
Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

Dense Sampling and Fast Encoding for 3D Model Retrieval
Using Bag-of-Visual Features

Takahiko Furuya
University of Yamanashi
4-3-11 Takeda, Kofu-shi

Yamanashi-ken, 400-8511, Japan
+81-55-220-8570

snc49925AT gmail.com

Ryutarou Ohbuchi
University of Yamanashi
4-3-11 Takeda, Kofu-shi

Yamanashi-ken, 400-8511, Japan
+81-55-220-8570

ohbuchiAT yamanashi.ac.jp

ABSTRACT
Our previous shape-based 3D model retrieval algorithm compares
3D shapes by using thousands of local visual features per model.
A 3D model is rendered into a set of depth images, and from each
image, local visual features are extracted by using the Scale
Invariant Feature Transform (SIFT) algorithm by Lowe. To
efficiently compare among large sets of local features, the
algorithm employs bag-of-features approach to integrate the local
features into a feature vector per model. The algorithm
outperformed other methods for a dataset containing highly
articulated yet geometrically simple 3D models. For a dataset
containing diverse and detailed models, the method did only as
well as other methods. This paper proposes an improved
algorithm that performs equal or better than our previous method
for both articulated and rigid but geometrically detailed models.
The proposed algorithm extracts much larger number of local
visual features by sampling each depth image densely and
randomly. To contain computational cost, the method utilizes
GPU for SIFT feature extraction and an efficient randomized
decision tree for encoding SIFT features into visual words.
Empirical evaluation showed that the proposed method is very
fast, yet significantly outperforms our previous method for rigid
and geometrically detailed models. For the simple yet articulated
models, the performance was virtually unchanged.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering.
I.3.5 [Computational Geometry and Object Modeling]: Surface
based 3D shape models. I.4.8 [Scene Analysis]: Object
recognition.

General Terms
Algorithms, Experimentation.

Keywords
Content-based retrieval, multi-scale feature, bag-of-features, Scale
Invariant Feature Transform, GPU based algorithms, randomized
decision tree, approximate nearest neighbor, hashing.

1. INTRODUCTION
We have previously proposed a shape-based 3D model retrieval
algorithm that aimed at handling both articulated and rigid models
[24]. The algorithm is appearance based, so it accepts a diverse set
of 3D shape representations so far as it can be rendered as range
images. To achieve invariance to articulation and/or global
deformation, the algorithm employs a set of multi-scale, local,
visual features to describe a 3D model. After normalizing the
model for its position and scale, a set of depth images of the
model is generated by using multiple virtual cameras looking
inward at the model. From each depth image, dozens of local
visual features are extracted. We used a saliency-based local
image feature Scale Invariant Feature Transform (SIFT) by David
Lowe [19]. The SIFT first detects, in a multi-scale image pyramid,
salient points at which human visual system would presumably
attracted to. The SIFT then extracts, at each salient point, a feature
that encodes position, orientation, and scale of gray-scale gradient
change. Typically, a 3D model is rendered into 42 depth images,
each one of which then produces 30 to 50 salient points. Thus, a
3D model is described by a set of 1.5k SIFT features. Directly
comparing a pair of such feature sets would be too expensive,
especially to search through a 3D model database containing a
large number of models. To reduce the cost of model-to-model
similarity comparison, the set of thousands of visual features is
integrated into a feature vector per model by using bag-of-features
(BoF) approach (e.g., [6, 20, 29, 35]). The BoF approach vector
quantizes, or encodes, the SIFT feature into a representative
vector, or “visual word”, using a previously learned codebook.
The visual words are accumulated into a histogram, which
becomes the feature vector.

Experimental evaluation of our previous algorithm showed that it
works quite well for the McGill Shape Benchmark (MSB) [37]
which contains highly articulated but geometrically simple shapes.
For the MSB, the method significantly outperformed all previous
methods we have compared against, including the Light Field
Descriptor (LFD) [5] and the Spherical Harmonics Descriptor
(SHD) [17]. However, for the Princeton Shape Benchmark (PSB)
[26], which contains diverse shapes having more geometric details
but with virtually no articulation, the method performed as well
but not better than the peers. Also, our previous algorithm has a
high computational cost. Rendering tens of depth images,
extracting thousands of local visual features per model, and
vector-quantizing these features can be expensive.

In this paper, we propose a faster and more accurate 3D model
retrieval algorithm using local visual features. The proposed
algorithm aims at high retrieval performance for both rigid and
detailed models of the PSB and simple yet articulated models of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR '09, July 8-10, 2009 Santorini, GR
Copyright © 2009 ACM 978-1-60558-480-5/09/07... $5.00

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

the MSB. To do so, our proposed algorithm extracts SIFT features
at hundreds of densely and randomly placed points per depth
image, as opposed to dozens of salient points detected by the
original SIFT. This dense sampling increases the number of local
features per model from 1.5k to 13k with according increase the
computational cost, especially at SIFT feature extraction and
vector quantization steps. To reduce computation time, our
proposed algorithm utilizes a very fast vector quantization
algorithm based on Extremely Randomized Clustering Trees (ERC
Trees) [9]. The algorithm also employs a Graphics Processing
Unit (GPU) based implementation of the SIFT algorithm SiftGPU
by Wu [36] to quickly extract SIFT features. Our empirical
evaluation showed that the proposed algorithm is more accurate
and faster than our previous algorithm [24]. Retrieval
performance measured in R-precision [3] of the PSB (test set) has
jumped from 45.1% of the previous method [24] to 55.8% of the
proposed method. For the other two databases we experimented
with, the MSB and the Engineering Shape Benchmark (ESB) of
machine parts models [15], retrieval performances of the new
method tied with our previous method.

The remaining parts of this paper have the following structure.
After reviewing previous work, we will describe the proposed
algorithm in Section 3. Empirical evaluation of the proposed
algorithm will be described in Section 4. Section 5 will present the
summary and future work.

2. RELATED WORK
Recent interest in content-based retrieval of 3D models has
produced a quickly expanding body of work on the subject [12, 30,
33]. Most 3D model retrieval method would require invariance
against geometrical transformation of at least up to similarity
transformation. Only a small minority, however, addressed the
issue of invariance to articulation or global deformation.

To achieve articulation invariance, a class of methods employed
topological matching approaches [4, 10, 28, 31]. This class of
methods, however, is difficult to implement and prone to presence
of geometrical and/or topological error and/or noise. Another
class of methods, e.g., [7, 8, 13, 14] uses curvature and other local
geometrical and/or topological properties of manifold surfaces as
local or global feature for pose invariant shape comparison. Of
these, the method by Jain et al [13, 14] explicitly addresses
articulation invariance. It employs a joint geometrical-topological
analysis based on mesh spectral analysis. This class of methods,
however, assumes manifold meshes so they can’t be applied to a
large subclass of 3D models. Yet another class of approaches uses
a set of local features for articulation invariant 3D model
comparison [2, 16, 18, 24, 27]. This class of methods typically
samples the surface of the model by using either 2D [2, 11, 16, 18,
24] or 3D [27] local features. One of the issues with the local-
feature based approach is the cost of comparing and storing a set
of large number of features per model. Assuming n features per
model, comparing all the pairs of features of a pair of models
would cost 2()O n . For a database of nontrivial size, such method
would take too long for a search. Cost of storage is also
significant. For example, a SIFT feature used in [24] is a 128-
dimensional vector. Assuming 1k SIFT features per model and
4Byte float representation of an element, a set of SIFT features
per model would require 512kByte for its storage.

To solve this issue of computational and storage cost, our
previous method [24] adopted a bag-of-features (BoF) approach.
In the field of object recognition from 2D images, BoF is one of

the most popular and powerful approaches to compare sets (often
having unequal sizes) of features [6, 20, 29, 35]. The approach
encodes a given local feature into one of several hundreds to
thousands of visual word, by using a visual codebook. The visual
codebook is often generated by performing k-means clustering on
the training set of local features by setting k to the size of
vocabulary Nv Then, for each 3D model, a histogram of visual
words is created, whose number of bins equals to the size of
vocabulary. The histogram is the feature vector for the 3D model.
Note here that locations of local features in each image are
ignored. Experiments showed that, for a set of geometrically less
detailed yet highly articulated models of the MSB [37], our
previous method performed significantly better than the other
methods we have compared against. However, for a set of models
found in the PSB, which are more diverse in shape and contains
more details but has much less articulation than the MSB, the
method is only as good as those previous methods.

Our observation was that the salient point detector of the SIFT
algorithm has been “falsely” triggered by details of some of more
complex 3D models, while ignoring important yet monotone
region of the images. For example, in Figure 2(d), which is
generated by our previous algorithm [24], the depth image of the
potted plant produced a large number of small scale features near
the leaves. These features, being scale invariant, could match local
geometrical feature of other models that are similar in shape yet
completely different in scale. The potted plant, consequently,
could potentially match shapes having completely different
overall shape. On the other hand, an important large scale feature,

Extract SIFT
features

Encode
features

()5 8 4

Histogram

Feature
vector

Bag-of-
features

Generate
histogram

Bags-of-
visual
words

Render range
images

Nv clusters

Vocabulary
size Nv

Number of
views Ni

…

View 1 View 2 View Ni

Compute
distance

Distance

Figure 1. Local visual features are integrated into a feature
vector by using bag-of-feature approach for an efficient

model-to-model similarity (or distance) computation.

()7 5 4

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

in this case a large trapezoidal shape of the pot, is
underrepresented in the bag of features. For simpler shapes having
less details, e.g. that of MSB, original SIFT with salient point
detector worked very well. However, for the PSB, which contains
models having considerably more detail, the salient points are not
balanced representation of the features of the model.

This observation led us to the proposed algorithm that samples
each depth image of a 3D model more uniformly and densely.
Such sampling would produce “balanced” representation of local
geometrical features in the bag of features, and consequently, in
the histogram of visual words that describes the 3D model. We
choose dense and random sampling of the image, so the proposed
method is called Bag-of-Features Dense SIFT (BF-DSIFT)
algorithm. To differentiate, our original algorithm having the
salient point detector is called Bag-of-Features Salient SIFT (BF-
SSIFT) algorithm. The increase in the number of features due to
dense sampling, however, ups the cost of SIFT feature extraction
and feature encoding. For example, a typical number of features
per 3D model and a typical size of vocabulary for the BF-SSIFT
are both 1.5k. For the BF-DSIFT, the number of features and
vocabulary size increases to 11k and 10k~20k, respectively. To
overcome such an increase in the number of local features, our
proposed algorithm employs a GPU-based SIFT feature extractor
and a very fast tree-based encoder for a significant speedup.

3. ALGORITHM
We first review our previous algorithm, the BF-SSIFT, in the next
section. Improvements made for the BF-DSIFT algorithm, that are,
the dense visual feature sampling and fast feature encoding, will
be described in Section 3.2 and Section 3.3, respectively.

3.1 Review of the BF-SSIFT algorithm
The BF-SSIFT algorithm compares 3D models by following the
steps below, which are illustrated in Figure 1.

1. Pose normalization with respect to position and scale: The
BF-SSIFT performs pose normalization only for position and
scale so that the model is rendered at an appropriate position
with an appropriate size in each of the multiple-view images.
Pose normalization is not performed for rotation.

2. Multi-view rendering: Render range images of the model
from iN viewpoints placed uniformly and regularly on the
view sphere surrounding the model. The rendering is done on
a GPU via OpenGL API.

3. SIFT feature extraction: From the range images, extract
local, multi-scale, multi-orientation, visual features by using
Vedaldi’s implementation SIFT++ [32] of thethe SIFT [19]
algorithm. The original SIFT algorithm first detects salient
points, and then computes 128D SIFT feature at each of the
salient points.

4. Feature encoding: Encode a local feature into a visual word
from a vocabulary of size vN by using a visual codebook.
Prior to the retrieval, the visual codebook is learned,
unsupervised, from tens of thousands of features extracted
from a set of models, e.g., the models in the database to be
retrieved. The encoding, or vector quantization, step is a
nearest point query in a high dimensional (128D) feature
space. It is implemented as a linear search through a set of Nv
representative vectors.

5. Histogram generation: Encoded local features or “visual
words” are accumulated into a histogram having vN bins,
which then becomes the feature vector of the 3D model.

6. Distance computation: Dissimilarity among a pair of
feature vectors (the histograms) is computed by using
Kullback-Leibler Divergence (KLD);

 ()
1

(,) ln
n

i
i i

ii

yD y x
x

=

= −∑x y (1)

where ()ix=x and ()iy=y are the feature vectors and n is
the dimension of the vectors. The KLD is sometimes referred
to as information divergence or relative entropy.

3.2 Dense Sampling
In the proposed BF-DSIFT, we employed dense random sampling
of a range image by SIFT features. We wanted to concentrate
samples on or near the 3D object, not on the background, of the
range image. To do so, for each image in the multi-scale image
pyramid of the SIFT algorithm [19], Np pixels to be sampled are
drawn randomly from pixels having non-zero intensity value. A
range image is rendered with zero pixel value as its background,
and images in the SIFT pyramid are blurred according to their
scale in the pyramid. Thus, a pixel from an images in the SIFT
pyramid that has non-zero value is located on or near, but not far
from, the image of the 3D model. As non-zero pixels are different
for each image in the SIFT image pyramid, the positions of
samples are different across scales in the SIFT pyramid.

For comparison, we implemented another dense sampling strategy,
which samples the image at regular grid points. We call the
method Bug-of-Features Grid SIFT (BF-GSIFT). In the BF-
GSIFT, positions of the SIFT samples may overlap across scale in
the SIFT image pyramid, as the image down-sampling for
constructing the pyramid is performed by halving image after
low-pass filtering.

If we set the number of samples per depth image Np, and the
number of views Ni, the total number of samples per 3D model

f p iN N N= ⋅ . Typically, we use Ni=42 and Np~300 so we have
Nf~12k. To accelerate extraction of a large number of SIFT
features, we adopted the SiftGPU by Wu [36], which is a GPU
implementation of the Vedaldi’s SIFT++ [32]. Given a gray-scale
image, the SiftGPU does all the work of the SIFT on a GPU;
construction of a multiresolution image pyramid, detection of

(a) BF-SSIFT,

Np=47
(b) BF-DSIFT,

Np=327
(c) BF-GSIFT,

Np=336

(d) BF-SSIFT,

Np=383
(e) BF-DSIFT,

Np=342
(f) BF-GSIFT,

Np=336

Figure 2. Example of feature points using BF-SSIFT (a)(d),
BF-DSIFT (b)(e), and BF-GSIFT (c)(f).

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

salient points, and extraction of SIFT features at the salient points.
Our preliminary experiment using BF-SSIFT showed that the
difference in retrieval performance between SIFT++ on a CPU
and SiftGPU on a GPU is negligible [25]. For the dense sampling
of BF-DSIFT, we modified the SiftGPU to disable salient point
detector and to add the capability to accept from the CPU a list of
pixels at which SIFT features are exracted. As a detail, our
modified version of the SiftGPU doesn’t perform image up-
sampling in creating multi-resolution image pyramid. Our
previous experiments showed no difference in retrieval
performance with or without the up-sampling.

Figure 2 shows, for two depth images, examples of sample points
generated by using the BF-SSIFT (Figure 2(a), 2(d)), the BF-
DSIFT (Figure 2 (b), 2(e)), and the BF-GSIFT (Figure 2(c), 2(f)).
The BF-DSIFT placed roughly the same number of samples on
depth images of both human and potted plant models. The BF-
SSIFT, on the other hand, placed many more points on the image
of potted plant model than the human model. Note also that the
BF-DSIFT placed more samples on featureless parts, e.g., on or
near the pot and the torso. The BF-GSIFT sampled regularly and
uniformly regardless of the image features across image scales.

3.3 Fast Encoding
Encoding of a local visual feature consists of two-steps;

1. Codebook learning: Prior to retrieval, find representative
vectors in the feature space given a set of feature vectors for
training. This amounts to clustering of feature points.

2. Encoding (or vector quantization): Given a new vector,
find the representative vector closest to the new vector. This
is a nearest neighbor query in a high dimensional space.

In our original algorithm [24], we performed the codebook
generation by using k-means clustering. For 50k training samples
each having 128D and a vocabulary size of 1k, the k-means
algorithm took about 200s to complete. While slow, especially
when the vocabulary size Nv and the number of training samples
Nt are large, the cost was acceptable since it needs to run only
once as a preprocessing step. The k-means algorithm has spatial
complexity of ()tO d N⋅ and temporal complexity of
()t vO d N N⋅ ⋅ , given the dimension of the feature d, the number

of training samples Nt, and the number of vocabularies Nv.

For the vector quantization step, our previous algorithm [24] used
a brute-force linear search approach that requires ()v fO N N⋅
comparison per 3D model. This was barely acceptable for the
SSIFT that produces Nf~1.5k features per model. However, for a
set of SIFT features sampled densely would have Nf~11k, we
needed a more efficient coder, or vector quantizer.

To this end, we compared three algorithms for nearest neighbor
search, the Extremely Randomized Clustering Trees (ERC-trees)
algorithm by Guerts, et al [9], the locality sensitive hashing (LSH)
algorithm by Andoni [1] in a library called E2LSH, and a kd-tree
based approximate nearest neighbor (ANN) algorithm by Mount
et al [21]. We implemented the ERC-tree ourselves. For the other
two methods, we used the libraries cited.

The ERC-trees algorithm is a combination of codebook learning
and vector quantization algorithms so a separate clustering
algorithm is not required. As the name suggests, the ERC-tree is a
randomized tree-based clustering algorithm which subdivides the
feature space into a half by each added tree node. Each
subdivision is done by a hyper plane perpendicular to one of the
coordinate axes. For each subdivision, the algorithm first

randomly picks the dimension (or axis) to subdivide, and then
randomly chooses the point (a scalar value) on the axis at which a
separating hyperplane is placed. Subdivision of the feature space
continues until the number of data points per subspace is below a
set parameter Smin. While the Smin affects the number of
vocabulary Nv, the actual value of Nv differ for each trial due to
the randomized nature of the algorithm. The Nv can also be
controlled by pruning the tree, but we don’t perform any pruning.
Moosemann et al in [20] suggested that the fully grown tree
without pruning performed better for visual object recognition.
Since the feature space is subdivided into subspaces by a set of
axis aligned hyper planes, the quality of the resulting cluster may
not be as good as those produced by other methods, e.g., k-means.
However, the ERC tree is very fast for both training (clustering)
and for coding. In the following, we add postfix “-E” or “-k” after
the method name (e.g., BF-SSIFT) to indicate the clustering
algorithm used. The letter “E” indicates the use of ERC-tree for
clustering and vector quantization, while the letter “k” indicates
the use of k-means for clustering combined with linear search.

The kd-tree is a well-known spatial data structure often used for
proximity queries. An approximate nearest neighbor search library
for a high dimensional data by Mount et al [21] is based on kd-
tree. It subdivides the feature space by axis-aligned hyperplanes
until the resulting subspace is smaller than the hypersphere of
radius ε. To vector quantize a feature vector, the tree is traversed
down to leaf to find the smallest subspace enclosing the feature.
Then, n feature points contained in the hypersphere near the query
point is searched for the closest representative vector.

The locality sensitive hashing in the E2LSH library [1] employs a
set of L hash functions that maps d dimensional feature vector
onto K dimensional vector. The hash functions are chosen so that
features close in the original d-dimensional feature space collide
in the K-dimensional space produce by the hash function. To
vector quantize a feature, the feature is hashed into a bucket, and
the overflow list of the bucked is searched linearly for the nearest
representative vector. While the K and L are parameters, the
E2LSH has the ability to choose optimal set of K and L values
given a training set of features. As both the ANN and the E2LSH
are nearest neighbor search algorithm without codebook learning,
we combine these two nearest neighbor search algorithms with the
k-means clustering for codebook learning.

Table 1 summarizes the spatial and temporal complexity of the
algorithms. Actual running time of course would be determined
various constants and real-world parameters.

Table 1. Computational complexities of the nearest
neighbor search algorithms compared.

 Spatial complexity Temporal complexity
Linear search ()vO N ()vO N

ERC-tree ()vO N ()log vO N

kd-tree ()vO N ()log vO n N+

E2LSH ()vO N L⋅ ()O n L+

4. EXPERIMENTS AND RESULTS
We experimentally evaluated the following;

(1) Codebook learning and encoding algorithms.
(2) Sampling strategy, number of features, and retrieval

performance.
(3) Vocabulary size and retrieval performance.

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

(4) Performance comparison with other methods.

We performed the experiments using three benchmark databases:
the MSB [37] for highly articulated but less detailed shapes, the
PSB [26] for a set of diverse and detailed shapes, and the ESB
[15] for mechanical parts. The MSB consists of 255 models in 10
classes. The MSB include such articulated shapes as “humans”,
“octopuses”, “snakes”, “pliers”, and “spiders”. The PSB contains
two equal-sized subsets, the training set and test set, each
consisting of 907 models and about 90 classes. For our evaluation,
we used the PSB test set partitioned into 92 classes. The PSB
contains a more diverse set of 3D shapes than the MSB. The ESB
contains 867 models divided into 45 classes and has 45 out-of-
sample query models.

The same database is used for codebook training and retrieval
experiments. That is, the codebook generated by using the MSB,
for example, is used to query the MSB. We used the training set
size 50,000tN = of SIFT features extracted from multi-view
images of models in a database. Both for training and for query
experiments, range images size of 256 256× pixels is used.

As the performance index, we used R-precision [3]. R-precision is
a ratio, in percentile, of the models retrieved from the desired
class kC (i.e., the same class as the query) in the top R retrievals,
in which R is the size of the class kC . Note that, in this paper,
we treat the query model found in the retrieval result as one of
correct retrievals. As such, the R-precision figure is higher than
some of the other publications if the query model is drawn from
the database to be queried.

4.1 Codebook Learning and Encoding
Algorithms
We first compared, using BF-DSIFT and PSB test set, the cost
codebook learning and encoding between the k-means and the
ERC-tree algorithms. To train, we used the PSB test set, the
number of view orientations Ni=42, and the number of training
samples Nt=50k. Training samples are randomly subsampled from
the set of SIFT features generated from the PSB test set. We fixed
the number of features per image at Np=300, so the number of
features per model Np~12k.

Table 2 shows that the ERC-tree is much faster than the k-means
clustering and that the increases in cost due to vocabulary size Nv
is much less marked for the ERC-tree than k-means. Table 3
shows that the k-means has slightly better retrieval performance
(~1.5%) than the ERC-tree. Also, for both ERC-tree and k-means,
retrieval performance improves with Nv. The codebook due to
ERC-tree has slightly less discriminative power since the clusters
it produces have axis-aligned hyper planes as their boundaries.

Table 4 shows the breakdown of computation time for the BF-
DISFT algorithm measured by using the PSB and Ni=42. It
compares four encoders, that are, the brute force (linear search)
method indicated by “br”, the kd-tree based method indicated by
“kd”, the locality sensitive hashing indicated by “lsh”, and the
ERC-tree indicated by “erc” in the “R/S/V/D” column. All the
BF-DSIFT results uses GPU for rendering, GPU for SIFT feature
extraction, and table lookup to evaluate log() function used in the
Kullback-Leibler divergence. (See table legends.) The table also
shows the timings for the BF-SSIFT algorithm, both the original
version (C/C/br/F) [24] and the accelerated version by using GPU
and table lookup (G/G/br/T) [25]. Please note that the number of
features Nf for the BF-SSIFT is 1.3k/model, while that of the BF-

DSIFT is 13k/model. Also, the BF-SSIFT used vocabulary size
Nv=1,000, while the BF-DSIFT used vocabulary size Nv=10,000.

Table 4 is a bit cluttered, but several observations can be made.
First, the BF-DSIFT using kd-tree and ERC-tree for the vector
quantizer are much faster than the others while achieving retrieval
performance 10% better in R-precision (RP) than the original BF-
SSIFT. This performance gains shows the effectiveness of the
random, dense sampling. Please note that the BF-DSIFT took less
time than the BF-SSIFT despite the fact that both number of
features per model Nf and the vocabulary size Nv is nearly ten
times more in the BF-DSIFT than in the BF-SSIFT. The reduction
in execution time is brought about by the combination of GPU-
based feature extraction and ERC-tree encoder.

If we compare the four encoders for their speed, the linear search
used in our original algorithm is obviously the slowest. The kd-
tree and the ERC-tree are about equal both in terms of speed and
retrieval performance. The LSH algorithm is 4 times slower than
the other two, and is a bit lower in performance. If we count in the
one-time cost of codebook learning, the ERC-tree has an
advantage over the others as the kd-tree requires expensive k-
means clustering for codebook learning.

Table 2. Time in seconds to train codebook using the k-
means and the ERC-tree algorithms.

 Number of vocabulary Nv
1,000 5,000 10,000

k-means clustering 230.36 1289.29 2871.16
ERC-Tree clustering 5.83 6.66 7.88

Table 3. Retrieval performance in R-precision [%].

 Number of vocabulary Nv
1,000 5,000 10,000

k-means+Linear seaerch 51.72 55.64 56.68
ERC-Tree encoder 51.77 54.07 55.30

Table 4. Computational cost break down for the DSIFT
algorithms using various encoders.

Implementation Computation time [s] RP
[%] R/S/V/D Render SIFT VQ Dist. Total

SSIFT C/C/br/F 3.28 8.61 14.53 0.1043 26.5 45.52
SSIFT G/G/br/T 0.16 0.74 14.53 0.0056 15.4 45.70
DSIFT G/G/br/T 0.16 1.73 222.96 0.0361 224.9 56.68
DSIFT G/G/kd/T 0.16 1.73 0.74 0.0361 2.7 55.54
DSIFT G/G/lsh/T 0.16 1.73 8.47 0.0361 10.4 53.65
DSIFT G/G/erc/T 0.16 1.73 0.56 0.0361 2.5 55.30

Table legends on “Implementation R/S/V/D”
R : Rendering S : SIFT V : VQ D : Distance

C: CPU
G: GPU

C: SIFT++ on
CPU
G: SiftGPU on
GPU

br: brute force
kd: kd-tree
lsh: LSH
erc: ERC-Tree

F: log function
evaluation
T: table lookup

4.2 Sampling strategy, number of features,
and retrieval performance
In this experiment, we try to find relationship between the number
of features and retrieval performance. We also compare two dense
sampling strategies, BF-DSIFT and BF-GSIFT. Number of
features Nf can be controlled by (1) the number of view Ni, (2) the

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

number of sample points per depth image Np, or both. We
compared the following four cases using the PSB dataset. In the
experiment, we used the values Ni∈{6, 20, 42, 80, 162, 320}, and
10≤ Np≤900. For the BF-GSIFT, grid spacing controlled Np

• BF-SSIFT-E(Ni): Increase Ni for more Nf. Np depends on the
salient point detector of the SIFT algorithm.

• BF-DSIFT-E(Ni): Increase Ni for more Nf. Np is fixed at 300.
• BF-DSIFT-E(Np): Increase Np for more Nf. Ni is fixed at 42.
• BF-GSIFT-E(Np): Reduce grid interval for more Np, thus

more Nf. Ni is fixed at 42.

Plots in Figure 3 show that, as the Nf increases, the retrieval
performances of all the methods are saturated probably due to
limited features that can be captured. Also, the performance of
BF-SSIFT-E(Ni) is saturated at a point much lower than the other
three, presumably due to the limited number of salient points
detected per image by the BF-SSIFT. Grid sampling of the BF-
GSIFT performed better than saliency-based sampling of the BF-
SSIFT, but not as well as the random sampling of the BF-DSIFT.

4.3 Vocabulary size and retrieval
performance
In this experiment, we try to find the relationship between the
vocabulary size (codebook size) and retrieval performance. The
peak in performance for the BF-SSIFT appeared when Nv is at or
slightly lower than the number of features Nf=1.5k. For BF-DSIFT,
the peak is much less prominent; it is almost non-recognizable.
While the BF-DSIFT has Nf=13k, retrieval performance goes up

even if Nv surpasses Nf=13k. Two other databases, MSB and ESB,
produced similar curves for both BF-SSIFT and BF-DSIFT. It can
be said that the retrieval performance of BF-DSIFT is much less
sensitive to the vocabulary size Nv. than BF-SSIFT.

4.4 Performance comparison with the other
methods
Table 5 compares the retrieval performance of the proposed
method, BF-DSIFT-E, with the other methods. We included our
original SIFT-based method BF-SSIFT-k using k-means
clustering. We also included the dense, but grid-sampled version
BF-GSIFT-E. For comparison, the table lists figures for the AAD
[22], SPRH [34], SHD [17], LFD [5], IM-SIFT [24]. (Executables
for the AAD and the SPRH can be found at [23].) The BF-SSIFT-
k used Np=700~1,100, while the BF-DSIFT-E and BF-GSIFT-E
used Np~13,000. For the BF-GSIFT-E, grid interval is chosen so
that the number of sample points per depth image Np is about
equal to that of the BF-DSIFT-E. Number of views Ni for the IM-
SIFT, BF-SSIFT, BF-DSIFT, and BF-GSIFT are all 42. The
Figure 5 shows the recall-precision plots for all these methods.

As Table 5 shows, for the MSB and ESB, the proposed BF-
DSIFT-E performed about as well as the BF-SSIFT-k. For the
PSB, however, the proposed BF-DSIFT-E significantly
outperformed all the others. Without supervised learning, R-
precision=55.8% for the PSB test set is the highest we have seen
so far. For the PSB, the dense grid sampling of the BF-GSIFT did
better than the BF-SSIFT, but not as good as the dense random
sampling of the BF-DSIFT. For the MSB and ESB, BF-GSIFT
performed worse than the BF-SSIFT and BF-DSIFT. Overlap of
sample positions at every resolution levels may be the reason for
the performance worse than the BF-DSIFT.

Figure 6 shows examples of retrieval results by using the
proposed BF-DSIFT-E, our previous BF-SSIFT-k, and the LFD.
In these examples, the BF-DSIFT-E clearly outperforms our
previous algorithm, BF-SSIFT-k. The BF-SSIFT-k retrieved plant
models with and without pot. The BF-DSIFT-E, however,
succeeded in retrieving potted plant models well, presumably
recognizing visual features of the pot.

Table 5. Retrieval performances in R-precision [%] of the
seven methods measured on three databases.

Methods PSB MSB ESB
AAD 33.2 56.3 33.1
SPRH 37.3 53.9 34.7
SHD 40.5 56.7 34.6
LFD 45.9 56.9 34.7

IM-SIFT (Ni =42) 44.7 64.2 31.0
BF-SSIFT-k (Ni =42) 46.1 76.9 42.6
BF-GSIFT-E (Ni =42) 52.3 71.6 39.5
BF-DSIFT-E (Ni =42) 55.8 76.4 42.5

5. CONCLUSION AND FUTURE WORK
Our previous shape-based 3D model retrieval algorithm [24]
aimed at retrieving articulate 3D models well by using saliency-
based 2D image features and bag-of-feature approach to local
feature integration. The algorithm performed well for retrieving
highly articulated yet geometrically simple models in the McGill
Shape Benchmark (MSB) [37]. However, the method did not
perform as well for the Princeton Shape Benchmark (PSB) [26],

Figure 3. Number of features Nf versus retrieval
performance for the PSB dataset.

Figure 4. Vocabulary size Nv versus retrieval performance
for the PSB dataset.

30

35

40

45

50

55

60

0 10,000 20,000 30,000 40,000 50,000

R
-P

re
ci

si
on

 [%
]

Nf (Number of features per model)

BF-SSIFT-E (Ni)
BF-DSIFT-E (Ni)
BF-DSIFT-E (Np)
BF-GSIFT-E (Np)

0

10

20

30

40

50

60

0 20,000 40,000 60,000

R
-P

re
ci

si
on

 [%
]

Vocabulary size Nv

BF-SSIFT-E (GPU-Salient)
BF-DSIFT-E (GPU-Dense)

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

which contains diverse, more detailed shape models having little
articulation.

 This paper presented an improvement to our previous algorithm
so that geometrically detailed models as well as highly articulated
models can be retrieved well. To achieve this goal, we sampled
the depth image densely at random locations by disabling the
salient point detector of the original SIFT algorithm. To extract
and encode an increased number of local features efficiently, we
adopted a GPU implementation of the SIFT algorithm by Wu [36]
and a very fast tree-based encoder called Extremely Randomized
Clustering Trees [9]. Our experiment showed that the proposed
algorithm retrieves better and runs faster. For the PSB, retrieval
performance measured in R-precision improved from 45.1% to
55.8%. Retrieval performance for the other two benchmark
databases, the MSB and the Engineering Shape Benchmark (ESB)
[15], a set of machine parts models, are unchanged.

We are planning to exploit GPU further for a faster, more
convenient, and more accurate 3D model retrieval. We would also
like to investigate methods to capture internal structures of 3D
models for such application as 3D machine parts model retrieval.

6. ACKNOWLEDGMENTS
The authors would like to thank those who carefully reviewed the
paper. The authors also would like to thank those who created
benchmark databases. This research has been funded in part by
the Ministry of Education, Culture, Sports, Sciences, and
Technology of Japan (No. 17500066 and No. 18300068).

7. REFERENCES
[1] A. Andoni, E2LSH package.

http://www.mit.edu/~andoni/LSH/
[2] J. Assfalg, A. Del Bimbo, P. Pala, Retrieval of 3D Objects by

Visual Similarity, Proc. ACM MIR’04, pp. 77-83, (2004).
[3] R. Baeza-Yates, B. Ribiero-Neto, Modern information

retrieval, Addison-Wesley (1999).

[4] S. Biasotti, S. Marini, M. Spagnuolo, B. Falcidieno, Sub-part
correspondence by structural descriptors of 3D shapes,
Computer Aided Design (CAD), 38, pp.1002-1019, (2006).

[5] D-Y. Chen, X.-P. Tian, Y-T. Shen, M. Ouh-young, On
Visual Similarity Based 3D Model Retrieval, Computer
Graphics Forum, 22(3), pp. 223-232, (2003).

[6] G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray,
Visual Categorization with Bags of Keypoints, Proc.
ECCV ’04 workshop on Statistical Learning in Computer
Vision, pp.59-74, (2004)

[7] A. Elad, R. Kimmel, On bending invariant signatures for
surfaces, IEEE Trans. on PAMI, 25(10), pp.1285-1295,
(2003).

[8] R. Gal, A. Shamir, D. Cohen-Or, Pose-Oblivious Shape
Signature, IEEE Trans. Vis. Comp. Graph., 13(2), pp. 261-
271, (2007).

[9] P. Guerts, D. Ernst, L. Wehenkel, Extremely randomized
trees, Machine Learning, 2006, 36(1), 3-42, (2006)

[10] H. Hilaga, Y. Shinagawa, T. Komura, T. Kunii, Topology
matching for fully automatic similarity estimation of 3D
shapes, Proc. SIGGRAPH 2001, pp.201-212, (2001).

[11] D. Huber, A. Kapuria, R. R. Donamukkala, M. Hubert, Parts-
based 3-d object classification, Proc. IEEE CVPR 2004, II-
82 - II-89 Vol.2, (2004)

[12] M. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, K. Ramani,
Three Dimensional Shape Searching: State-of-the-art Review
and Future Trends, CAD, 5(15), pp. 509-530, (2005).

[13] V. Jain, H. Zhang, Robust 3D Shape Correspondence in the
Spectral Domain, Proc. IEEE Shape Modeling International
(SMI) 2006, pp.19-28, (2006).

[14] V. Jain, H. Zhang, A spectral approach to shape-based
retrieval of articulated 3D models, CAD, 39, pp.298-407,
(2007)

[15] S. Jayanti, Y. Kalyanaraman, N. Iyer, K. Ramani,
Developing An Engineering Shape Benchmark for CAD
Models, CAD, 38(9), (2006)

[16] A.E. Johnson, M. Hebert, Using Spin-Images for efficient
multiple model recognition in cluttered 3-D scenes, IEEE
Trans. on PAMI, 21(5), pp. 433-449, (1999).

[17] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz, Rotation
Invariant Spherical Harmonics Representation of 3D Shape
Descriptors, Proc. Symposium of Geometry Processing
(SGP) 2003, pp. 167-175 (2003).

[18] Y. Liu, H. Zha, H. Qin, Shape Topics: A Compact
Representation and New Algorithms for 3D Partial Shape
Retrieval, Proc. CVPR 2006, Vol. II, pp. 2025-2032, (2006)

[19] D.G. Lowe, Distinctive Image Features from Scale-Invariant
Keypoints, Int’l Journal of Computer Vision, 60(2), (2004).

[20] F. Moosmann, B. Triggs, F. Jurie, Randomized Clustering
Forests for Building Fast and Discriminative Visual
Vocabularies, Proc. NIPS'06, 2006.

[21] D. M. Mount, S. Arya, ANN: A Library for Approximate
Nearest Neighbor Searching, ver. 1.1.1, rel. Aug. 4, 2006.
http://www.cs.umd.edu/~mount/ANN/

Figure 5. Recall-precision plots for various methods
obtained by using the PSB database.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall
AAD SPRH SHD
LFD IM-SIFT BF-SSIFT-k
BF-DSIFT-E BF-GSIFT-E

Takahiko Furuya, Ryutarou Ohbuchi, Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features, accepted,
ACM International Conference on Image and Video Retrieval, July 8-10, 2009, Santorini, Greece.

[22] R. Ohbuchi, T. Minamitani, T. Takei, Shape-similarity
search of 3D models by using enhanced shape functions,
International Journal of Computer Applications in
Technology (IJCAT), 23(3/4/5), pp. 70-85, (2005).

[23] R. Ohbuchi’s web page, http://www.kki.yamanashi.ac.jp/
~ohbuchi/research_index.html

[24] R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local
visual features for shape-based 3D model retrieval, Proc.
SMI ‘08, pp. 93-102, (2008).

[25] R. Ohbuchi, T. Furuya, Accelerating Bag-of-Features SIFT
Algorithm for 3D Model Retrieval, Proc. SAMT 2008
Workshop on Semantic 3D Media (S-3D), pp. 23-30, (2008).

[26] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The
Princeton Shape Benchmark, Proc. SMI ‘04, pp. 167-178,
(2004). http://shape.cs.princeton.edu/search.html

[27] P. Shilane, T. Funkhouser, Distinctive Regions of 3D
Surfaces, ACM Trans. Graphics, 26(2), (2007).

[28] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bioux,
S. Dickinson, Retrieving Articulated 3-D Models Using
Medial Surfaces, Machine Vision and Applications, 19(4),
pp.261-275, (2008).

[29] J. Sivic, A. Zisserman, Video Google: A text retrieval
approach to object matching in Videos, Proc. ICCV 2003,
Vol. 2, pp. 1470-1477, (2003)

[30] J. Tangelder, R. C. Veltkamp, A Survey of Content Based
3D Shape Retrieval Methods, Proc. SMI ‘04, pp. 145-156
(2004).

[31] T. Tung, F. Schmitt, Augmented Reeb Graphs for Content-
based Retrieval of 3D Mesh Models, Proc. SMI ‘04, pp.157-
166, (2004).

[32] A. Vedaldi, SIFT++ A lightweight C++ implementation of
SIFT, http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html

[33] R.C. Veltkamp, F.B. ter Harr, SHREC 2007 3D Shape
Retrieval Contest, Dept of Info and Comp. Sci., Utrecht
University, Technical Report UU-CS-2007-015.

[34] E. Wahl, U. Hillenbrand, G. Hirzinger, Surflet-Pair-Relation
Histograms: A Statistical 3D-Shape Representation for Rapid
Classification, Proc. 3DIM 2003, pp. 474-481, (2003).

[35] J. Winn, A. Criminisi, T. Minka, Object categorization by
learned universal visual dictionary, Proc. ICCV05, Vol. II,
pp.1800-1807, (2005).

[36] C. Wu, SiftGPU: A GPU Implementation of David Lowe's
Scale Invariant Feature Transform (SIFT) ,
http://cs.unc.edu/~ccwu/siftgpu/

[37] J. Zhang, R. Kaplow, R. Chen, K. Siddiqi, The McGill Shape
Benchmark (2005).
http://www.cim.mcgill.ca/shape/benchMark/

helicopter
(m1306)

(a) LFD

(b) BF-SSIFT-k

(c) BF-DSIFT-E

Figure 6. Retrieval examples using the PSB for the three algorithms, the LFD (a)(d), BF-SSIFT-E (b)(e), and BF-DSIFT-E(c)(f).
Queries are helicopter (above) and potted plant (below). Higher ranked results are displayed to the left in each row.

potted plant

(m1001)

(d) LFD

(e) BF-SSIFT-k

(f) BF-DSIFT-E

✓ ✓ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕

✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ ✕

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✕ ✕ ✕

✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕

✓ ✕✕

