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ABSTRACT 

A shape similarity judgment among a pair of 3D models is often 
influenced by their semantics, in addition to their shapes. If we 
could somehow incorporate semantic knowledge into a “shape 
similarity” comparison method, retrieval performance of a shape-
based 3D model retrieval system could be improved. This paper 
presents a 3D model retrieval method that successfully 
incorporates semantic information from human-made categories 
(labels) in a training database. Our off-line, 2-stage semi-
supervised approach learns efficiently from a small set of labeled 
models. The method first performs unsupervised learning from a 
large set of unlabeled 3D models to find a non-linear subspace on 
which the shape features are distributed. It then performs a 
supervised learning from a much smaller set of labeled 3D models 
to learn multiple semantic categories at once. Our experimental 
evaluation showed that the retrieval performance using proposed 
method is significantly higher than those of both supervised-only 
and unsupervised-only learning methods.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.3.5 [Computational Geometry and Object Modeling]: Surface 
based 3D shape models. I.4.8 [Scene Analysis]: Object 
recognition.  

General Terms 
Algorithms, Performance, Experimentation, Measurement. 

Keywords 
Shape-based 3D model retrieval, content-based retrieval, manifold 
learning. 

1. INTRODUCTION 
In the recent years, a number of papers has been published on 

3D model retrieval systems that are based on shape similarity [26, 
12]. Retrieval performance of such a system has not been 
satisfactory, however. One of the most promising ways to improve 
retrieval performance of such a system is to exploit semantic 
knowledge associated with a 3D model. Using semantic 
knowledge, for example, a system might be able to distinguish 
bananas from dolphins by paying attention to small differences in 
their shapes, that are, fins, despite their overall shape similarity. 

A semantic knowledge may be classified by its persistence 
and universality. A short-term and/or local semantic knowledge is 

defined for each search occasion or for a person. For example, a 
user may want an “antique-looking wooden rocking chair of ∩∫≈⌂ 
kind”, where “∩∫≈⌂” being a knowledge still internal to the user. 
Such short-term and/or local knowledge is best learned on-line 
from each user. Quite a few methods that employ on-line, 
interactive learning in a relevance-feedback framework have been 
proposed to capture such knowledge for 3D model retrieval [7, 13, 
15, 1]. During an iterative retrieval session, a user gives feedback 
on the relevance of retrieved set of models. The system learns 
online from the user feedback, and tries to improve the retrieved 
set of models for the next round of retrieval. A long-term and/or 
universal semantic knowledge stays for a long time and is shared 
among a group of people. For example, an “office chair” may be a 
long lived concept shared among a large number of people. This 
form of semantic knowledge may be captured from a categorized, 
or labelled, training database by using an off-line, supervised 
learning. Alternatively, long-term semantic knowledge may be 
captured gradually over a period of time via an on-line, supervised 
learning. 

In the field of shape-based 3D model retrieval, the authors 
are aware of no published work that employed an off-line, 
supervised learning to improve retrieval performance.  There are 
two major reasons for this; the training database has (1) a small 
overall size, and (2) small individual category size. One of the two 
well established 3D model retrieval benchmark datasets, The 
Princeton Shape Benchmark (PSB) database [23] for years had a 
provision for off-line supervised learning. The PSB, containing 
1,814 models, is divided into two equal sized subsets, 907 models 
each, named “training set” and “test set”. The training set and the 
test set are further divided into 90 and 93 each of “semantic” 
categories. The training set size of 907 is small considering a high 
feature dimension (typically tens to hundreds). Size of individual 
categories is also quite small; many of the categories have only 4 
models in them. Increasing the overall size of the training set 
and/or individual category size would be costly. Our previous 
attempts to apply some of the supervised learning algorithms 
directly on the PSB training set was not successful (Figure 1(b)). 
It is quite laborious to discover a set of classes from, and classify 
models of, a large number of 3D models. It is not only laborious, 
but the resulting classification tends to be unstable and noisy. 

An approach to deal with the small sample problem is semi-
supervised learning, which employs both labelled and unlabeled 
samples for learning. In our previous work [19, 20], we have 
successfully applied unsupervised learning for 3D model retrieval. 
The method trains an Unsupervised Dimension Reduction (UDR) 
algorithm by using a large set (e.g., 5,000 samples) of 3D models 
(Figure 1(b)). By employing a locally-constrained, non-linear 



Accepted as an oral paper, Proc. 9th ACM SIGMM International Workshop on Multimedia Information Retrieval (ACM MIR 2007), 
September 28-29, 2007, University of Augsburg, Germany. 

 2 

manifold learning algorithm such as the Locally Linear 
Embedding (LLE) [23] or Laplacian Eigenmaps (LE) [2], 3D 
model retrieval performance improved significantly. Our intuition 
then was to train a Supervised Dimension Reduction (SDR) 
algorithm in the subspace produced by the preceding UDR step 
(Figure 2(c)). We call the method Semi-Supervised Dimension 
Reduction (SSDR), for it uses information from both unlabeled 
samples and labelled samples. The UDR is trained, unsupervised, 
by using a large (dimension k, set size p) set of input, or original 
unlabeled features. Then, input features of labelled models 
(dimension k, set size q) are processed by the UDR to produces a 
set of interim features having dimension l (l < k). The SDR 
algorithm is trained, supervised, by using the interim features of 
the labelled models and their labels. The trained SDR then 
processes the input features for the models in the database to be 
searched and the query for a set of salient features having 
dimension m ( m l k< < ) for distance computation and retrieval. 

We experimentally evaluated the method under both 
inductive and transductive settings using the PSB [23] and Shape 
Retrieval Contest (SHREC) 2006 [28], respectively. In both cases, 
the SSDR approach showed the largest performance gain. The 
UDR approach also showed consistent but smaller performance 
gain than the SSDR. The SDR only approach, however, often 
performed worse than the original, untreated feature. We also 
tested the fitness of the supervised learning algorithms under the 
presence of multimodal categories. A multimodal category arises 
when a category contains multiple disjunct clusters of input 
features. The results are yet to be conclusive, but the experiments 
seem to suggest advantage of a class of SDR methods over the 
other for retrieving multimodal categories.  

In the inductive setting using PSB, the best performing SSDR 

method applied to the EDT feature produced the R-precision of 
47%, compared to the 40% of the original EDT. The best-
performing multi-resolution combination of SSDR-processed EDT 
features produced the R-precision of 53%. This R-precision 
outperforms the Light Field Descriptor (LFD) [6] whose R-
precision is 46%. In the transductive setting measured using the 
SHREC 2006, the best performing SSDR combination showed 
First Tier (Highly Relevant) figure of 58%, a number significantly 
(13%~14%) better than the best result from the SHREC 2006.  
Furthermore, such a performance gain is obtained by using the 
feature having a significantly smaller dimension than the original.  

In the next section, we will review the use of learning in the 
context of shape-based retrieval of 3D models. In Section 3, we 
will describe the proposed retrieval algorithm based on semi-
supervised learning. Experiments and their results are described in 
Section 4, followed, in Section 5, by summary and future work. 

2. PREVIOUS WORK 
In the field of shape-based 3D model retrieval, on-line, 

interactive learning of semantic concepts in a relevance-feedback 
framework have been popular [7, 13, 15, 1]. The method used by 
Leifman, et al [13], for example, performs an UDR using Kernel 
Principal Component Analysis (KPCA) followed by a supervised 
learning of single class in a relevance feedback framework. The 
difference between our approach and Leifman’s approach is that, 
their method learns single semantic category iteratively and 
interactively, while our method learns multiple semantic 
categories in a single batch, off-line. There is only one published 
method that exploits pre-categorized training samples. The 
method, proposed by Bustos, et al [4] may be considered as a 
“mild” form of off-line supervised learning. It is “mild” for the 
method uses the categorized training samples to estimate a 
goodness of shape features. The goodness, called purity, is then 
used to weight a linear combination of distances obtained from 
multiple (heterogeneous) shape features. 

Learning based dimension reduction algorithms can be 
classified as supervised or unsupervised. The former used labelled, 
or categorized, training samples, while the latter uses unlabelled 
samples for the learning. Classical methods for unsupervised 
dimension reduction include Principal Component Analysis (PCA) 
and Multi-Dimensional Scaling (MDS), both of which are quite 
effective if the feature points lie on or near a linear subspace of 
the ambient (input) space. The PCA tries to preserve covariance 
structure on the input space. If the subspace is non-linear, however, 
these linear methods do not work well. Self-Organizing Map and 
KPCA are two of the well-known examples of non-linear 
dimension reduction. (See, for example, Haykin et al [8].) Both 
PCA and KPCA produce continuous mapping that is defined 
everywhere in the input, high dimensional space. Recently, a class 
of geometrically inspired non-linear methods, called “manifold 
learning” has been proposed for learning a manifold of an input 
feature vector space quite effectively. Examples of manifold 
learning algorithms are the Isomap [27], Locally Linear 
Embedding (LLE) [22], and Laplacian Eigenmaps (LE) [2]. The 
LLE tries to preserve locally linear structure of nearby features. A 
drawback of LE, LLE, and Isomap is that their map is defined only 
for the feature vectors in the training set, i.e., a new query. To 
reduce dimension of a feature outside of the training set, the 
manifold must be defined everywhere in the input high-
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Figure 1: Three dimension reduction methods: Unsupervised 
Dimension Reduction (UDR) method (a), Supervised Dimension 
Reduction (SDR) method (b), and our proposed Semi-Supervised 
Dimension Reduction (SSDR) method (c). 
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dimensional feature space. In a 2D image retrieval setting, He et al 
[11] solved this problem by approximating the manifold by using 
Radial Basis Function (RBF) network [5]. Ohbuchi, et al [19, 20] 
applied the algorithm proposed by He et al [11] to the task of 3D 
model retrieval. They showed that, by learning a large (e.g., 
>1500 models) set of 3D models, an unsupervised non-linear 
dimension reduction could significantly improve 3D model 
retrieval performance. In this paper, we employ UDR algorithms 
with the hope of improving efficiency of supervised learning stage 
that follows. Specifically, we experimented with three UDR 
algorithms, the PCA, KPCA, and the LLE. 

There are a choice of supervised dimension reduction 
algorithms, such as the Supervised-LLE (SLLE) [21], Supervised 
Locality Preserving Projections (SLPP) [10], Local Fisher 
Discriminant Analysis (LFDA) [24] and its kernelized version 
Kernel-LFDA (KLFDA). The SLPP is a supervised version of the 
LPP (Locality Preserving Projections), which in turn is a linear 
version of the LE mentioned above. As in the LE, the LPP 
connects, by geometrical proximity in the input space, training 
samples into a mesh. In its supervised version SLPP, connections 
are made also for those feature points that are semantically close, 
even if they are not geometrically close in the input space. The 
SLPP then tries to maintain proximity in the input space, both 
geometrical and semantic, in the projected lower dimensional 
manifold. The LFDA can also be considered as a supervised 
extension to the LPP. The LFDA tries to maximize between-class 
separability while preserving within-class local structure. An 
advantage of the LFDA as a supervised learning algorithm is its 

capability to handle multimodality of data in the input space. 
Multimodality appears when a concept (especially a higher level 
concept) is consisted of multiple disjunct sets of feature clusters. 
The method proposed in this paper experimentally compared the 
SDR algorithms SLPP, LFDA, and KLFDA, in combinations with 
the UDR algorithms mentioned before, for the retrieval 
performance. 

3. METHOD 
The proposed 3D model retrieval algorithm incorporates 

semantic knowledge from the categorized training database in a 
single batch, off-line learning by using the 2-stage Semi-
Supervised Dimension Reduction (SSDR) (Figure 2). In the 2-stage 
SSDR, an input (or original) feature having a high dimension k is 
processed first by using an unsupervised dimension reduction 
(UDR) to produce an interim feature having a lower dimension l 
than the input dimension k. The map for the UDR is computed 
based on an unsupervised learning from a large (size p ) set of 
unlabeled 3D models. The interim feature is processed further by 
a supervised dimension reduction (SDR) algorithm to produce a 
“salient” feature having dimension m  ( m l k< < ). The map that 
incorporates semantic knowledge used for the SDR is learned 
from a smaller (size q, q p<< ) set of labelled 3D models. Note 
that the proposed SSDR approach is not specific to a shape feature. 
It could be combined with many, if not all, of the existing and 
forthcoming shape features.  

The SSDR-based 3D model retrieval algorithm proposed in 
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this paper proceeds according to the steps below: 

(1) Unsupervised learning: Extract a k-dimensional feature 
from each model in the unlabeled set of 3D models ULM  of 
size p for the UDR. Given the set of p unlabeled features, an 
UDR algorithm learns the l-dimensional subspace UDRS  
spanned by the set. The resulting UDRS  maps an input k-
dimensional feature to the interim, l-dimensional feature in 
which  l k< . 
For some UDR algorithms, such as the LLE [22], we must 
approximate the UDRS  so that it is defined everywhere in the 
input space. We used the RBF-network [5] for the 
approximation, as proposed by He, et al [10]. The other UDR 
algorithms, such as PCA and KPCA, do not require the 
approximation step as their manifold are defined 
continuously in the input space.  

(2) Supervised learning: Extract k-dimensional features from 
the set of labeled 3D models SLM  for the SDR. Note that the 
size q of the SLM  is typically much smaller than the size p 
of the ULM . A SDR algorithm then learns categories from 
the q labeled features in a batch and encodes the knowledge 
into the m-dimensional subspace SDRS  to be used for later 
SDRs. The manifold maps an interim l-dimensional feature 
onto the salient, m-dimensional feature used for retrieval.  

(3) DB pre-processing: For each k-dimensional input feature of 
all the models in the database DM , employ the UDR and 
SDR in succession to produce m-dimensional salient feature 
that incorporates semantic concepts learned from the labeled 
models in the training set SLM . Store the salient feature 
together with the corresponding 3D model for later retrieval. 
As the dimension m of a salient feature is much smaller than 
the dimension k of the corresponding input feature, cost of 
distance computation and feature storage are significantly 
reduced. .  

(4) Retrieval: Extract the input feature of the query model 
q Qm M∈  and perform the UDR and SDR in succession to 

produce its salient feature having dimension m. Compute 
distances between the salient feature of the query and all the 
salient features stored in the database. Rank the models in the 
database according to the distances. Retrieve the r top 
matches from the ranked list having r smallest distances.  

3.1 Unsupervised Dimension Reduction 
For the UDR, we compared the PCA, KPCA, and LLE. For 

the KPCA and PCA, we used the code available in the Statistical 
Pattern Recognition Toolbox [25], and for the LLE, we used the 
code available in the Statistical Learning Toolbox [14], both for 
the MatLab. (We used the MatLab® R7.2.) Borrowing the 
approach from He, et al [10], we used the RBF network [5] 
available in the Neural Network Toolkit for the Matlab to create a 
continuous map defined everywhere in an input space from a 
discrete map produced by the LLE. Both of the KPCA and LLE 
require parameters. The KPCA may employ different kinds of 
kernel functions, and, depending on the kernel function, there are 
additional parameters. We used an RBF (Gaussian) kernel 

2 2( , ) exp( )k x x x x σ′ ′= − −  for the KPCA, and the spread σ  is 
set to the average of distance among the features in the input (k-
dimensional) space. For the LLE, we used the 0/1 weights (as 

opposed to the heat kernel) on the edges during the mesh 
construction step. For the RBF-network approximation of the map 
produced by the LLE, we used the parameters shown in Table 1, 
which were found experimentally. The neighbourhood size, that is, 
the number of neighbouring sample points to be connected, is in 
percentage points relative to the cardinality of the unsupervised 
training set ULM . The spreads of the RBF depends on a feature, 
as the sample points distribution is different from a feature to 
another. We found the appropriate RBF spread thorugh 
preliminary set of experiments.  

The LLE and Kernel-PCA could be quite expensive both in 
time and in space if the training set size p is large. Our method 
sub-samples the corpus for unsupervised learning to reduce costs. 
The UDR is performed by using ULM  having 3,500 or 4,000 
samples, depending on the UDR algorithm, instead of the full 
10,911 unlabeled models of the National Taiwan University 
(NTU) database [16]. For the sub-sampling, we used 
Niederreiter’s quasi-random sequence [3], adopting the method 
described in [19, 20]  

 
Table 1. Parameters for the RBF network approximation of an 
LLE map at the UDR learning step. 

Features Number of neighbors RBF Spread 
AAD 2.0 0.3
SPRH 2.0 0.9
EDT 1.0 5.5
SH 0.67 8.0

RSH 0.67 9.0
 

3.2 Supervised Dimension Reduction 
For the SDR step, we compared the SLPP, LFDA, and 

KLFDA. The SLPP and the LFDA are linear methods, while the 
KLFDA is a non-linear method. For the SLPP, we used the code 
provided by Xaofei He at his web site [10]. For the LFDA and 
KLFDA, we used the code found at Sugiyama’s web site [24].The 
neighbourhood size for the LFDA and KLFDA are fixed to three 
for all the features we experimented with. In the case of the 
KLFDA, we used the inner product kernel ( , )k x x x x′ ′= i , and its 
regularization parameter is fixed to 0.001 for all the features we 
tried. As SLPP, LFDA, and KLFDA produces continuous maps 
defined everywhere in the input space, there is not need for 
approximation. 

3.3 Shape features and distance measures 
The proposed approach can be applied to almost any shape 

feature that produces a feature vector. We experimented with five 
shape features, the Exponentially-decaying EDT (EDT), Ray-
based Spherical Harmonics (RSH) [29], Spherical Harmonics 
(SH) [12], Absolute Angle-Distance (AAD) [18], and Surflet-Pair 
Relation Histograms (SPRH) [30]. We implemented the AAD and 
SPRH ourselves. We used executable codes available on the net 
for the EDT, SH, and RSH. The dimensions of the original (input) 
features are; 256AAD = , 625SPRH = , 544EDT = , 544SH = , 
and 136RSH = .   

To compute distance among features, we used Cosine 
distance for all the features that are processed by dimension-
reduction. For the original (i.e., without dimension reduction) 
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features, we experimentally picked the best performing one 
among the four distances, the L1-norm, L2-norm, Cosine, and the 
Kullbuck-Leibler Divergence (KLD). The selection is performed 
via a preliminary set of retrieval experiments. For example, we 
used the L1 for the original EDT, and the KLD for the original 
SPRH. 

3.4 Multiresolution Shape Comparison 
A better shape comparison may be possible if shapes are 

compared at multiple scales. For example, trees may be compared 
with each other by their overall shape, not by the shapes of their 
leaves or branches. Ohbuchi et al proposed [17] to use a 
mathematical morphology-like multi-resolution (MR) 
representation for a MR 3D shape similarity comparison. The MR 
approach by Ohbuchi et al. first creates a set of 3D MR shape 
models by using 3D alpha shapes algorithm given a set of 
predetermined values of alpha, or scale. Once an MR set of 3D 
models is obtained, appropriate (single resolution) shape feature is 
computed for the model at each resolution level to produce a set of 
multi-resolution shape features.  

A dimension reduction method may be applied to the MR set 
of features in several different ways, e.g., to a feature vector at 
each resolution level, or to a big feature vector created by 
concatenating all the feature vectors from multiple resolution 
levels. In the experiment reported in this paper, a dimension 
reduction method is applied separately at each resolution level 
(Figure 3). That is, if the MR representation has L resolution 
levels, the total of L dimension reductions are performed 
independently. To compare a pair of 3D models, a distance is 
calculated at each of the L levels of the MR representation. These 
L distance values are then combined into an overall distance 
among the pair of models by using a fixed-weight linear 
combination of distances. In the experiments described in this 
paper, all the weights are fixed at 1.0.  

4. EXPERIMENTS AND RESULTS 
We a priori did not know which combinations of UDR and/or 

SDR methods would work with which shape feature. We 
compared four dimension reduction strategies, namely, (1) UDR 
only, (2) SDR only, (3) UDR+UDR, and (4) UDR+SDR (= 
SSDR). The third strategy, UDR+UDR, is included later to see the 
cause of performance improvement in SSDR; whether it is the 
semantic concept learned from the SDR in the 2nd dimension 
reduction stage, or simply the reduced dimension of the interim 
feature that facilitated the 2nd stage learning. For the UDR+UDR 
strategy, we fixed the 2nd stage to the LPP, the unsupervised 
version of the SLPP, and paired it with the three UDR variations 
in the1st stage. All in all, we experimented with the total of 19 
variations; three UDR, three SDR, three UDR+UDR, nine SSDR, 
and one original, i.e., no dimensional reduction. 

An important consideration in evaluating learning-based 
retrieval systems is the sets of models, labeled or otherwise, used 
For example, if the supervised training set equals the test set used 
for evaluation, the learning is easier as the problem does not 
involve much generalization. We evaluated the method under the 
two settings below;  

(1) Inductive retrieval using PSB: For this set of experiments, 
SL DM M≠ , and Q DM M= . That is, the database to be 

queried (for performance evaluation) DM  (=PSB test set) is 

different from the one used for the supervised learning SLM  
(PSB train set). The query model qm  is drawn from the test 
database ( q Dm M∈ ), and compared against the rest of 
models ( D qM m− ) in the database. We used the Princeton 
Shape Benchmark (PSB) database [23] training set 
(907 models) as the supervised learning models SLM , and the 
PSB test set (907 models) as the MD. For the unsupervised 
learning set ULM , we used p unlabeled models sub-sampled 
from the union of the National Taiwan University 3D Model 
Database (NTU) ver. 1 [16] containing 10,911 models and 
the entire PSB models (907+907=1,814 models). We are not 
sure if UL DM M∩  is empty or not, as the DM (= PSB test 
set) may share some models with ULM , the union of the 
NTU database and PSB training set.  

(2) Transductive retrieval using SHREC 2006: For this set of 
experiments, SL DM M=  and Q DM M∉ . That is, the 
database to be queried (for performance evaluation) DM is the 
same as the set of models SLM  for the supervised learning. 
The query model qm  is not included in the database 
( q Dm M∉ ), however, for the SHREC 2006 [28]. The 
unsupervised learning is performed in a manner similar to the 
inductive setting above. In this case, UL DM M∩ ≠ ∅ , as the 

DM (= PSB test set + PSB training set) shares models with 
ULM . 

For the inductive retrieval experiments, we used R-precision 
(RP) as the performance index. The R-precision is the ratio, in 
percentile, of the models retrieved from the desired class kC  (i.e., 
the same class as the query) in the top R retrievals, in which R is 
the size of the class kC . In computing the R-precision, we did 
not count the query q  among the retrieved model, i.e., the 
numerator, which is divided by 1kC − . The RP values presented 
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below are a mean over all the 907 models in the PSB test set used 
for the experiment. For the transductive retrieval experiments, we 
used the indices used in the SHREC 2006, which are, Average 
Precision (AP), First Tier (FT), Second Tier (ST), Dynamic 
Average Recall (DAR), Normalized Cumulated Gain (NCG), and 
Normalized Discounted Cumulated Gain (DCG). All these figures 
are averages over the 30 query models of the SHREC 2006. For 
each of these indices, the larger number the better the retrieval 
performance. Please refer the SHREC 2006 report [28] for these 
performance indices.  

4.1 Inductive Retrieval Using PSB 
Table 2 shows, for the EDT feature, details of the relations 

between the learning strategies, learning algorithms, and the 
retrieval performance measured in R-precision. For the single-
resolution (SR) case, all the combinations of dimension reduction 
methods we have tried are shown. For the multi-resolution (MR) 
case, only the best performing combination in each learning 
strategy is shown. Figure 4 and Figure 5 show further detail of 
experiments we did by varying the number of salient feature 
dimensions. We obtained similar tables and plots for all the five 
shape features, but those for the EDT feature only are shown here 
for brevity. 

For the SR EDT feature, the best performing is the SSDR 
approach that combined KPCA for UDR and SLPP for SDR,  
which produced the R-precision RP = 46.98%. It is followed 
closely by the KPCA + KLFDA (RP = 45.76%) and 
KPCA + LFDA (RP = 45.34%) combinations. The 
LLE + KLFDA combination also did well. It is interesting to see 
that, while the KPCA did not do well if it used alone in the UDR-
only setting, KPCA appears the best match for the EDT in the 
SSDR combinations. Preferred UDR and SDR methods for a 
SSDR combination depends on the feature. For example, the MR 
SPRH produced best retrieval performance by using LLE (l = 90) 
for UDR and KLFDA (m = 90) for SDR. Overall, a non-linear 
method, i.e., either the LLE or the KPCA is preferred for the UDR. 
The PCA, which is a linear UDR method, showed no performance 
gain.  

The best result for the EDT feature was achieved by the 
SSDR processed MR EDT feature whose R-precision was 53.1%.. 
It used KPCA (l = 250) for the UDR and SLPP (m = 60) for the 
SDR. This performance is significantly better than those of the 
LFD [6] at 45.9% and the Hybrid [29] at 48.5% (using L1 norm). 

Please note that a significant reduction in feature dimension 
is accompanied by a significant performance gain due to the 
SSDR approach. The best performing salient SR EDT feature 
processed by the SSDR (KPC + SLPP) has the subspace 
dimension 80m = . This is near 1/7 of the dimension 544k =  of 
the original EDT feature.  For the MR EDT having six resolution 
levels, the overall dimension of 3,264 544 6= ×  for the original 
feature has been reduced to 360 60 6= × . Such a reduction in 
dimensionality would have a large impact on the cost of distance 
computation, which would be repeated many times for a database 
containing a large number of models. Reduction in feature storage 
cost for a database is also significant. 

Figure 4 compares, for the EDT feature, the performance of 
UDR method, while fixing the SDR method to the SLPP. It is 
plotted against the salient feature dimension m. The EDT-MR-

PCA250-SLPP, EDT-MR-KPCA250-SLPP, and EDT-MR-
LLE250-SLPP used the SSDR strategy, while the EDT-MR-
PCA250, EDT-MR-KPCA250, and EDT-MR-LLE250 used UDR-
only strategy. The two SSDR combinations, EDT-MR-KPCA250-
SLPP and EDT-MR-LLE250-SLPP scored much higher than the 
others at almost all the value of m. Figure 5 compares, for the 
EDT feature, the retrieval performance among three SDR methods, 
fixing the UDR method to the most promising (for the EDT) 
KPCA. It is again plotted against the salient feature dimension m. 
This graph shows that the best performance is attained at a low 
subspace dimension of about m=60, compared to the k=544 of the 
input dimension for the EDT. While the performance of a SSDR 
variation does depend on the subspace dimension, the sensitivity 
is not very high.  

Figure 6 and Figure 7 shows the summary of experimental 
results comparing the retrieval performance among various 
combinations of features and dimension reduction methods. 
Figure 6 shows the results for the SR cases, while Figure 7 shows 
the results for the MR cases. What we did was to choose the best 
performing combination for each of the UDR, SDR, UDR+UDR 
(=UDR+LPP), and SSDR (=UDR+SDR) dimension reduction 
methods. Details such as the details of the UDR and SDR methods, 
number of interim and salient feature dimensions, etc. are omitted 
from the graph for brevity. For example, in Figure 5, the  

 “UDR+SDR” (=SSDR) combination for the SR EDT is 
actually the UDR step using KPCA followed by the SDR step 
using SLPP. 

Table 2. R-precision (RP) for the EDT combined with various 
learning methods. All the distance measures are Cosine distance, 
except for the SR and MR variations of the original EDT (Orig.), 
which used L1 norm.  

1st stage 2nd stage EDT 
k=544 method p l method m RP[%]

Orig.      41.01
KPCA 3500 200   40.84
LLE 4000 250   42.64UDR
PCA 4000 200   40.01

KLFDA 44 40.40
LFDA 44 21.23SDR   
SLPP 44 18.43

KPCA 3500 200 190 41.09
LLE 4000 200 150 41.20

UDR
+ 

UDR PCA 4000 200 

LPP 
(UDR) 

70 37.23
250 KLFDA 230 45.76
250 LFDA 100 45.34KPCA 3500 
200 SLPP 80 46.98
250 KLFDA 240 43.68
250 LFDA 40 38.81LLE 4000 
200 SLPP 60 42.77
200 KLFDA 40 40.69
150 LFDA 30 36.98

SR

SSDR
(UDR

+ 
SDR)

PCA 4000 
150 SLPP 40 37.24

Orig.   42.91
UDR LLE 250  45.75
SDR    KLFDA 44 44.68

MR

SSDR KPCA  250 SLPP 60 53.06
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Several observations can be made. First of all, the SSDR 
strategy (i.e., the UDR+SDR combination) outperformed all the 
others. In fact, for each of the five features, the best performing 
choice was the SSDR. The degrees of improvements vary from a 
feature to another and from the SR versions to the MR versions. 

For example, the SPRH appears to benefits more than the others 
from the SSDR as well as the UDR in the MR cases. Second, the 
SDR-only strategy did not perform well. The SDR-only variations 

performed worse than the UDR-only variations. In fact, the SDR 
processed features almost always performed worse than the 
original features. This partially explains why a method based on 
an off-line learning of multi-class semantic concepts has not been 
reported in the past for 3D model retrieval.  

0
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35
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50
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Original UDR SDR UDR+UDR UDR+SDR
 

Figure 6. Retrieval performances for the five single-resolution 
(SR) features using five learning strategies.  
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Figure 7. Retrieval performances for the five multi-resolution 
(MR) features using five learning strategies. 

 

Figure 8 shows examples of retrieval results using four 
variations of the SH feature given the query “m660.off” (a 
handgun model) from the PSB test set. The database queried is the 
PSB test set. In the figure, the query is shown at the leftmost 
column. A set of top 20 retrievals is shown as a 4 by 5 matrix, in 
which the leftmost model in the topmost row is the closest match. 
The top match is often the query itself, and is not counted. A 
dotted box indicates the query, while a solid box indicates a 
correct retrieval. The result using the unprocessed multi-resolution 
SH feature, SH-MR, showed only one model from the correct 
category in the top 20 (Figure 8(a)). The UDR using LLE 
improved the performance significantly (Figure 8(b)), retrieving 5 
models from the category. The proposed SSDR approach did the 
best, retrieving 8 models from the correct category in the top 20.  
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EDT-MR-LLE250
EDT (Original)

 
Figure 4. Choice of UDR method and retrieval performance for 
the MR EDT feature. The SDR method is fixed to the SLPP. The 
curves are plotted against the salient subspace dimension m. 
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Figure 5. Choice of SDR method and retrieval performance for 
the MR EDT feature. The UDR method is fixed to the KPCA. 
The curves are plotted against the salient subspace dimension m. 
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(a) Original MR SH (SH-MR). 

(b) UDR-processed MR SH (SH-MR-LLE250). 

(c) SSDR-processed MR SH (SH-MR-KPCA300-SLPP90).  

Figure 8. Retrieval examples using the PSB. The query is 
“m660.off” in the PSB test set. The query model is indicated by 
the dotted box, while the models in the correct category are 
indicated by solid box. 

4.2 Handling Multimodal Categories 
A category for semantic concept is often multimodal. That is, 

a category may consist of multiple clusters that are geometrically 
distant in the input feature space. For example, a “mammal” 
model category in a 3D model database may be multimodal, by 
including models for a human, horse, rabbit, and dolphin. If a 
supervised learning algorithm forces features in a semantic class 
geometrically close in the dimension-reduced space, for example, 
multimodal clusters would disappear, potentially reducing the 
retrieval performance.  

We tried to evaluate the SDR algorithms we employed for 
their ability to handle multimodality by using the PSB that 
contains four abstraction levels of categories (Table 3). The most 
detailed is the “Base” category, containing about 90 categories. It 
is followed by gradually coarser abstractions having less and less 
number of categories. The Coarse 1 level contains about 40 
categories, the Coarse 2 level contains 7 categories (“Vehicle”, 
“Animal”, “Household”, “Building”, “Furniture”, “Plant”, and 
Others), and the coarsest Coarse 3 contains only two categories 
(“natural” and “manmade”). Comparison of performances of SDR 
methods using Coarse 2 level or Coarse 3 level categories won’t 
be very useful as these categories are too abstract. 

We trained the three SDR algorithms, the SLPP, the LFDA 
and the KLFDA by using the “Base” level 90 categories of the 
PSB train set. We then evaluated retrieval performance by using 
the four abstraction levels of categories. The results for the single 
resolution (SR) EDT feature (EDT-SR) and multi-resolution (MR) 
EDT feature (EDT-MR) are shown in Figure 9 and Figure 10, 
respectively. The SLPP scores the highest for the Base category 
for both SR and MR cases. The performance of the SLPP drops 
more quickly than those of the LFDA and KLFDA at the Coarse 1 
level in which the categories are more abstract, containing more 
multimodality. This tendency may reflect the fact that the LFDA 
and the KLFDA are designed to handle multimodality [24]. These 
results are still tentative, and we need further study.  
 
Table 3. Abstraction levels and number of categories in the PSB.  

 Base Coarse1 Coarse2 Coarse3
PSB train 90 42 7 2 
PSB test 92 38 7 2 

 

4.3 Transductive Retrieval Using SHREC 
Table 4 shows the retrieval performance measured in a 

transductive setting using the SHREC 2006 benchmark. For the 
SPRH only, we list the performances of UDR-processed 
multiresolution (MR), unprocessed MR, and unprocessed single-
resolution (SR) (i.e., the original) features as well. We also list, in 
the table, the top 2 performers among the SHREC 2006 contest 
entrants.  

The best performer among the compared is the SSDR-
processed MR SPRH feature. The SPRH feature gained more than 
30% in First Tier Highly Relevant (FT-HR) figure, by going from 
the original SR SPRH feature (FT-HR of 26.68%) to the MR 
combination of SSDR-processed SPRH features (FT-HR of 
58.13%). Note also the reduction in feature dimension that 
accompanied the performance gain. At each resolution level, the 
SSDR-processed MR SPRH feature has the dimension m = 50. 
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Thus, the overall dimension of the SSDR-processed 6-level MR 
SPRH feature is 50 × 6 = 300, which is smaller than that of the 
original SR SPRH feature having k = 625. The best performer, the 
SSDR-processed MR SPRH, performed about 13%~14% better 
than the best figure in the SHREC 2006 contest by Makadia et al. 
Even the least powerful combination, the SSDR-processed MR 
AAD, outperformed the SHREC 2006 winner.  

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed and evaluated a shape-based 3D 

model retrieval system that incorporates semantic knowledge 
captured in a categorized training database. To our knowledge, 
off-line supervised learning of multiple semantic categories from 
a relatively small set of labelled 3D models, e.g., the PSB training 
set, has not been done previously. Our two-stage, semi-supervised 
dimension reduction (SSDR) method made such learning possible, 
improving the 3D model retrieval performance significantly. In 
the method, an unsupervised learning of non-linear subspace from 
unlabeled set of sample is followed by a supervised learning from 
labelled (categorized) training set of samples.  

Experimental evaluations of the proposed method showed 
that the method learned a labelled set to achieve significant 
performance gain together with reduction in feature size. For 
example, in the set of experiments using the Princeton Shape 
Benchmark [23] for inductive retrieval, the retrieval performance 
measured in R-precision of the Exponentially-decaying EDT 

shape feature [30] improved by 7% from 40% to 47%. A linear 
combination of distances from multi-resolution (MR) set [18] of 
the SSDR-processed EDT shape features achieved the R-precision 
of 53%. In the set of experiment for transductive retrieval, using 
the SHREC 2006 benchmark [28], the FT-HR figure as high as 
58% was obtained by using the SSDR-processed MR combination 
of the SPRH feature [30]. This figure is significantly better than 
the results obtained by using some of the previous methods.  

Several avenues of future exploration exist. We need to 
investigate further the combinations of parameters, e.g., kernel 
functions and their parameters, etc. We would like to see if the 
off-line supervised learning approach proposed in this paper could 
be combined effectively with an on-line supervised learning 
approaches based on relevance feedback. Such a combination 
might be able to capture both short-term, local knowledge and 
long-term, universal knowledge for retrieval. We would also like 
to explore the ways to effectively combine heterogeneous features 
by using a learning-based approach.  
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Table 4. Retrieval performance of the SSDR approach in a transductive setting measured using the SHREC 2006 benchmark [28]. In this 
setting, the database for the supervised learning SLM  is the same as the database to be queried and retrieved DM .  

1st stage 2nd stage Feature MR/ 
SR 

Dim. 
Reduc’n method l method m distance AP-HR AP-R FT-HR FT-R DAR NCG

@25 
NDCG
@25 

SPRH SR (None) - - - - KLD 0.2886 0.3179 26.68% 31.77% 0.3990 0.3920 0.4384
SPRH MR (None) - - - - KLD 0.3761 0.3552 34.93% 32.84% 0.4631 0.4519 0.5101
SPRH MR UDR LLE 350 - - cos 0.4687 0.4278 45.40% 42.18% 0.5413 0.5567 0.6049
SPRH MR SSDR LLE 350 LFDA 50 cos 0.6196 0.5982 58.13% 55.19% 0.6537 0.6815 0.7017
AAD MR SSDR KPCA 200 SLPP 50 cos 0.5083 0.4897 45.91% 45.86% 0.5797 0.5885 0.6224
EDT MR SSDR KPCA 250 SLPP 70 cos 0.5863 0.5568 53.12% 51.44% 0.5994 0.6462 0.6592
SH MR SSDR KPCA 300 SLPP 70 cos 0.6015 0.5766 54.16% 52.77% 0.6178 0.6677 0.6717

Makadia (run 2) - - - - - - 0.4869 0.4364 44.77% 40.55% 0.5499 0.5498 0.5906
Daras (run 1) - - - - - - 0.4475 0.3952 42.75% 37.03% 0.5242 0.5246 0.5791

 
AP-HR: Mean Average Precision (highly relevant) AP-R: Mean Average Precision (relevant) 
FT_HR: Mean First Tier (Highly Relevant) FT_R: Mean First Tier (Relevant) 
DAR: Mean Dynamic Average Recall  
NCG @25: Mean Normalized Cumulated Gain @25 NDCG @25: Mean Normlized Discounted Cumulated Gain @25  
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