subspace of the Hybrid (HBD) [27], Depth-buffer 
(DB) [27], and Silhouette features (SHL) [27]. While the exact cause is not known, 
we suspect that the pose normalization, i.e., normalization of orientation, position, and 
size, of 3D models employed in all these three features may be related. Imperfect pose 
normalization, especially in terms of orientation, may have created feature 
distribution that is quite difficult to learn. 

5. Conclusion and future work 

Effective retrieval of 3D models based on their shape similarity requires a salient and 
compact shape feature as well as a good distance measure. In our previous paper, we 
adopted, for shape-based 3D model retrieval, the approach originally proposed by He 
et al [12] for 2D image retrieval. The idea is to learn, unsupervised, the subspace, or 
manifold of features spanned by the set of models in the database, and to use the 
manifold for dimension reduction. A distance computed using the dimension reduced 
features is database-adaptive, improving the retrieval performance. Our previous 
paper showed that the approach using Laplacian Eigenmaps (LE) [3] for manifold 
learning improved 3D model retrieval performance. However, the feature we tried 
was limited to two, and the dimension reduction algorithm was limited to the LE only. 

In this paper, we explored the approach more comprehensively by comparing six 
learning-based dimension reduction methods, namely, Principal Component Analysis 
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(PCA), Kernel-PCA (KPCA), Locality Preserving Projections (LPP), Locally Linear 
Embedding (LLE), Isometric feature mapping (Isomap), and the Laplacian Eigenmaps 
(LE). We applied these six dimension reduction methods to five shape features to find 
a best performing pair. The experimental evaluation showed that two local, non-linear 
methods, the LE and LLE, produced significant gains in retrieval performance for 
many of the shape features we tested. A learning based dimension reduction appears 
to be especially effective if it is combined with the multiresolution shape comparison 
approach we have previously proposed [19]. The linear, global methods such as PCA 
and LPP did not significantly improve retrieval performance.  

Several avenues of future exploration exist. We would like to see if the off-line 
unsupervised learning approach used in this paper could be combined effectively with 
an on-line supervised learning approach based on relevance feedback, or with a 
supervised learning of pre-defined categories. Such a combination would be able to 
capture both short-term, local knowledge and long-term, universal knowledge for 
more effective shape-based 3D model retrieval. We would also like to explore the 
ways to effectively combine heterogeneous features by using, again, a learning-based 
approach. Such a combination would produce a very powerful shape comparison and 
retrieval method. 
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