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ABSTRACT 
Aggregating a set of local features has become one of the most 
common approaches for representing a multi-media data such as 
2D image and 3D model. The success of Bag-of-Features (BF) 
aggregation [2] prompted several extensions to BF, that are, VLAD 
[12], Fisher Vector (FV) coding [22] and Super Vector (SV) coding 
[34]. They all learn small number of codewords, or representative 
local features, by clustering a set of large number of local features. 
The set of local features extracted from a media data (e.g., an 
image) is encoded by considering distribution of features around 
the codewords; BF uses frequency, VLAD and FV uses 
displacement vector, and SV uses a combination of both. In doing 
so, these encoding algorithms assume linearity of feature space 
about a codeword. Consequently, even if the set of features form a 
non-linear manifold, its non-linearity would be ignored, potentially 
degrading quality of aggregated features. In this paper, we propose 
a novel feature aggregation algorithm called Diffusion-on-Manifold 
(DM) that tries to take into account, via diffusion distance, structure 
of non-linear manifold formed by the set of local features. In view 
of 3D shape retrieval, we also propose a local 3D shape feature 
defined for oriented point set. Experiments using shape-based 3D 
model retrieval scenario show that the DM aggregation results in 
better retrieval accuracy than the existing aggregation algorithms 
we’ve compared against, that are, VLAD, FV, and SV, etc.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.2.10 [Vision and Scene Understanding]: 3D/stereo scene 
analysis. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Feature aggregation, content-based retrieval, manifold learning, 
manifold ranking, diffusion distance, local feature, bag-of-features, 
sparse coding, fisher vector, super vector, 3D shape, 3D oriented 
point set.  

1. INTRODUCTION 
Majority of state-of-the-art shape-based 3D model retrieval 
(3DMR) algorithms represent a 3D model as a set of local features 
extracted from its 3D geometry or 2D appearances [4, 5, 6, 14, 15, 
17, 19, 20]. Using a set of local features with an appropriate 
aggregation algorithm yields a 3D shape descriptor robust against 
articulation or global deformation of 3D models. Aggregation of 
local feature also make comparison among a pair of 3D models 
much more efficient than comparing local features individually.  

Bag-of-Features (BF) [2] (Figure 1a) is first-of-a-kind local feature 
aggregation algorithm and is widely used to realize classification, 
segmentation, annotation, or retrieval of 2D images or 3D models. 
BF first learns a set of codewords by clustering the set of local 
features extracted from all the 3D models in a training set database. 
Each of a set of local features extracted from a 3D model is vector-
quantized into its nearest codeword, and the codewords are 
accumulated into a histogram to become an aggregated feature 
vector for the 3D model. The vector quantization (VQ) process of 
the BF throws away a lot of information, e.g., relative positions or 
global arrangement of the set of local features. Consequently, the 
quality of aggregated feature suffers.  

Several refinements to BF aggregation have been proposed [12, 16, 
22, 23, 29, 30, 31, 34] to remedy this issue. They use either sparse 
coding (SC) or higher-order statistics (HS) to reduce information 
loss due to VQ. Both SC-based and HS-based algorithms use a 
number of codewords much smaller than the one for BF, and 
complement VQ with additional information. The Local 
Coordinate (LC) coding [31], Locality-constrained Linear (LL) 
coding [29], and localized soft-assigment coding [16] sparsely 
encode each local feature as weighted linear sum of neighboring 
codewords (Figure 1b). The Vector of Locally Aggregated 
Descriptor (VLAD) [12], Fisher Vector (FV) coding [22], and 
Super Vector (SV) coding [34] all try to encode local features by 
using higher-order statistics around the codewords (Figure 1c). The 
FV aggregates the set of local features by using displacement of 
mean and variance between the local features and the codewords, 
each of which is defined as a multivariate normal distribution 
derived by GMM clustering. The VLAD, which can be considered 
as an approximation of the FV, uses displacement of mean only.  

These SC-based and HS-based algorithms aggregate a set of local 
features more accurately than a VQ-based approach, i.e., BF. 
However, most of them still can’t handle non-linear distribution of 
local features in feature space. Small number of codewords 
essentially ignores local geometry of feature distribution. 
Extensions employed by the SC-based and HS-based algorithms 
listed above won’t be able to completely capture non-linear nature 
of distribution of a set of local features in its feature space.  
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In this paper, we propose a novel local feature aggregation 
algorithm called Diffusion-on-Manifold (DM) that exploits 
structure of potentially non-linear manifold of local features. Figure 
1 illustrates the proposed algorithm along with the existing 
algorithms for feature aggregation. Previous aggregation 
algorithms learn a set of cluster centers, that are, codewords, from 
a large number (e.g., 250k) of local features in a training set. During 
training stage, our algorithm generates a graph representing 
potentially non-linear manifold of all the training set features. 
Given a query, e.g., a 3D model, unseen local features extracted 
from it are vector quantized to their respective nearest neighbors in 
the manifold graph. Then, using these local features of the query as 
sources, relevance values are diffused over the manifold graph. 
After diffusion, relevance values from all the features on the 
manifold graph are aggregated into a feature vector for the query. 
The proposed DM aggregation algorithm may be regarded as an 
extension of LL coding [29] to non-linear manifold. 

In view of 3DMR, in addition to the feature aggregation algorithm, 
the choice of low-level local shape feature to be aggregated is 
equally important. Local features for 3D models can be classified 
into two groups; local 3D geometric feature [8, 13, 17, 20, 24, 27] 
and local 2D visual feature [4, 5, 6, 19]. At this point, the latter has 
an advantage in retrieval accuracy. Many state-of-the-art 3DMR 
algorithms employ local 2D visual features extracted densely from 
images rendered from multiple viewpoints of 3D model. For 
example, top two finishers in the SHape REtrieval Contest 
(SHREC) 2014 Large-scale Comprehensive 3D shape retrieval 
(SH14LC) track used aggregation of local 2D visual features [15]. 
Despite their success, a 2D visual feature has its drawback; it is 
incapable of describing internal structures of 3D models. To 
capture internal structure of 3D models represented as surfaces, 
voxels, or point set, an accurate and efficient local 3D geometrical 
feature is desired. 

We thus propose a local 3D geometric feature called Position and 
Orientation Distribution (POD) for 3D oriented point set. To 
accurately describe a geometry represented by distribution of a set 
of oriented points enclosed in a local region of a 3D model, POD 
encodes the oriented point sets by using SV coding.  

An experimental evaluation of proposed DM aggregation using 
multiple local features and multiple benchmark databases shows 
that it significantly outperforms existing SC-based and HS-based 
aggregation methods. Furthermore, POD features aggregated by 
using DM yields retrieval accuracy comparable to state-of-the-art 
3DMR algorithms using local 2D visual features.  

Contributions of this paper can be summarized as follows. 

 Proposition of Diffusion-on-Manifold (DM) aggregation of 
local features. DM exploits non-linear manifold structure of 
local features for more accurate aggregation.  

 Proposition of a local 3D geometric feature for oriented point 
set. POD feature performs comparably in retrieval accuracy 
to state-of-the-art local 2D visual features for 3DMR.  

The rest of this paper is structured as follows. We will describe 
related work in the next section. The proposed algorithms are 
described in Section 3. Empirical evaluation of the proposed 
algorithms will be presented in Section 4, followed by conclusion 
and future work in Section 5. 

2. RELATED WORK 
2.1 Aggregation of Local Features 
The BF [2] is first-of-a-kind feature aggregation algorithm and was 
first introduced to 3DMR by Liu et al. [17]. The BF counts the 
number of vector-quantized local features to generate frequency 
histogram of codewords. Retrieval accuracy of BF-aggregated 
features are insufficient since positional information of local 
features in their feature space is lost due to VQ.  

To more accurately aggregate the set of local features, several SC-
based aggregation algorithms and HS-based aggregation 
algorithms have been proposed. The ScSPM [30], LC coding [31], 
LL coding [29], and localized soft-assignment coding [16] are 
grouped in SC-based approach. They sparsely encode each local 
feature as weighted linear sum of neighboring codewords. The 
VLAD [12], VLAT [23], FV [22], and SV [34] are grouped in HS-
based approach. They all try to encode local features by using 
higher-order statistics around the codewords. They compute 
displacement vector between the mean of local features and the 
codeword, possibly with some additional information. In addition 
to displacement vector of mean, FV accumulates displacement 
vector with respect to variance of local features and SV 
accumulates frequency of codewords as with the BF. VLAT 
encodes local features around the codeword by using their 
covariance in addition to displacement vector of mean.  

These SC-based approaches and HS-based approaches produce 
higher accuracy than BF in 2D image classification [1] or 3DMR 
[5]. However, accuracy of these methods may be still insufficient 
since they ignore structure of non-linear manifold of local features. 
The FV can essentially capture non-linearity of features due to its 
use of multivariate Gaussian distributions as codewords. But, in 
practice, it is difficult to approximate the structure of feature 
manifold by using small number (e.g., tens to hundreds) of 
multivariate Gaussians. 

2.2 Manifold Learning 
Manifold learning is used in many applications such as information 
retrieval, classification, clustering, or segmentation, to improve 
their accuracies. It learns better distance metric in the feature space 
by analyzing the structure of non-linear distribution of features, i.e., 
manifold. Typically, the manifold is represented as a graph where 
each node corresponds to a feature of a multi-media data (e.g., 3D 
model), and each edge indicates similarity between two features. 

local feature 

codeword 

manifold graph
of local features

(a) VQ-based aggregation. (b) SC-based aggregation.

(c) HS-based aggregation. (d) Proposed DM aggregation.

Figure 1. The proposed Diffusion-on-Manifold (DM) 
algorithm (d) aggregates a set of local features by relevance 
diffusion on the manifold graph of local features to generate 
more accurate aggregated features than VQ-based (a), SC-

based (b), and HS-based (c) approaches. 
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For information retrieval, several diffusion distance-based ranking 
algorithms have been proposed [3] to improve retrieval accuracy. 
One of the representative algorithms is the Manifold Ranking (MR) 
by Zhou et al. [33]. The MR diffuses relevance from source node(s), 
which correspond to given query(s), over the manifold graph. 
Retrieval ranking is generated base on relevance values diffused on 
the manifold.  

While most of studies using manifold learning apply it on the 
feature space of multi-media data such as 3D model, only a few 
studies apply it on the local feature space. Tao et al. [26] computed 
the MR on the manifold of local 3D geometric features extracted 
from a 3D model for mesh saliency detection. Torki et al. [28] and 
Zhu et al. [35] reduced dimensionality of local features by eigen-
analyzing the manifold graph of local 2D visual features for 
accurate feature matching. In this paper, we utilize the manifold of 
local features for feature aggregation. 

2.3 3D Local Feature for Oriented Point Set 
Recently, 3D oriented point set has been becoming one of the most 
used 3D shape representation due to proliferation of inexpensive 
3D range scanners. To compare or recognize 3D models 
represented as oriented point set, many local 3D geometric features 
for oriented point set have been proposed [8, 13, 20, 24, 27].  

Given an oriented point set of a 3D model, a set of Sphere-Of-
Interest (SOI), in which a local feature is computed, is densely 
sampled. SPFH [24] describes the SOI by angular statistics of pairs 
of oriented points to form a 125-dim. feature vector. LSF [20] uses 
distances among the oriented points within the SOI in addition to 
angular statistics to generate 625-dim. feature vector. Spin Image 
(SI) [13] projects a set of oriented points in the SOI into a 
cylindrical coordinate and counts frequency of points for each 
region of the coordinate. SI feature is a 153-dim. vector. SPFH, LSF, 
and SI are invariant against 3D rotation of SOIs. RoPS [8] describes 
density of the point set within the SOI. It first normalizes 3D 
rotation of the SOI by using PCA. The rotation-normalized SOI is 
then rendered from multiple viewpoints to generate a set of 2D 
images. For each rendered image, RoPS computes first- and 
second-order moments to generate 135-dim. feature vector. 

3. PROPOSED ALGORITHM 
3.1 Overview of the Algorithm 
For accurate 3DMR, we propose a novel feature aggregation 
algorithm called Diffusion on Manifold (DM) and a novel local 3D 
geometric feature Position and Orientation Distribution (POD). 

The DM algorithm aggregates a set of local features extracted from 
a 3D model into a feature vector by using relevance diffusion on a 
manifold graph of local features (Figure 1d). As a pre-processing 
for DM aggregation, the manifold graph is generated from a set of 
large number of training local features. However, the manifold 
graph may suffer from burstiness of local features [11], which is a 
phenomenon where certain types of local features appear more 
frequently due to repetitive structures in 3D models or small-scale 
features that capture too primitive shapes such as flat surfaces. 
These “bursty” local features are thought to form dense clusters on 
the manifold. In such a case, relevance from bursty local features 
would diffuse only within the dense clusters. As a result, the 
aggregated features would become inaccurate since they are 
dominated by relevance values diffused within the bursty clusters. 

To alleviate this burstiness problem, we perform weighting of 
nodes on the manifold graph. We use Lp-norm IDF weighting 
algorithm by Zheng et al. [32] to assign smaller weights to bursty 
nodes and to assign larger weights to non-bursty nodes. These node 

weights are used in relevance diffusion on the manifold graph for 
more accurate aggregation.  

The POD feature describes distribution of oriented points within a 
SOI by using SV coding. The SOI is divided into multiple cells by 
using a regular grid. For each cell, positions of the oriented points 
within the cell are encoded by using SV, and normals of the 
oriented points are described by their covariance. A set of POD 
features is densely extracted from a 3D model, and is aggregated 
by the DM algorithm for accurate 3D model comparison. 

3.2 Diffusion-on-Manifold Aggregation 
3.2.1 Aggregating Local Features 
Given a set of local features extracted from a 3D model, DM 
algorithm aggregates the set of local features into a feature vector 
per 3D model by relevance diffusion on the manifold graph of local 
features. The manifold graph is represented as a sparse matrix P, 
whose construction process will be described in Section 3.2.2.1. 
The matrix P has a size Nt×Nt where Nt is the number of nodes, i.e., 
training local features, on the manifold graph (e.g., Nt=250K).  

The DM algorithm first generates an Nt-dim. source vector y for 
relevance diffusion. For each local feature x of a 3D model, x is 
vector-quantized into its nearest node (i.e., nearest training local 
feature) and the nearest node is set as a source for relevance 
diffusion. We use a kd-forest having 20 kd-trees to efficiently and 
accurately search nearest nodes. The source value yn for the node n 
in the source vector y is computed by using the following equation; 

 n n ny w N  (1) 

where Nn is the number of local features vector-quantized into the 
node n, and wn is the weight for the node n. An algorithm for 
computing wn will be described in Section 3.2.2.2.  

We then compute relevance diffusion on the manifold graph to 
generate the aggregated feature vector for the 3D model. Relevance 
is diffused from the multiple sources defined by the source vector 
y over the manifold graph P. We use the following iterative form 
of relevance diffusion used in the Manifold Ranking algorithm [33]. 

      1 1t t    f f P y  (2) 

The Nt-dim. vector f is initialized by the source vector, i.e., f(0)=y. 
The number of iteration T determines range of relevance diffusion 
on the manifold. As we will show in the experiments, small T (e.g., 
T=5) is sufficient to obtain high retrieval accuracy. α=[0, 1) is a 
regularization parameter for relevance diffusion. Since the matrix 
P is sparse, computing Equation (2) is quite efficient.  

After relevance diffusion, the Nt-dim. vector f(T) is normalized by 
using the similar method to the existing feature aggregation 
methods such as FV or VLAD. f(T) is power-normalized by taking 
square-root of each element of f(T). Then, the power-normalized 
f(T) is normalized by its L2-norm to generate the aggregated feature 
vector for the 3D model. Similarity between a pair of two DM-
aggregated features is computed by using Cosine similarity.  

3.2.2 Pre-processing for DM Aggregation 
3.2.2.1 Constructing a Manifold Graph 
In this section, we describe the method for constructing the 
manifold graph P used for DM aggregation. We first randomly sub-
sample the set of Nt (e.g., Nt=250K) training local features from the 
set of local features extracted from all the 3D models in the 
database. A sparse affinity matrix W having size Nt×Nt is generated 
by connecting the training local features which are close to each 
other in the local feature space. The element W(i, j) of W, which 
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indicates the similarity between the local feature i and the local 
feature j, is computed by using the following equation; 

       exp , /     and 
,

0                             

d i j if i j j kNN i
W i j

otherwise

    


 
(3) 

where kNN(i) is a set of k nearest neighbor local features of a local 
feature i. Using smaller k (e.g., k=5) makes the affinity matrix W 
sparser, resulting in faster aggregation. d(i, j) is L1 distance, whose 
range is normalized in [0,1], between a pair of two local features. σ 
is a scaling parameter for distance. We fix σ to 0.5 in this paper.  

The affinity matrix W is then normalized to generate the probability 
transition matrix P as 1P D W  where D is a diagonal matrix 

whose i-th diagonal element is    
1

, ,tN

j
D i i W i j


 . The element 

P(i, j) in P indicates the transition probability of relevance from the 
local feature i to the local feature j. P represents the manifold graph 
of training local features and is used for DM aggregation.  

3.2.2.2 Weighting Nodes on a Manifold Graph 
To alleviate the burstiness problem of local features, we compute a 
weight for each of Nt nodes on the manifold graph P. We use Lp-
norm IDF weighting algorithm [32]. It assigns smaller weights to 
bursty nodes and assigns larger weights to non-bursty nodes.  

We perform clustering on the set of Nt training local features. For 
efficiency, we use the Extremely Randomized Clustering Tree 
(ERC-Tree) algorithm [7]. The ERC-Tree algorithm recursively 
splits the local feature space until the number of training local 
features within the cluster becomes less than Smin. We use Smin=40 
in this paper. The weight wc for the cluster c is computed by using 
the following equation; 

  ,log 1
c

p
c M m cm M

w N f


    (4) 

where NM is the number of 3D models in the database, Mc is a set 
of 3D models containing local features that belong to the cluster c, 
and fm,c denotes the frequency of local features of the 3D model m 
within the cluster c. p is a parameter. The weight wc is assigned to 
all the training local features within the cluster c.  

Since the ERC-Tree is a randomized clustering algorithm, accuracy 
of node weights due to a single tree would be insufficient. To obtain 
reliable node weights, we perform ERC-Tree clustering for Ntree 
times and take an average of Ntree weights produced by Ntree trees 
to generate final weight wn for the node n. We use Ntree=200 trees 
in this paper. The set of Nt weights for all the Nt nodes is used for 
generating the source vector y (Equation 1) for DM aggregation.  

3.2.3 Reducing Dimensions of Aggregated Features 
Since DM aggregation tends to produce high-dimensional (e.g., 
Nt=250K dim.) vector, comparing DM-aggregated features is costly. 
To accelerate feature comparison, we reduce the dimensionality of 
DM-aggregated feature vectors by using Kernel PCA (KPCA) with 
dot kernel as with [5]. To train the KPCA, we use a set of DM-
aggregated features extracted from 5,000 randomly selected 3D 
models in the database. The number of reduced dimensions Nd is 
less than 100 for most cases, which is much smaller than the 
dimensionality of the DM-aggregated feature vectors. Comparison 
among dimension-reduced features is done by Cosine similarity. 

3.3 POD Feature for 3D Oriented Point Set  
3.3.1 Generating Oriented Point Set 
The POD feature extraction algorithm expects 3D model defined as 
oriented point set. For a 3D model defined as polygonal mesh, we 
first convert it into oriented point set by sampling its surfaces. We 

use the algorithm by Osada et al. [21] for converting a polygonal 
model into an oriented point set. The algorithm randomly and 
uniformly samples points on the surfaces of the 3D polygonal 
model. Each point is associated with the normal vector of the 
triangle on which the point is sampled. In this paper, we sample 
Np=3,000 oriented points per 3D model. Oriented point set of the 
3D model is scaled to fit a sphere having diameter 1. 

3.3.2 Extracting Local Features 
Given an oriented point set of the 3D model, we densely extract a 
set of POD features from the oriented point set (Figure 2). For each 
oriented point, we define a Sphere-Of-Interest (SOI) whose radius 
is R. For robustness against scale change of the local 3D shapes, we 
use multi-scale SOIs. For each SOI, R is selected randomly from a 
range [r-v, r+v]. For example, if we use r=0.5 and v=0.2, R is 
randomly selected from a range [0.3, 0.7].  

To achieve invariance against 3D rotation of local 3D shapes, we 
normalize orientation of the SOIs. For each SOI, we perform PCA 
on coordinates of oriented points within the ROI to obtain principle 
axes in the rotated coordinate system. We then disambiguate the 
directions, or signs, of the principle axes by using the method 
similar to SHOT [27] or RoPS [8]. That is, the sign s1 for the first 
principal axis e1 is computed as   1 11

pn

ii
s sign


   p p e  where 

np is the number of oriented points within the SOI, pi is the position 
of i-th oriented point, and p is the center of the SOI. The sign s3 for 
the third principal axis e3 is computed in the same manner as s1. The 
second principal axis e2 is computed as 

2 3 3 1 1s s e e e where × 

denotes cross product of two vectors.  

After orientation normalization, we extract a POD feature from the 
rotated SOI. We first compute a bounding box of the SOI, which 
may be a cuboid. And we normalize the cuboid bounding box by 
transforming it into a cube. We then split the normalized bounding 
box into N1×N2×N3 cuboid cells by using a regular grid. N1 (N2, N3) 
is the number of cells along the first (second, third) principal axis. 
In this paper, we set N1>N2>N3 to make the POD feature compact. 
That is, we put finer grids along the principal axis having larger 
variance of oriented point distribution. We use N1×N2×N3=4×2×1.  

For each cell c, we describe the distribution of oriented points. The 
position of oriented points within the cell is described by using SV 
coding [34]. We count the number of oriented points nc within the 
cell c and pool displacements of the nc oriented points from the 
center of the cell c. The normals of oriented points within the cell 
is described by their 3×3 covariance matrix C. These statistics are 
concatenated to form a 10-dimensional feature vector for the cell c; 

 ,  1 ,  c c c c cn n   f d v  where dc is the 3-dim. displacement 

vector pooled within the cell c, and vc is the 6-dim. vector whose 
elements are upper triangle elements of the covariance matrix C. 

Figure 2. Extracting POD features from an oriented point set.

oriented points rotated SOI POD feature

SOI

normalize rotation compute a feature

cell 

0.51

0.04

0.11

 
 
 
 
 
 





Takahiko Furuya and Ryutarou Ohbuchi, Diffusion-on-Manifold Aggregation of Local Features for Shape-based 3D Model Retrieval, 
accepted as oral paper, Proc. ACM International Conference on Multimedia Information Retrieval (ICMR) 2015, Shanghai, China.  

5 

 

β is a balancing parameter between the frequency and the two 
vectors dc and vc. We set β=0.001 in this paper.  

The set of 10-dimensional vectors fc computed for all the N1×N2×N3 

cells is concatenated to form a POD feature vector for the SOI. If 
we use N1×N2×N3=4×2×1, the POD feature has 80 dim., which is 
more compact than other existing local 3D geometric features such 
as SI (153 dim.), LSF (625 dim.), FPFH (125 dim.), RoPS (135 
dim.), and SHOT (320 dim.).  

4. EXPERIMENTS AND RESULTS 
4.1 Experimental Setup 
4.1.1 Benchmark Databases 
To evaluate accuracy and efficiency of the proposed algorithms, we 
use four benchmark databases; the Princeton Shape Benchmark 
(PSB) [25], the Engineering Shape Benchmark (ESB) [10], the 
SHREC 2011 Non-Rigid watertight meshes dataset (SH11NR) [14], 
and the SHREC 2014 Large-scale Comprehensive 3D shape 
retrieval dataset (SH14LC) [15]. Figure 3 shows examples of 3D 
models as well as the number of 3D models and the number of 
categories contained in the datasets. The PSB and SH14LC contain 
generic, rigid 3D shapes. The ESB consists of mechanical CAD 
models. The SH11NR has articulated, non-rigid 3D shapes.  

For all the benchmarks, a 3D model in the database is used as a 
query and remaining 3D models are used as retrieval targets. We 
use Mean Average Precision (MAP) [%] as an index of retrieval 
accuracy. For the SH11NR, to make local feature more robust 
against articulation, 3D models are deformed to their canonical 
forms by using a method by Jain et al. [9] prior to feature extraction.  
  

    
(a) PSB (NM =907, NC =92) (b) ESB (NM =867, NC =45) 

  
(c) SH11NR (NM =600, NC =30) (d) SH14LC (NM=8,987, NC=171) 

Figure 3. Benchmark databases used in the experiments  
(NM : number of 3D models, NC : number of categories). 

 

4.1.2 Feature Aggregation 
We compare the DM aggregation algorithm against five existing 
feature aggregation methods; BF [2], LL [29], FV [22], VLAD 
(VL) [12], and SV [34]. For SV, we use two variants of SV; one is 
kSV which learns codewords by using k-means clustering, and 
another is gSV [5] which learns codewords by GMM clustering and 
assigns each local feature to multiple codewords according to 
posterior probabilities that the local features belong to the 
codewords.  

For BF, we use ERC-Tree clustering to generate about 30K 
codewords. For LL, we use k-means to learn 8K codewords. The 
number of codewords for FV, VL, kSV, and gSV are determined so 
that dimensionality of aggregated feature vector becomes about 
300K. For DM, we use Nt=250K training local features. The 
aggregated vectors are power-normalized and are then L2-
normalized. We use Cosine similarity to generate ranking results.  

4.1.3 Local Features 
We compare the POD against five local features; SI [13], LSF [20], 
and RoPS [8] as local 3D geometric feature, and DSIFT [4, 5] and 
MO1SIFT [5] as local 2D visual feature. Table 1 summarizes 
parameters for DM aggregation used for PSB. 

Table 1. Parameters used for DM aggregation (PSB). 

 POD DSIFT MO1SIFT LSF SI RoPS 

k 5 5 10 5 5 5

α 0.1 0.01 0.5 0.1 0.1 0.1

p 1.5 1.5 2.5 1.5 2.0 1.5

For local 3D geometric features, i.e., POD, SI, LSF, and RoPS, we 
sample Np=3,000 oriented points from surfaces of a 3D model. The 
parameters for radius of SOIs are set to r=0.5, v=0.4 for PSB, ESB, 
and SH14LC and r=0.1, v=0.1 for SH11NR.  

For local 2D visual features, i.e., DSIFT and MO1SIFT, a 3D 
model is rendered from 42 viewpoints spaced uniformly in solid 
angle. For DSIFT, We densely and randomly extract a set of 300 
SIFT [18] features from a rendered image, resulting in about 13,000 
SIFT features per 3D model. To reduce bursty SIFT features, we 
use scale-weighted sampling of DSIFT [19]. Specifically, for PSB, 
ESB, and SH14LC, we set the scale-weighting parameter W [19] to 
0.25, which means more SIFT features are sampled at larger scales 
on the image. On the other hand, for SH11NR, we use W=4.0 
meaning that more SIFT features are extracted from smaller scales. 
MO1SIFT rotates the rendered image to 16 different orientations 
and describes each rotated image by a global SIFT feature. Since 
we use 42 views for rendering, 42×16=672 MO1SIFT features are 
extracted per 3D model. 

4.2 Experimental Results 
4.2.1 Effectiveness of DM Aggregation 
Figure 4 compares retrieval accuracies of the feature aggregation 
algorithms for the PSB. We use POD as a local feature. In Figure 4, 
we plot MAP scores by varying the number of training local 
features Nt for DM aggregation or the number of codewords for 
other aggregation algorithms. The DM aggregation significantly 
outperforms other feature aggregation algorithms. Aggregating 
local features considering the non-linear manifold structure of local 
features is effective for higher retrieval accuracy. 

Table 2, 3, 4, and 5 summarizes retrieval accuracies of feature 
aggregation algorithms for the PSB, ESB, SH11NR and SH14LC, 
respectively. For benchmarks containing rigid shapes, i.e., PSB, 
ESB, SH14LC, the DM aggregation performs the best among the 
seven feature aggregation algorithms for most local features. DM 
aggregation is effective for both local 3D geometric features and 
local 2D visual features.  

On the other hand, for SH11NR having non-rigid shapes, the DM 
aggregation and its competitors produce similar MAP scores for 
most cases. We speculate that a key factor behind high accuracy of 
DM aggregation is “smoothness” of the manifold graph of local 
features. That is, if local features extracted from 3D models 
distribute smoothly or continuously in the local feature space, 
relevance would diffuses appropriately on the manifold graph of 
local features. For PSB, ESB, and SH14LC, SOIs are highly 
overlapped each other since we used SOIs having large radius. In 
such a case, local features, whose sampled positions on 3D model 
surfaces are near each other, can also located near in the local 
feature space with high possibility. Therefore, the manifold graph 
of the large-scale local features becomes smooth and DM 
aggregation works well for PSB, ESB, and SH14LC. On the other 
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hand, the manifold graph for SH11NR might not be smooth since 
SOIs with small radius don’t overlap each other. Consequently, 
improvement of accuracy due to DM aggregation would be limited 
for the SH11NR.   

Figure 4. Comparison of feature aggregation methods (PSB). 

Table 2. MAP [%] of feature aggregation (PSB). 

 POD DSIFT MO1SIFT LSF SI RoPS 

BF 47.8  54.0  51.9 33.0  38.1 40.5 

LL 53.1  57.6  56.5 33.8  41.0 46.4 

FV 52.9  61.7  54.2 36.7  44.9 46.3 

VL 52.9  60.9  50.6 38.3  45.5 42.7 

kSV 54.8  61.3  49.6 40.1  47.8 46.8 

gSV 55.3  63.8  53.2 40.2  49.6 48.4 

DM 60.1  64.7  61.1 41.4  47.3 50.4 
 

Table 3. MAP [%] of feature aggregation (ESB). 

 POD DSIFT MO1SIFT LSF SI RoPS 

BF 52.1  53.6  49.1 47.1  48.3 47.2 

LL 53.0  56.0  53.8 50.7  50.9 49.1 

FV 54.4  57.8  52.2 52.8  51.7 48.3 

VL 49.8  57.5  47.3 49.7  46.5 44.0 

kSV 52.4  58.7  47.6 51.8  47.1 49.9 

gSV 54.0  59.2  47.9 52.6  50.9 49.8 

DM 57.2  59.0  57.4 54.3  54.1 51.1 
 

Table 4. MAP [%] of feature aggregation (SH11NR). 

 POD DSIFT MO1SIFT LSF SI RoPS 

BF 87.3  94.3  75.7 87.5  85.8 89.0 

LL 94.7  97.0  82.4 93.8  94.2 94.2 

FV 96.7  95.6  74.7 93.0  95.2 94.9 

VL 95.9  96.8  73.1 95.9  95.8 95.2 

kSV 96.1  97.2  74.5 96.0  95.9 95.6 

gSV 96.5  97.0  75.5 96.2  95.4 93.3 

DM 95.8  96.8  89.2 95.7  96.9 93.8 
 

Table 5. MAP [%] of feature aggregation (SH14LC). 

 POD DSIFT MO1SIFT LSF SI RoPS 

BF 39.6  38.5  36.5 30.9  32.7 35.8 

LL 44.7  41.7  39.4 31.4  34.6 39.2 

FV 44.8  44.1  36.6 35.7  38.6 38.6 

VL 44.0  43.4  34.9 34.5  37.1 35.5 

kSV 45.2  44.1  35.5 36.2  38.9 38.2 

gSV 45.3  45.5  36.3 37.1  40.2 40.1 

DM 50.7  44.9  45.5 38.5  39.3 42.4 

Table 6 shows effectiveness of node weighting on manifold graph 
for the PSB. In Table 6, “without weighting” indicates accuracies 
of DM aggregation without node weighting, that is, node weights 
wn in Equation 1 is fixed to 1, and “with weighting” shows 
accuracies of DM aggregation with node weighting. We can 
observe that node weighting improves retrieval accuracy. 
Decreasing weights for densely distributed nodes on manifold 
graph alleviates the problem of local feature burstiness to generate 
more accurate aggregated feature vectors.  

Table 6. Effectiveness of node weighting (MAP [%] for PSB). 

 DM-POD DM-DSIFT DM-MO1SIFT

without weighting 57.8  61.4  60.8 

with weighting 60.1 64.7 61.1

Figure 5 plots retrieval accuracies against the number of iterations 
T for relevance diffusion on the manifold graph. Interestingly, for 
DM-POD and DM-DSIFT, accuracies saturate at T=1. While DM-
MO1SIFT has a slight peak at around T=5. For larger T, retrieval 
accuracies are almost unchanged. This is because, presumably, we 
use small number of neighbors k for constructing manifold graphs 
(k=5 for POD and DSIFT, k=10 for MO1SIFT as shown in Table 
1) to make feature aggregation efficient. In such a case, the 
manifold graph would consist of multiple sub-manifolds which 
have almost no connections among them. Relevance diffuses only 
within a sub-manifold and thus retrieval accuracy remains 
unchanged if we use larger T.  

Figure 5. Number of iterations for relevance diffusion and 
retrieval accuracy (PSB). 

Figure 6 plots retrieval accuracies against dimensionality of KPCA-
processed feature for the PSB. For all the three features, i.e., DM-
POD, DM-DSIFT, and DM-MO1SIFT, MAP score has a peak at 
around 100 dimensions. As the dimensionality of DM-aggregated 
feature is 250K, dimension reduction by KPCA down to about 100 
dimensions significantly improve computational efficiency of 
feature comparison among 3D models. 

Figure 6. Reduced dimensions and retrieval accuracy (PSB). 
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4.2.2 Effectiveness of POD Feature 
Figure 7 compares retrieval accuracy of POD feature against other 
existing local 3D geometric features, i.e., SI, LSF, and RoPS, for 
the PSB. We use DM algorithm to aggregate a set of local features. 
In Figure 7, the POD performs the best among the four local 
features. Describing distribution of oriented points within SOI by 
using SV coding works well for 3DMR. 

Figure 7. Retrieval accuracies for 3D local features (PSB). 

Next, we evaluate impact of radius for SOIs on retrieval accuracy. 
Figure 8 plots MAP scores, for the PSB, against the parameter r of 
SOIs. For single scale POD, we fix another parameter v for SOI 
radius to 0. For multi-scale POD, we set v to values described in 
Section 4.1.3. We use the DM for aggregating the set of POD 
features. For the PSB, accuracies have peaks at around r=0.3 to 0.5 
and multi-scale POD shows higher MAP than single-scale POD. 
For SH11NR, on the other hand, the peaks exist at r=0.1 and single-
scale POD and multi-scale POD performs comparably well. The 
articulated models in SH11NR prefer local features extracted from 
smaller radius for robustness against articulation. On the other hand, 
the rigid models in the PSB prefers SOIs having more global and 
more diverse radius. 

Figure 8. Feature scale and retrieval accuracy (PSB). 

4.2.3 Efficiency 
In this section, we evaluate efficiency of DM aggregation and POD 
feature. We use a PC having two Intel Xeon E5-2650V2 CPUs and 
256GB DRAM. All the programs run on a single thread.  

Table 7 compares computation times for DM, gSV, and VL with 
respect to their pre-processing time and feature aggregation time. 
We sample Np=3,000 POD features per 3D model. For VL and gSV, 
pre-processing means learning 3,000 codewords. For DM, pre-
processing includes manifold graph construction and node 
weighting on the manifold graph. The DM aggregation shows the 
shortest pre-processing time as it doesn’t require costly clustering 
such as k-means or GMM clustering of local features. On the other 
hand, the DM is slightly slower than the gSV for aggregating 
Np=3,000 POD features per 3D model. However, 0.66 [s] for 

aggregating the set of local features of the 3D model is still 
acceptable for efficient 3DMR. 

Table 7. Computation time [s] of feature aggregation. 

algorithm pre-processing feature aggregation / model 

VL 213.4 0.09

gSV 2876.2 0.50

DM 167.2 0.66

Table 8 shows computation time per query for the SH14LC. In table 
8, column “Feat.” is a time for extracting a set of Np=3,000 POD 
features from a query 3D model, “Agg.” is a time for aggregating 
the set of POD features of the query by using DM, “KPCA” is a 
time for reducing dimensionality of DM-aggregated feature of the 
query from Nt=250K dimensions down to Nd=50 dimensions, and 
“Sim.” is a time for computing similarities among the query and 
8,987 3D models in the database. The proposed DM-POD takes 
only about 1.5 [s] to query the SH14LC, which is one of the largest 
dataset for 3DMR. 

Table 8. Computation time [s] per query for the SH14LC. 

algorithm Feat. Agg. KPCA Sim. total 

DM-POD 0.75 0.66 0.03 0.01 1.45
 

4.2.4 Comparison with Other Retrieval Algorithms 
Table 9 compares retrieval accuracy of the proposed DM-POD 
algorithm with five state-of-the-art 3DMR algorithms; SV-DSIFT 
[5], LL-MO1SIFT [5], ZFDR [15] and DBSVC [15]. Of the five 
algorithms, ZFDR combines both 2D visual feature and 3D 
geometric feature, and others extract 2D visual feature. We also 
evaluate effectiveness of distance metric learning using Manifold 
Ranking (MR) [33]. In table 9, “without MR” indicates accuracy 
without MR, that is, feature vectors for 3D models are directly 
compared using fixed similarity metric such as Cosine similarity to 
generate ranking results. And “with MR” shows accuracy using 
MR algorithm, that is, ranking results are generated by relevance 
diffusion on the manifold graph of 3D model features.  

The proposed DM-POD shows the highest accuracy when MR isn’t 
used. The new local 3D geometric feature combined with the DM 
aggregation significantly outperforms other 2D view-based 
retrieval algorithms. On the other hand, when MR is applied, DM-
POD shows MAP comparable to that of the DBSVC, which is the 
best performing algorithm among the SH14LC track entries [15]. 

Table 9. MAP [%] for the SH14LC. 

algorithm without MR with MR 

SV-DSIFT [5] 46.4 53.1

LL-MO1SIFT [5] 39.9 46.5

ZFDR [15] 38.7 

DBSVC [15] 44.6 54.1

DM-POD (proposed) 49.5 54.3
 

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed Diffusion-on-Manifold (DM), a novel 
aggregation algorithm for local features, and evaluated it in a shape-
based 3D model retrieval (3DMR) setting. The DM exploits, via 
manifold graph of features and diffusion distance, non-linear 
manifold structure of local features for more accurate aggregation. 
Existing feature aggregation algorithms such as Bag-of-Features  
[2], VLAD [12], Fisher Vector coding [22], Super Vector (SV) 
coding [34], on the other hand, often fail to capture non-linearity in 
feature space due to their use of small number of codewords.  
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We also proposed Position and Orientation Distribution (POD), a 
local 3D geometrical feature for 3D oriented point set. It describes 
distribution of oriented points by using SV coding to generate 
compact yet accurate local feature.  

In experiments, the DM aggregation showed higher accuracy than 
the existing aggregation. The POD feature also outperformed 
existing local 3D geometric features for oriented point. As a future 
work, we will evaluate effectiveness of the DM aggregation on 2D 
image retrieval setting.  
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