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ABSTRACT 
Semantics associated with 3D shapes are often as important as the 
shapes themselves in defining “shape similarity” among them. So 
far, only a small subset of 3D model retrieval methods took 
semantics into account. Most popular approach to semantic 3D 
model retrieval is based on Relevance Feedback (RF), an iterative, 
interactive approach for a system to learn a semantic class that 
embodies “user intention” for the query. A drawback of a typical 
RF-based method is its low initial performance as it starts cold 
without any semantic knowledge. An alternative approach is off-
line learning of multiple semantic classes. The approach produces 
a good retrieval performance without per-query training iterations, 
but is unable to capture user intention per-query. The method 
proposed in this paper attempts to combine benefits of the two 
approaches so that both shared multiple semantic classes and per-
query intention can be captured to improve 3D model retrieval. 
Our method first learns, off-line, the multiple semantic classes by 
using a semi-supervised manifold learning algorithm to produce a 
“semantic manifold” of the input features. The RF iteration based 
on manifold ranking algorithm is then run on the semantic 
manifold. Our empirical evaluation showed that this method 
significantly outperforms the manifold ranking run in the original, 
ambient feature space. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.3.5 [Computational Geometry and Object Modeling]: Surface 
based 3D shape models.  

General Terms 
Algorithms, Experimentation. 

Keywords 
3D polygonal models content-based retrieval, manifold ranking, 
manifold learning, semi-supervised learning. 

1. INTRODUCTION 
Three-dimensional (3D) models have become ubiquitous. It is 
used for 3D games running on mobile-phones and on game 
consoles, for such Web-based applications as Google Earth, for 
medical diagnostics, and for mechanical or architectural design. 
The need to organize these 3D models and related contents for 
effective creation, distribution, and consumption has prompted 
study into shape-based retrieval of 3D models. A shape-based 3D 
model retrieval system, by definition, compares shape of 3D 
models for their retrieval [18, 7]. However, retrieval performances 
of these systems have been insufficient due to so-called semantic 
gap between shape features and semantics associated with them. 
For example, 3D models that share a similar meaning may have 
different shape, or 3D models that have different meanings may 
share similar shape. Significant amount of work has been 
performed to narrow the semantic gap, mostly in the field of 
image and video retrieval, but also in the field of 3D model 
retrieval. 

By far the most popular approach to bridge the semantic gap is 
Relevance Feedback (RF). In a RF based retrieval system, the 
system and the user work interactively and iteratively to capture a 
within-session semantics of the user. Given a query, the system 
first presents the user with an initial set of retrieval. The user then 
tells the system her/his preference on some or all of the models in 
the initial retrieval. The feedback choice may be positive, 
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negative, or both. The system may allow additional inputs, such 
as a degree of positive-ness. A RF system would capture the user 
feedback by using a learning algorithm and tries to improve the 
next round of retrieval by modifying features, distance metric, 
query set, etc. After several relevance feedback iterations, the user 
would be presented with a much improved set of retrieval results. 
The RF approach has been employed in retrieving 2D images and 
2D movies (see, for example, [14, 15, 24, 20, 6]). It is also used in 
retrieving 3D shape models [3, 8, 9]. Elad et al [3] used Support 
Vector Machine (SVM), a learning classifier, for the relevance 
feedback learning. Novotni et al [9] compared several kernel 
based classifiers, including SVM, Biased Discriminant Analysis 
(BDA) and its kernelized version kernel-BDA, for their retrieval 
performance in a RF setting. The method by Leifman, et al [8] 
tries to make maximum use of small numbers of training samples 
by switching from the LDA for a small number of training 
samples (e.g., <20) to the BDA for larger numbers of training 
samples. Relevance feedback is quite powerful. For example, 
Novotni et al [9] reports the performance measured in weighted 
mean precision increased from 30% to over 70% after 10 RF 
iterations. Despite its success, RF framework has its weakness. A 
typical within-session RF framework is being able to capture only 
one semantic class per query session. Furthermore, every query 
session starts cold so that even a well-established long-term 
semantic class must be taught time and again for each query 
session.  

Many learning algorithms are designed for single-class learning 
so that the performance drops sharply if it needs to handle 
multiple classes. For example, a bundle of SVMs, each one a one-
vs.-the other classifier, has been used for multiple class 
recognition. However, the performance of the bundle is not very 
good. Also, one often wants to retrieve a 3D model that is not in 
the “correct” class but is similar in shape (or semantics) to the 
query. For such a purpose, a hard-decision learning classifier that 
produces yes/no result is not as desirable. A graded, smooth 
transition in similarity (or dissimilarity) values is needed.  

In this paper, we propose a 3D model retrieval method that takes 
into account both a semantic class that reflects user intention for 
the session, and shared and well-established multiple semantic 
classes for an improved retrieval performance (Figure 1). To 
capture multiple semantic classes, the method utilizes the Semi-
Supervised Dimension Reduction (SSDR) algorithm of Ohbuchi et 
al. [11] that combines two stages of locality preserving manifold 
learning algorithms to produce “semantic” sub-manifold that 
captured both a distribution of unlabeled features and multiple 
semantic classes. To adapt to per-query-session user intention, a 
relevance feedback framework based on the Manifold Ranking 
(Mrnk) algorithm [25, 6] is run on the semantic manifold 
produced by the SSDR. The manifold ranking is one of the most 
powerful RF algorithms; according to He, et al [6], Mrnk 
outperformed both Support Vector Machine (SVM) [24] and 
SVMacitive [20, 21] in relevance feedback image retrieval 
experiments. To our knowledge, the proposed method is the first 
successful attempt to perform relevance feedback on a manifold 
that reflects multiple semantic classes. 

Our experimental evaluation of the proposed algorithm showed 
the effectiveness of the proposed algorithm in capturing both 
long-term, shared semantics and within-session semantics (user 
intention). We used the Surflet-Pair Relation Histograms (SPRH) 

[23] as the shape feature, which has the Mean First Tier Highly 
Relevant (FT-HR) score of 27% by itself if evaluated by using the 
SHREC 2006 benchmark [21]. The score increased to 58% with 
the multiresolution feature fusion and adaptation to multiple 
semantic classes by using the SSDR algorithm [11]. By learning 
both long-term and within-session semantics, our proposed 
method produced FT-HR=83% after only three RF iterations if 
top 20 models are allowed to be tagged for their relevance. If top 
50 retrievals are allowed to be tagged for their relevance per RF 
iteration, FT-HR>90% is achieved after only three RF iterations. 
These figures are significantly better than the FT-HR=59.4% 
produced by using the same manifold ranking-based RF algorithm 
run in the original features space. 

The contribution of this paper can be summarized as follows; 

• Proposal of a novel 3D model retrieval method that combines 
short-term, per-query-session user intention and established 
multiple semantics classes for an improved retrieval 
performance.  

• Experimental evaluation of the proposed method by using a 
standard 3D model retrieval benchmark. Evaluation showed 
that manifold ranking on the semantic manifold significantly 
outperforms the same in the original feature space. 

The following of this paper is structured as follows. The next 
section will describe our proposed method, followed by Section 3 
on experiments and their results. We will summarize the paper in 
Section 4. 

2. METHOD 
Proposed method is novel in that it combines manifold learning-
based semi-supervised dimension reduction algorithm with a 
manifold ranking-based relevance feedback algorithm in order to 
capture both a set of long-term, shared, multiple semantic classes 
and a per-query-session (1-class) user intention. Multiple (e.g., 30 
to 100) semantic classes are learned by using off-line semi-
supervised dimension reduction algorithm by Ohbuchi, et al [11]. 
It maps the original, ambient feature space onto a lower 
dimensional “semantic manifold”. Then, a short-lived, per-session 
semantic class is captured by using relevance feedback based on 
Manifold Ranking (Mrnk) algorithm [25, 6] run on the semantic 
manifold. The use of semantic-manifold instead of the original, 
ambient feature space for the manifold ranking improves the 
effectiveness of the manifold ranking algorithm significantly.   

2.1 Multiresolution Feature Fusion 
To capture multi-scale shape features, our method uses the 
multiresolution shape comparison approach of Ohbuchi et al, al 
[11] based on a mathematical morphology-like Multi-Resolution 
(MR) representation. Given a 3D model and a set of 
predetermined scale values, or alpha, the approach first creates a 
set of 3D MR shape models by using the 3D alpha shapes 
algorithm [2]. Once the MR set of 3D models is obtained, a 
(single resolution) feature extraction algorithm is applied to the 
model at each resolution level.  

The SSDR and the manifold ranking based relevance feedback 
may be applied to the MR set of features in several different ways. 
The proposed algorithm performs the SSDR and the manifold 
ranking based relevance feedback separately at each resolution 
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level (Figure 2). The L relevance ranks produced by the manifold 
ranking are combined into an overall relevance rank among the 
pair of models by using a uniform weight linear combination. 

2.2 Semi-Supervised Dimension Reduction 
The Semi-Supervised Dimension Reduction (SSDR) algorithm 
consists of two steps. The first step is adaptation to the feature 
distribution by using an Unsupervised Dimension Reduction 
(UDR) algorithm. We call the step Feature set Adaptation (FA), 
and the manifold produced by the FA is a FA-manifold. For the 
experiments that follow, we use the Locally Linear Embedding 
(LLE) [13] for the UDR. The LLE is a globally non-linear but 
locally linear dimension reduction algorithm that learns a 
mapping from the input space onto a subspace, or a manifold, 
unsupervised. As the LLE produces a mapping defined only at the 
training samples, the mapping is smoothly and continuously 
approximated by using the RBF-network [4]. A new feature in the 
original ambient space is projected onto the approximated 
manifold to transform it into a point on a FA-manifold. 

The second step adapts the FA-manifold to the multiple, 
predefined semantic classes by using a Supervised Dimension 
Reduction (SDR) algorithm. We call the process Semantics 
Adaptation (SA), and the manifold produced by the SA is a SA-
manifold. For the experiments that follow, we used Supervised 
Locality Preserving Projections (SLPP) algorithm by Xhaofei He, 
et al. [5] and the Local Fisher Discriminant Analysis (LFDA) by 
Sugiyama, et al. [17]. Both SLPP and LFDA are linear, and try to 
decrease distance among samples in the same class while trying to 
increase distances among different classes. The difference is that 
the LFDA allows multimodality in a semantic class. Using the 
SDR, features in the FA-manifold are mapped onto the SA-
manifold, which is adapted to both feature distribution and 

multiple semantic classes. Note that the dimensionality of the 
semantic manifold is significantly smaller than the input feature 
space. For example, a 625-dimensional SPRH feature has been 
reduced down to a 50-dimensional vector on the SA-manifold. 

The SSDR algorithm can be summarized as follows, whose 
details can be found in the paper by Ohbuchi, et al [11].  

(1) Extract feature: Extract a k-dimensional feature from each 
model in the unlabeled set of 3D models ULM  of size p for 
the UDR. For the experiments that follow, we used the 
Surflet Pair Relation Histograms (SPRH) by Wahl, et al. [23].  

(2) Unsupervised Learning of Feature Distribution: Given 
the set of p unlabeled features, an UDR algorithm learns the 
l-dimensional subspace UDRS  spanned by the set. The 
resulting UDRS  maps an input k-dimensional feature to the 
interim, l-dimensional FA-manifold in which  l k< . We 
used the LLE for the UDR. For the LLE, we must 
approximate the UDRS  so that it is defined everywhere in the 
input space. We used the RBF-network [4] for the 
approximation.  

(3) Off-Line Supervised Learning of Semantic Classes: 
Extract k-dimensional features from the set of labeled 3D 
models SLM  for the SDR. Note that the size q of the SLM  is 
typically much smaller than the size p of the ULM . A SDR 
algorithm then learns categories from the q labeled features 
in a batch and encodes the knowledge into the m-
dimensional subspace SDRS  to be used for later SDRs. The 
manifold maps an interim l-dimensional feature onto the 
salient, m-dimensional feature used for retrieval. We used the 
SLPP [5] and the LFDA [17] for the SDR.  

(4) DB pre-processing: For each k-dimensional input feature of 
all the models in the database DM , employ the UDR and 
SDR in succession to produce m-dimensional salient feature 
that incorporates semantic concepts learned from the labeled 
models in the training set SLM . Store the salient feature 
together with the corresponding 3D model for later retrieval. 
As the dimension m of a salient feature is much smaller than 
the dimension k of the corresponding input feature, cost of 
distance computation and feature storage are significantly 
reduced.  

When a query session starts, the feature of the query model is 
processed by the UDR and then the SDR described above so that 
it also mapped onto the SA-manifold. The user presents the 
system with the query feature mapped onto the SA-manifold. The 
system performs the manifold ranking in the unsupervised mode 
to retrieve initial retrieval set. Then, the Relevance Feedback (RF) 
iteration starts. At the ith RF iteration, the user is presented with 
top S retrieval results for feedback. We refer to the size S as 
Relevance Feedback scope, or RF-scope. To provide feedback, 
our method simply tags the positive samples, a method that fits 
most naturally with the manifold ranking algorithm. The detailed 
steps for a retrieval session are as follows; 

(1) Query Feature Extraction and Processing: Extract the 
input feature of the query model q Qm M∈  and perform the 
UDR and SDR in succession to produce a feature in the SA-
manifold having dimension m.  
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(2) Initial ranking and retrieval: Apply the manifold ranking 
algorithm [25, 6] in the unsupervised mode to the features in 
the database and to the (initial) query to compute the initial 
ranking of the models in the database against the query. 
Retrieve and present top-ranked S models for the relevance 
feedback tagging. 

(3) Relevance feedback tagging: Perform relevance feedback 
on the S models retrieved by tagging relevant models with 
the “positive”, and the others with none.  

(4) Re-ranking and retrieval: Expand the query set by 
considering the database models having “positive” tag as the 
part of the expanded query set. Perform manifold ranking 
using the expanded query set. Retrieve highest ranking 
models for relevance feedback tagging. If not satisfied with 
the retrieved set, go to step (3) above. 

2.3 Manifold Ranking 
Our method uses the manifold ranking [25] algorithm for 
relevance feedback learning. Manifold ranking is a graph-based 
learning algorithm that can be used in unsupervised, supervised, 
or semi-supervised mode. We used the manifold ranking 
algorithm by Zhou, et al. [25], among others. The manifold 
ranking algorithm tries to rank distances (or similarity) of points 
from a given sample on the manifold of all the samples, taking 
global distribution of the samples into account. 

Let { }1 1, , , , ,q q nx x x xχ +=  be a set of features in a m-
dimensional feature space m , in which first q  points from 1x  
to  qx  are the queries and the rest are the points we want to rank 
according to their similarity to the queries. Let :d χ χ× →  
denote a distance metric on χ , e.g., L1 norm or Cosine distance, 
that assigns a pair of points ix  and ix   a distance ( , )i jd x x .  Let 

:f χ →  be a ranking function that assigns each ix  a ranking 
score if , forming a rank vector 1, , T

nf f f= ⎡ ⎤⎣ ⎦ . Let the n-
dimensional vector 1, , T

ny y y= ⎡ ⎤⎣ ⎦  be a label vector. 

The same manifold ranking algorithm may be used in two modes, 
unsupervised and supervised. In the unsupervised mode, the goal 
is to compute the similarity ranks of the 3D models in the 
database to the (single) query. So we set 1iy =  for the query 
model only and 0iy =  for the rest, i.e., all the models in the 
database. In the supervised 1-class learning mode under the 
relevance feedback framework, the goal is to compute the 
similarity ranks of the 3D models in the database to the expanded 
query set containing more than one points. The expanded query 
set consists of the (initial) query model and all the models in the 
database that are tagged as “positive” up to current relevance 
feedback iteration. Thus, we set 1iy =  for the query model and 
the models that are tagged “relevant” during the RF iterations. 
The initial value 0iy =  is given to the other models in the 
database without the “relevant” tag. 

Intuitively, the process of manifold ranking resembles to the 
process of solving a diffusion equation on an irregular mesh. The 
mesh, or the manifold, is generated by connecting feature points 
in the high dimensional input features space based on their mutual 
proximity. The proximity during mesh generation is determined 
by using a distance measure, e.g., L1-norm, in the ambient feature 
space. The manifold ranking algorithm iteratively diffuses the 
initial value of 1iy =  given to the (expanded) query set to its 

neighbors on the manifold. At the equibilium, the higher the 
diffused value, the higher the similarity rank of the points in the 
database to the (expanded) query set. As the diffusion occurs 
along the manifold, similarity rank thus computed are better than 
those computed directly in the input feature space. 

Create the affinity matrix W  where ijW  indicates the similarity 
between samples ix  and jx  

( , )
 exp   

 0                   otherwise

i j

ij

d x x
if i j

σ

⎧ ⎛ ⎞
− ≠⎪ ⎜ ⎟⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

W  

The distance metric ( ),i id x x  used for the affinity matrix affects 
the ranking. We will compare L1-norm, L2-norm, L0.5-norm as 
well as Cosine distance for their ranking performance. The 
positive parameter σ  defines the radius of influence. Note that 

0ii =W   since there is no ark connecting a point with itself. The 
matrix W  is positive symmetric. We then form a normalized 
graph Laplacian L , 

1 1
2 2( )

− −
= −L D D W D  

Where D is a diagonal matrix in which ijD  equals to the sum of 
the i-th row of W , that is, ij ijj=∑D W  Then the ranking vector 

1, , T
nf f f= ⎡ ⎤⎣ ⎦  can be estimated by iterating the following until 

convergence; 

( )( 1) ( )1 1
1 1

t tf f
μ μ

+ = − +
+ +

I L Y  

The parameter 0μ >  is a regularization parameter, and affects 
retrieval performance and the convergence of the iteration above. 
Let *f  be the limit of the above iteration. Rank each point ix  as 
a label *arg maxi j c ijy f≤= . In the case above, *f  has a close 
form solution; 

1
* 1f

μ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠
I L Y  

We tried both iterative and the closed-form solutions on MatLab, 
and mostly used the latter, closed-form solution, for it was faster 
or our set of parameters when implemented in the MatLab. 

Most of the compute-intensive work for the SSDR is in the pre-
processing stage. The MR model set generation, feature extraction, 
vector projection for dimension reduction, and manifold ranking 
is needed per query. The manifold ranking in particular must run 
once for every RF iteration, whose cost is dominated by the cost 
of computing *f . The cost increases with the size of matrix L , 
that is, the number of features n. On a contemporary PC, even for 
a dense matrix, it takes a few seconds to obtain *f  for the 
SHREC 2006 database having 1,814 models. Further reduction in 
computational cost is possible if the affinity matrix ijW  is made 
sparse by limiting the entries to the feature pairs having a distance 
less than a certain threshold. 

2.4 Distance Measures 
We compared several distance measures, including -normkL for 
k=0.5, 1.0, and 2.0, as well as the cosine measure for distance 
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computation for retrieval, and for forming the affinity matrix W 
to be used for manifold ranking.  Let ( )ix=x , ( )iy=y are the 
feature vectors and n is the dimension of the vectors. Depending 
on the value of k, ( , )kd x y  is the Manhattan distance if k=1.0, or 
the Euclidian distance if k=2.0. 

( ) ( )
1

,
n kk

k i ii
d x y⎡ ⎤= −⎢ ⎥⎣ ⎦∑x y  

According to Aggarwal, et al [1], k<1.0, e.g., k=0.5 is expected to 
perform better for higher dimensional features. As the cosine 
measure is a measure of similarity in the range [ ]0,1 , we 
converted it to a distance using the following equation; 

cos ( , ) 1d ⋅
= −

⋅
x yx y

x y
 

Another distance measure we employed is the Kullback-Leibler 
divergence (KLD). The KLD is sometimes referred to as 
information divergence, or relative entropy, and is not a distance 
metric, for it is not symmetric; 

( )
1

( , ) ln
n

i
KLD i i

ii

yd y x
x

=

= −∑x y  

3. EXPERIMENTS AND RESULTS 
Evaluation of relevance-feedback based retrieval algorithms for 
3D models is not standardized. While the SHREC 2007 [22] list 
of track proposal included the “Relevance feedback” track, the 
track did not materialize as it saw no entrant. We thus 
experimentally evaluated the proposed algorithm by simulating 
relevance feedback on SHREC 2006 [21] database and query set, 
as it is used widely by many researchers. The database in the 
SHREC 2006 is the union of the test and train set of the Princeton 
Shape Benchmark [16], which is a 1,814 model collection of 
polygon soup models. The SHREC 2006 uses 30 query models 
that are not in the database. There are many different performance 
measures used in the SHREC 2006. Among them, we used the 
Mean First Tier Highly Relevant (FT-HR). First Tier is a ratio, in 
percentile, of the models retrieved from the desired class (i.e., the 
same class as the query) in the top k retrievals, in which k is the 
size of the class. The Mean First Tier is a mean over the 30 query 
models of the SHREC 2006. The designation “highly relevant” 
comes from the fact that it uses the “correct” ground truth class, 
instead of the “approximately correct” ground truth class.  
Performing relevance feedback experiment manually is not very 
viable. We simulated human feedback using the SHREC 2006 
ground truth class. At each one of the RF iterations, top S retrieval 
(i.e., relevance feedback scope) is scanned, and if a model in the 
ground truth class for the query model is found in the top S 
models, it is tagged as “relevant”. We assumed the user is error 
free so that relevance feedback is always correct. (Some of the 
studies on relevance feedback algorithms inject errors into the 
feedback tags to evaluate robustness.) 

3.1 Distance Measures and Retrieval 
Performance 
In the first set of experiments, we compared four fixed distance 
measures, L0.5-norm, L1-norm, L2-norm, and KLD, with the 

Mrnk in unsupervised mode. Among the fixed distance metrics, 
for both single resolution (Figure 3a) and multi-resolution fusion 
(Figure 3b) cases, the L0.5-norm performs the best, as suggested 
in [1]. It is followed by the L1-norm and then the KLD. In the 
case of the single-resolution (SR-) SPRH feature, its performance 
improved from FT-HR=26.7% to FT-HR=31.9% by simply 
switching from the KLD to L0.5-norm. For the unsupervised 
Mrnk that adapts to the distribution of features, the L0.5-norm 
performed the best again, followed by the L1-norm. The 
performance of the original SR-SPRH using the KLD is FT-
HR=26.7%, while the unsupervised manifold ranking that 
employed the L0.5-norm produced FR-HR=34.7%, an 
improvement of 8.0%. 
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(a) Single-resolution SPRH feature.  
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(b) Fusing multi-resolution SPRH features 

Figure 3: Comparison of distance measures using the 
single-resolution and multi-resolution SPRH features. 

3.2 Ranking on Semantic Manifold 
In the second set of experiments, we compared the performance 
of the manifold ranking algorithm applied to three different 
manifolds; (1) the original feature, (2) the FA-manifold adapted to 
feature set distribution produced by the UDR, (3) the SA-manifold 
adapted to multiple semantic classes produced by the SSDR, that 
is, the UDR followed by the SDR. In this set of experiments, we 
used the only the SPRH feature in the multiresolution feature 
fusion framework. 

For the SSDR we used the best performing parameters and 
dimension reduction algorithms according to Ohbuchi, et al [11]. 
We used the MR-SPRH feature, and applied the LLE [13] for the 
UDR, followed by the LFDA [17] for the SDR. Compared to the 
original dimension of 625 for the SPRH feature, the feature on the 
FA-manifold is 300, and the feature on the SA-manifold is 50. 
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The UDR algorithm is trained by using 10,000 unlabeled models 
quasi-randomly sampled from the NTU database [10]. The size of 
the neighbourhood for the LLE is chosen to be 2.0% of the size of 
the database, that is, 200, and the spread of the RBF network 
kernel is 0.9. For the manifold ranking, we used 100μ = and 

0.001.σ =  To train the SDR, we used the SHREC 2006 database, 
with its 1,814 models and 30 classes. 

Figure 4 shows the summary comparison of performances of 
various methods. In the figure, manifold ranking is applied to the 
following three feature spaces;  

 SA: Manifold adapted to feature distribution and multiple 
semantic classes by using the Semi-Supervised Dimension 
Reduction [11].  

 FA: Manifold adapted to feature distribution by using the 
Unsupervised Dimension Reduction [11].  

 Orig.: Original feature space.  

On these three spaces, two modes of manifold ranking algorithms, 
the US-Mrnk for the unsupervised mode and RF-Mrnk for the 
relevance feedback mode, are applied. These manifold ranking 
algorithms used L0.5-norm to form the affinity matrix W. These 
two modes of manifold ranking algorithms are compared against 
No-Mrnk that employed Cosine distance directly on these 
manifolds. For the RF-Mrnk, relevance feedback scope size S of 
20 and 50 are chosen; that is, top S retrievals were subjected to 
RF tagging. The performance indices in the Figure 4 are obtained 
after 4 RF iterations (plus the initial retrieval without feedback.) 

As the baseline, the original SPRH feature (without 
multiresolution feature fusion) using KLD for distance 
computation had the FT-HR=26.7%. By using the multiresolution 
(MR) feature extraction with 6 levels, Cosine distance, and linear 
combination of the MR distances, the performance went up to FT-
HR=37.2% (The bar at the bottom of the Figure 5.). The 
combination of the MR and the Feature set Adaptation (FA) 
produced FT-HR=45.4%, and the multiple semantic class learning 
pushed it further to FT-HT=58.1%. 

 Unsupervised Manifold Ranking in the original feature 
space:  Unsupervised Manifold Ranking (US-Mrnk) run in the 
ambient space (original feature space) produced the FT-
HR=41.0%, which is significantly better than the FT-
HR=37.2% of the original MR-SPRH feature.  

 Unsupervised Manifold Ranking in the dimension-reduced 
feature spaces: US-Mrnk, however, did not improve retrieval 
performance for the feature sets that are already dimension 
reduced by using manifold learning algorithms described in 
[11]. When the US-Mrnk is applied to the FA-feature or SA-
feature, their retrieval performances did not change 
significantly. This outcome is to some extent expected since 
the manifold ranking algorithm by itself tries to find its own 
manifold by connecting the features in ambient space before 
running a diffusion process on the manifold. The methods to 
find manifold used by the manifold learning and manifold 
ranking algorithms are quite similar. 

 Supervised Manifold Ranking using Relevance Feedback: 
On-line supervised manifold ranking using the Relevance 
Feedback framework (RF-Mrnk) did significantly improved 
the scores for the original feature. RF-Mrnk also improved 

performances if applied to the dimension reduced features, 
that are, features in the FA-manifold and the SA-manifold 
(Figure 5).  

The RF-Mrnk run on the SA-manifold performed the best, 
followed by the RF-Mrnk run on the FA-manifold. With only 
4 RF iterations using the RF scope size S=50, the RF-Mrnk 
run on the SA-manifold reached FT-HR=93.3%, while the 
RF-Mrnk run on the FA-manifold reached FT-HR=76.9%. 
after 4 RF iterations. Compared to these two, the RF-Mrnk 
run in the original feature space produced significantly lower 
score of FT-HR=64.3%. 

From these results, it can be concluded that the RF-Mrnk benefits 
from both unsupervised and semi-supervised dimension reduction 
applied to the original features. The manifold ranking algorithm 
by itself tries to find a manifold spanned by the features in the 
ambient space before applying relevance score diffusion. 
However, RF-Mrnk appears to perform better if it is applied on 
the lower dimensional FA-manifold adapted to feature 
distribution and SA-manifold adapted to both feature distribution 
and multiple semantic classes. The best retrieval performance is 
produced by the RF-Mrnk run on the SA-manifold.  

It is also interesting to note that the semi-supervised dimension 
reduction algorithm [11] that learns multiple classes at once (FT-
HR=58.1%) performed nearly as well as the single class learning 
using RF with S=20 (FT-HR=59.4%). 
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Figure 4: Retrieval performances of various methods based 
on multi-resolution SPRH feature.  

Figure 5a to Figure 5c show, for the three feature spaces on which 
the RF-Mrnk took place, the relationship between the number of 
RF iterations and the retrieval performance. The three feature 
spaces are the Orig. (Figure 5a), FA (Figure 5b), and SA 
(Figure 5c) described above. The FT-HR values in Figure 4 
corresponds to those in Figure 5 at RF iterations = 4. 

For all of the three feature spaces, the performance reached its 
saturation point after about 4 RF iterations excluding the initial 
retrieval (0th iteration). Also, as expected, for all of the three 
feature spaces, retrieval performance at saturation point improved 
as the RF scope size S is increased. 
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Figure 6 shows a set of retrieval examples for the SHREC 2006 
query 20 (the “hand”, top left). Relevance feedback scope size 
S=50 and 4 RF iterations (+ 1 initial retrieval) are used for all the 

RF cases. In the example, manifold ranking-based RF works 
significantly better if it is run on the feature-adapted manifold 
(RF-Mrnk-FA) or on the semantic adapted manifold (RF-Mrnk-
SA) than in the ambient feature space (RF-Mrnk-Orig.). 

4. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a novel 3D model retrieval algorithm 
that takes into account both long-lived semantics learned from 
multiple semantic classes and a short-lived, within-session user 
intention learned by using relevance feedback. The former is 
accounted for by learning multiple (e.g., 30 to 100) semantic 
classes at once, off-line, by using a Semi-Supervised Dimension 
Reduction (SSDR) algorithm [11]. The latter is accounted for by 
using a relevance-feedback framework based on the manifold 
ranking algorithm [25]. The method performs manifold ranking-
based relevance feedback on the semantic-manifold that embodies 
both feature distribution and multiple semantic classes.  

Experimental evaluation showed that proposed approach is quite 
effective. The use of semantic-manifold instead of the original, 
ambient feature space improved the effectiveness of the manifold 
ranking algorithm significantly.  The manifold ranking-based RF 
run on the original features achieved the First Tier Highly 
Relevant (FT-HR) score of FT-HR=64%, if the feedback scope 
S=50 is used. The same run on the semantic-adapted manifold 
produced the FT-HR=93% after only 3 RF iterations with 
feedback scope S=50.   
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Figure 6: Retrieving the query20 (the “hand”, top left) from the SHREC 2006. Manifold-ranking based Relevance Feedback 
(RF-Mrnk) run on the Semantic Adapted manifold (RF-Mrnk-SA) performed the best, followed by the RF-Mrnk run on the 

Feature Adapted manifold (RF-Mrnk-FA). (RF scope size S=50. RF iterations=4.)  


