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ABSTRACT 
Our previous shape-based 3D model retrieval algorithm compares 
3D shapes by using thousands of local visual features per model. 
A 3D model is rendered into a set of depth images, and from each 
image, local visual features are extracted by using the Scale 
Invariant Feature Transform (SIFT) algorithm by Lowe. To 
efficiently compare among large sets of local features, the 
algorithm employs bag-of-features approach to integrate the local 
features into a feature vector per model. The algorithm 
outperformed other methods for a dataset containing highly 
articulated yet geometrically simple 3D models. For a dataset 
containing diverse and detailed models, the method did only as 
well as other methods. This paper proposes an improved 
algorithm that performs equal or better than our previous method 
for both articulated and rigid but geometrically detailed models. 
The proposed algorithm extracts much larger number of local 
visual features by sampling each depth image densely and 
randomly. To contain computational cost, the method utilizes 
GPU for SIFT feature extraction and an efficient randomized 
decision tree for encoding SIFT features into visual words. 
Empirical evaluation showed that the proposed method is very 
fast, yet significantly outperforms our previous method for rigid 
and geometrically detailed models. For the simple yet articulated 
models, the performance was virtually unchanged.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.3.5 [Computational Geometry and Object Modeling]: Surface 
based 3D shape models. I.4.8 [Scene Analysis]: Object 
recognition.   

General Terms 
Algorithms, Experimentation. 

Keywords 
Content-based retrieval, multi-scale feature, bag-of-features, Scale 
Invariant Feature Transform, GPU based algorithms, randomized 
decision tree, approximate nearest neighbor, hashing. 

1. INTRODUCTION 
We have previously proposed a shape-based 3D model retrieval 
algorithm that aimed at handling both articulated and rigid models 
[24]. The algorithm is appearance based, so it accepts a diverse set 
of 3D shape representations so far as it can be rendered as range 
images. To achieve invariance to articulation and/or global 
deformation, the algorithm employs a set of multi-scale, local, 
visual features to describe a 3D model. After normalizing the 
model for its position and scale, a set of depth images of the 
model is generated by using multiple virtual cameras looking 
inward at the model. From each depth image, dozens of local 
visual features are extracted. We used a saliency-based local 
image feature Scale Invariant Feature Transform (SIFT) by David 
Lowe [19]. The SIFT first detects, in a multi-scale image pyramid, 
salient points at which human visual system would presumably 
attracted to. The SIFT then extracts, at each salient point, a feature 
that encodes position, orientation, and scale of gray-scale gradient 
change. Typically, a 3D model is rendered into 42 depth images, 
each one of which then produces 30 to 50 salient points. Thus, a 
3D model is described by a set of 1.5k SIFT features. Directly 
comparing a pair of such feature sets would be too expensive, 
especially to search through a 3D model database containing a 
large number of models. To reduce the cost of model-to-model 
similarity comparison, the set of thousands of visual features is 
integrated into a feature vector per model by using bag-of-features 
(BoF) approach (e.g., [6, 20, 29, 35]). The BoF approach vector 
quantizes, or encodes, the SIFT feature into a representative 
vector, or “visual word”, using a previously learned codebook. 
The visual words are accumulated into a histogram, which 
becomes the feature vector. 

Experimental evaluation of our previous algorithm showed that it 
works quite well for the McGill Shape Benchmark (MSB) [37] 
which contains highly articulated but geometrically simple shapes. 
For the MSB, the method significantly outperformed all previous 
methods we have compared against, including the Light Field 
Descriptor (LFD) [5] and the Spherical Harmonics Descriptor 
(SHD) [17]. However, for the Princeton Shape Benchmark (PSB) 
[26], which contains diverse shapes having more geometric details 
but with virtually no articulation, the method performed as well 
but not better than the peers. Also, our previous algorithm has a 
high computational cost. Rendering tens of depth images, 
extracting thousands of local visual features per model, and 
vector-quantizing these features can be expensive.  

In this paper, we propose a faster and more accurate 3D model 
retrieval algorithm using local visual features. The proposed 
algorithm aims at high retrieval performance for both rigid and 
detailed models of the PSB and simple yet articulated models of 
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the MSB. To do so, our proposed algorithm extracts SIFT features 
at hundreds of densely and randomly placed points per depth 
image, as opposed to dozens of salient points detected by the 
original SIFT. This dense sampling increases the number of local 
features per model from 1.5k to 13k with according increase the 
computational cost, especially at SIFT feature extraction and 
vector quantization steps. To reduce computation time, our 
proposed algorithm utilizes a very fast vector quantization 
algorithm based on Extremely Randomized Clustering Trees (ERC 
Trees) [9]. The algorithm also employs a Graphics Processing 
Unit (GPU) based implementation of the SIFT algorithm SiftGPU 
by Wu [36] to quickly extract SIFT features. Our empirical 
evaluation showed that the proposed algorithm is more accurate 
and faster than our previous algorithm [24]. Retrieval 
performance measured in R-precision [3] of the PSB (test set) has 
jumped from 45.1% of the previous method [24] to 55.8% of the 
proposed method. For the other two databases we experimented 
with, the MSB and the Engineering Shape Benchmark (ESB) of 
machine parts models [15], retrieval performances of the new 
method tied with our previous method.  

The remaining parts of this paper have the following structure. 
After reviewing previous work, we will describe the proposed 
algorithm in Section 3. Empirical evaluation of the proposed 
algorithm will be described in Section 4. Section 5 will present the 
summary and future work.  

2. RELATED WORK 
Recent interest in content-based retrieval of 3D models has 
produced a quickly expanding body of work on the subject [12, 30, 
33]. Most 3D model retrieval method would require invariance 
against geometrical transformation of at least up to similarity 
transformation. Only a small minority, however, addressed the 
issue of invariance to articulation or global deformation.  

To achieve articulation invariance, a class of methods employed 
topological matching approaches [4, 10, 28, 31]. This class of 
methods, however, is difficult to implement and prone to presence 
of geometrical and/or topological error and/or noise. Another 
class of methods, e.g., [7, 8, 13, 14] uses curvature and other local 
geometrical and/or topological properties of manifold surfaces as 
local or global feature for pose invariant shape comparison. Of 
these, the method by Jain et al [13, 14] explicitly addresses 
articulation invariance. It employs a joint geometrical-topological 
analysis based on mesh spectral analysis. This class of methods, 
however, assumes manifold meshes so they can’t be applied to a 
large subclass of 3D models. Yet another class of approaches uses 
a set of local features for articulation invariant 3D model 
comparison [2, 16, 18, 24, 27]. This class of methods typically 
samples the surface of the model by using either 2D [2, 11, 16, 18, 
24] or 3D [27] local features. One of the issues with the local-
feature based approach is the cost of comparing and storing a set 
of large number of features per model. Assuming n features per 
model, comparing all the pairs of features of a pair of models 
would cost 2( )O n . For a database of nontrivial size, such method 
would take too long for a search. Cost of storage is also 
significant. For example, a SIFT feature used in [24] is a 128-
dimensional vector. Assuming 1k SIFT features per model and 
4Byte float representation of an element, a set of SIFT features 
per model would require 512kByte for its storage. 

To solve this issue of computational and storage cost, our 
previous method [24] adopted a bag-of-features (BoF) approach. 
In the field of object recognition from 2D images, BoF is one of 

the most popular and powerful approaches to compare sets (often 
having unequal sizes) of features [6, 20, 29, 35]. The approach 
encodes a given local feature into one of several hundreds to 
thousands of visual word, by using a visual codebook. The visual 
codebook is often generated by performing k-means clustering on 
the training set of local features by setting k to the size of 
vocabulary Nv Then, for each 3D model, a histogram of visual 
words is created, whose number of bins equals to the size of 
vocabulary. The histogram is the feature vector for the 3D model. 
Note here that locations of local features in each image are 
ignored. Experiments showed that, for a set of geometrically less 
detailed yet highly articulated models of the MSB [37], our 
previous method performed significantly better than the other 
methods we have compared against. However, for a set of models 
found in the PSB, which are more diverse in shape and contains 
more details but has much less articulation than the MSB, the 
method is only as good as those previous methods.  

Our observation was that the salient point detector of the SIFT 
algorithm has been “falsely” triggered by details of some of more 
complex 3D models, while ignoring important yet monotone 
region of the images. For example, in Figure 2(d), which is 
generated by our previous algorithm [24], the depth image of the 
potted plant produced a large number of small scale features near 
the leaves. These features, being scale invariant, could match local 
geometrical feature of other models that are similar in shape yet 
completely different in scale. The potted plant, consequently, 
could potentially match shapes having completely different 
overall shape. On the other hand, an important large scale feature, 
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in this case a large trapezoidal shape of the pot, is 
underrepresented in the bag of features. For simpler shapes having 
less details, e.g. that of MSB, original SIFT with salient point 
detector worked very well. However, for the PSB, which contains 
models having considerably more detail, the salient points are not 
balanced representation of the features of the model.  

This observation led us to the proposed algorithm that samples 
each depth image of a 3D model more uniformly and densely. 
Such sampling would produce “balanced” representation of local 
geometrical features in the bag of features, and consequently, in 
the histogram of visual words that describes the 3D model. We 
choose dense and random sampling of the image, so the proposed 
method is called Bag-of-Features Dense SIFT (BF-DSIFT) 
algorithm. To differentiate, our original algorithm having the 
salient point detector is called Bag-of-Features Salient SIFT (BF-
SSIFT) algorithm. The increase in the number of features due to 
dense sampling, however, ups the cost of SIFT feature extraction 
and feature encoding. For example, a typical number of features 
per 3D model and a typical size of vocabulary for the BF-SSIFT 
are both 1.5k. For the BF-DSIFT, the number of features and 
vocabulary size increases to 11k and 10k~20k, respectively. To 
overcome such an increase in the number of local features, our 
proposed algorithm employs a GPU-based SIFT feature extractor 
and a very fast tree-based encoder for a significant speedup. 

3. ALGORITHM 
We first review our previous algorithm, the BF-SSIFT, in the next 
section. Improvements made for the BF-DSIFT algorithm, that are, 
the dense visual feature sampling and fast feature encoding, will 
be described in Section 3.2 and Section 3.3, respectively.  

3.1 Review of the BF-SSIFT algorithm 
The BF-SSIFT algorithm compares 3D models by following the 
steps below, which are illustrated in Figure 1.  

1. Pose normalization with respect to position and scale: The 
BF-SSIFT performs pose normalization only for position and 
scale so that the model is rendered at an appropriate position 
with an appropriate size in each of the multiple-view images. 
Pose normalization is not performed for rotation. 

2.  Multi-view rendering: Render range images of the model 
from iN  viewpoints placed uniformly and regularly on the 
view sphere surrounding the model. The rendering is done on 
a GPU via OpenGL API.  

3. SIFT feature extraction: From the range images, extract 
local, multi-scale, multi-orientation, visual features by using 
Vedaldi’s implementation SIFT++ [32] of thethe SIFT [19] 
algorithm. The original SIFT algorithm first detects salient 
points, and then computes 128D SIFT feature at each of the 
salient points.  

4. Feature encoding: Encode a local feature into a visual word 
from a vocabulary of size vN  by using a visual codebook. 
Prior to the retrieval, the visual codebook is learned, 
unsupervised, from tens of thousands of features extracted 
from a set of models, e.g., the models in the database to be 
retrieved. The encoding, or vector quantization, step is a 
nearest point query in a high dimensional (128D) feature 
space. It is implemented as a linear search through a set of Nv 
representative vectors. 

5. Histogram generation: Encoded local features or “visual 
words” are accumulated into a histogram having vN  bins, 
which then becomes the feature vector of the 3D model.  

6. Distance computation: Dissimilarity among a pair of 
feature vectors (the histograms) is computed by using 
Kullback-Leibler Divergence (KLD); 

 ( )
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( , ) ln
n

i
i i

ii

yD y x
x

=

= −∑x y  (1) 

where ( )ix=x  and ( )iy=y  are the feature vectors and n is 
the dimension of the vectors. The KLD is sometimes referred 
to as information divergence or relative entropy.  

3.2 Dense Sampling 
In the proposed BF-DSIFT, we employed dense random sampling 
of a range image by SIFT features. We wanted to concentrate 
samples on or near the 3D object, not on the background, of the 
range image. To do so, for each image in the multi-scale image 
pyramid of the SIFT algorithm [19], Np pixels to be sampled are 
drawn randomly from pixels having non-zero intensity value. A 
range image is rendered with zero pixel value as its background, 
and images in the SIFT pyramid are blurred according to their 
scale in the pyramid. Thus, a pixel from an images in the SIFT 
pyramid that has non-zero value is located on or near, but not far 
from, the image of the 3D model. As non-zero pixels are different 
for each image in the SIFT image pyramid, the positions of 
samples are different across scales in the SIFT pyramid.  

For comparison, we implemented another dense sampling strategy, 
which samples the image at regular grid points. We call the 
method Bug-of-Features Grid SIFT (BF-GSIFT). In the BF-
GSIFT, positions of the SIFT samples may overlap across scale in 
the SIFT image pyramid, as the image down-sampling for 
constructing the pyramid is performed by halving image after 
low-pass filtering. 

If we set the number of samples per depth image Np, and the 
number of views Ni, the total number of samples per 3D model 

f p iN N N= ⋅ . Typically, we use Ni=42 and Np~300 so we have 
Nf~12k. To accelerate extraction of a large number of SIFT 
features, we adopted the SiftGPU by Wu [36], which is a GPU 
implementation of the Vedaldi’s SIFT++ [32]. Given a gray-scale 
image, the SiftGPU does all the work of the SIFT on a GPU; 
construction of a multiresolution image pyramid, detection of 
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Figure 2. Example of feature points using BF-SSIFT (a)(d), 
BF-DSIFT (b)(e), and BF-GSIFT (c)(f). 
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salient points, and extraction of SIFT features at the salient points. 
Our preliminary experiment using BF-SSIFT showed that the 
difference in retrieval performance between SIFT++ on a CPU 
and SiftGPU on a GPU is negligible [25]. For the dense sampling 
of BF-DSIFT, we modified the SiftGPU to disable salient point 
detector and to add the capability to accept from the CPU a list of 
pixels at which SIFT features are exracted. As a detail, our 
modified version of the SiftGPU doesn’t perform image up-
sampling in creating multi-resolution image pyramid. Our 
previous experiments showed no difference in retrieval 
performance with or without the up-sampling. 

Figure 2 shows, for two depth images, examples of sample points 
generated by using the BF-SSIFT (Figure 2(a), 2(d)), the BF-
DSIFT (Figure 2 (b), 2(e)), and the BF-GSIFT (Figure 2(c), 2(f)). 
The BF-DSIFT placed roughly the same number of samples on 
depth images of both human and potted plant models. The BF-
SSIFT, on the other hand, placed many more points on the image 
of potted plant model than the human model. Note also that the 
BF-DSIFT placed more samples on featureless parts, e.g., on or 
near the pot and the torso. The BF-GSIFT sampled regularly and 
uniformly regardless of the image features across image scales. 

3.3  Fast Encoding  
Encoding of a local visual feature consists of two-steps; 

1. Codebook learning: Prior to retrieval, find representative 
vectors in the feature space given a set of feature vectors for 
training. This amounts to clustering of feature points.  

2. Encoding (or vector quantization): Given a new vector, 
find the representative vector closest to the new vector. This 
is a nearest neighbor query in a high dimensional space.  

In our original algorithm [24], we performed the codebook 
generation by using k-means clustering. For 50k training samples 
each having 128D and a vocabulary size of 1k, the k-means  
algorithm took about 200s to complete. While slow, especially 
when the vocabulary size Nv and the number of training samples 
Nt are large, the cost was acceptable since it needs to run only 
once as a preprocessing step. The k-means algorithm has spatial 
complexity of ( )tO d N⋅  and temporal complexity of 
( )t vO d N N⋅ ⋅ , given the dimension of the feature d, the number 

of training samples Nt, and the number of vocabularies Nv.  

For the vector quantization step, our previous algorithm [24] used 
a brute-force linear search approach that requires ( )v fO N N⋅  
comparison per 3D model. This was barely acceptable for the 
SSIFT that produces Nf~1.5k features per model. However, for a 
set of SIFT features sampled densely would have Nf~11k, we 
needed a more efficient coder, or vector quantizer.  

To this end, we compared three algorithms for nearest neighbor 
search, the Extremely Randomized Clustering Trees (ERC-trees) 
algorithm by Guerts, et al [9], the locality sensitive hashing (LSH) 
algorithm by Andoni [1] in a library called E2LSH, and a kd-tree 
based approximate nearest neighbor (ANN) algorithm by Mount 
et al [21]. We implemented the ERC-tree ourselves. For the other 
two methods, we used the libraries cited.  

The ERC-trees algorithm is a combination of codebook learning 
and vector quantization algorithms so a separate clustering 
algorithm is not required. As the name suggests, the ERC-tree is a 
randomized tree-based clustering algorithm which subdivides the 
feature space into a half by each added tree node. Each 
subdivision is done by a hyper plane perpendicular to one of the 
coordinate axes. For each subdivision, the algorithm first 

randomly picks the dimension (or axis) to subdivide, and then 
randomly chooses the point (a scalar value) on the axis at which a 
separating hyperplane is placed.  Subdivision of the feature space 
continues until the number of data points per subspace is below a 
set parameter Smin. While the Smin affects the number of 
vocabulary Nv, the actual value of Nv differ for each trial due to 
the randomized nature of the algorithm. The Nv can also be 
controlled by pruning the tree, but we don’t perform any pruning. 
Moosemann et al in [20] suggested that the fully grown tree 
without pruning performed better for visual object recognition. 
Since the feature space is subdivided into subspaces by a set of 
axis aligned hyper planes, the quality of the resulting cluster may 
not be as good as those produced by other methods, e.g., k-means. 
However, the ERC tree is very fast for both training (clustering) 
and for coding. In the following, we add postfix “-E” or “-k” after 
the method name (e.g., BF-SSIFT) to indicate the clustering 
algorithm used. The letter “E” indicates the use of ERC-tree for 
clustering and vector quantization, while the letter “k” indicates 
the use of k-means for clustering combined with linear search. 

The kd-tree is a well-known spatial data structure often used for 
proximity queries. An approximate nearest neighbor search library 
for a high dimensional data by Mount et al [21] is based on kd-
tree. It subdivides the feature space by axis-aligned hyperplanes 
until the resulting subspace is smaller than the hypersphere of 
radius ε. To vector quantize a feature vector, the tree is traversed 
down to leaf to find the smallest subspace enclosing the feature. 
Then, n feature points contained in the hypersphere near the query 
point is searched for the closest representative vector.  

The locality sensitive hashing in the E2LSH library [1] employs a 
set of L hash functions that maps d dimensional feature vector 
onto K dimensional vector. The hash functions are chosen so that 
features close in the original d-dimensional feature space collide 
in the K-dimensional space produce by the hash function. To 
vector quantize a feature, the feature is hashed into a bucket, and 
the overflow list of the bucked is searched linearly for the nearest 
representative vector. While the K and L are parameters, the 
E2LSH has the ability to choose optimal set of K and L values 
given a training set of features. As both the ANN and the E2LSH 
are nearest neighbor search algorithm without codebook learning, 
we combine these two nearest neighbor search algorithms with the 
k-means clustering for codebook learning.  

Table 1 summarizes the spatial and temporal complexity of the 
algorithms. Actual running time of course would be determined 
various constants and real-world parameters.  

Table 1. Computational complexities of the nearest 
neighbor search algorithms compared. 

 Spatial complexity Temporal complexity
Linear search ( )vO N  ( )vO N  

ERC-tree ( )vO N  ( )log vO N  

kd-tree ( )vO N  ( )log vO n N+  

E2LSH ( )vO N L⋅  ( )O n L+  

4. EXPERIMENTS AND RESULTS 
We experimentally evaluated the following; 

(1) Codebook learning and encoding algorithms. 
(2) Sampling strategy, number of features, and retrieval 

performance.  
(3) Vocabulary size and retrieval performance. 
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(4) Performance comparison with other methods. 

We performed the experiments using three benchmark databases: 
the MSB [37] for highly articulated but less detailed shapes, the 
PSB [26] for a set of diverse and detailed shapes, and the ESB 
[15] for mechanical parts. The MSB consists of 255 models in 10 
classes. The MSB include such articulated shapes as “humans”, 
“octopuses”, “snakes”, “pliers”, and “spiders”. The PSB contains 
two equal-sized subsets, the training set and test set, each 
consisting of 907 models and about 90 classes. For our evaluation, 
we used the PSB test set partitioned into 92 classes. The PSB 
contains a more diverse set of 3D shapes than the MSB. The ESB 
contains 867 models divided into 45 classes and has 45 out-of-
sample query models.  

The same database is used for codebook training and retrieval 
experiments. That is, the codebook generated by using the MSB, 
for example, is used to query the MSB. We used the training set 
size 50,000tN = of SIFT features extracted from multi-view 
images of models in a database. Both for training and for query 
experiments, range images size of 256 256×  pixels is used. 

As the performance index, we used R-precision [3]. R-precision is 
a ratio, in percentile, of the models retrieved from the desired 
class kC  (i.e., the same class as the query) in the top R retrievals, 
in which R is the size of the class kC . Note that, in this paper, 
we treat the query model found in the retrieval result as one of 
correct retrievals. As such, the R-precision figure is higher than 
some of the other publications if the query model is drawn from 
the database to be queried.  

4.1 Codebook Learning and Encoding 
Algorithms 
We first compared, using BF-DSIFT and PSB test set, the cost 
codebook learning and encoding between the k-means and the 
ERC-tree algorithms. To train, we used the PSB test set, the 
number of view orientations Ni=42, and the number of training 
samples Nt=50k. Training samples are randomly subsampled from 
the set of SIFT features generated from the PSB test set. We fixed 
the number of features per image at Np=300, so the number of 
features per model Np~12k. 

Table 2 shows that the ERC-tree is much faster than the k-means 
clustering and that the increases in cost due to vocabulary size Nv  
is much less marked for the ERC-tree than k-means. Table 3 
shows that the k-means has slightly better retrieval performance 
(~1.5%) than the ERC-tree. Also, for both ERC-tree and k-means, 
retrieval performance improves with Nv. The codebook due to 
ERC-tree has slightly less discriminative power since the clusters 
it produces have axis-aligned hyper planes as their boundaries. 

Table 4 shows the breakdown of computation time for the BF-
DISFT algorithm measured by using the PSB and Ni=42. It 
compares four encoders, that are, the brute force (linear search) 
method indicated by “br”, the kd-tree based method indicated by 
“kd”, the locality sensitive hashing indicated by “lsh”, and the 
ERC-tree indicated by “erc” in the “R/S/V/D” column. All the 
BF-DSIFT results uses GPU for rendering, GPU for SIFT feature 
extraction, and table lookup to evaluate log() function used in the 
Kullback-Leibler divergence. (See table legends.) The table also 
shows the timings for the BF-SSIFT algorithm, both the original 
version (C/C/br/F) [24] and the accelerated version by using GPU 
and table lookup (G/G/br/T) [25]. Please note that the number of 
features Nf for the BF-SSIFT is 1.3k/model, while that of the BF-

DSIFT is 13k/model. Also, the BF-SSIFT used vocabulary size 
Nv=1,000, while the BF-DSIFT used vocabulary size Nv=10,000.  

Table 4 is a bit cluttered, but several observations can be made. 
First, the BF-DSIFT using kd-tree and ERC-tree for the vector 
quantizer are much faster than the others while achieving retrieval 
performance 10% better in R-precision (RP) than the original BF-
SSIFT. This performance gains shows the effectiveness of the 
random, dense sampling. Please note that the BF-DSIFT took less 
time than the BF-SSIFT despite the fact that both number of 
features per model Nf and the vocabulary size Nv is nearly ten 
times more in the BF-DSIFT than in the BF-SSIFT. The reduction 
in execution time is brought about by the combination of GPU-
based feature extraction and ERC-tree encoder.  

If we compare the four encoders for their speed, the linear search 
used in our original algorithm is obviously the slowest. The kd-
tree and the ERC-tree are about equal both in terms of speed and 
retrieval performance. The LSH algorithm is 4 times slower than 
the other two, and is a bit lower in performance. If we count in the 
one-time cost of codebook learning, the ERC-tree has an 
advantage over the others as the kd-tree requires expensive k-
means clustering for codebook learning. 

Table 2. Time in seconds to train codebook using the k-
means and the ERC-tree algorithms. 

  Number of vocabulary Nv 
1,000  5,000 10,000 

k-means clustering 230.36 1289.29 2871.16
ERC-Tree clustering 5.83 6.66 7.88

Table 3. Retrieval performance in R-precision [%]. 

  Number of vocabulary Nv 
1,000  5,000 10,000 

k-means+Linear seaerch 51.72 55.64 56.68
ERC-Tree encoder 51.77 54.07 55.30

Table 4. Computational cost break down for the DSIFT 
algorithms using various encoders.  

Implementation Computation time [s] RP
[%] R/S/V/D Render SIFT VQ Dist. Total

SSIFT C/C/br/F 3.28 8.61 14.53 0.1043 26.5 45.52
SSIFT G/G/br/T 0.16 0.74 14.53 0.0056 15.4 45.70
DSIFT G/G/br/T 0.16 1.73 222.96 0.0361 224.9 56.68
DSIFT G/G/kd/T 0.16 1.73 0.74 0.0361 2.7 55.54
DSIFT G/G/lsh/T 0.16 1.73 8.47 0.0361 10.4 53.65
DSIFT G/G/erc/T 0.16 1.73 0.56 0.0361 2.5 55.30

Table legends on “Implementation R/S/V/D” 
R : Rendering S : SIFT V : VQ D : Distance 

C: CPU 
G: GPU 

C: SIFT++ on 
CPU 
G: SiftGPU on 
GPU 

br: brute force 
kd: kd-tree 
lsh: LSH 
erc: ERC-Tree

F: log function 
evaluation 
T: table lookup

4.2 Sampling strategy, number of features, 
and retrieval performance 
In this experiment, we try to find relationship between the number 
of features and retrieval performance. We also compare two dense 
sampling strategies, BF-DSIFT and BF-GSIFT. Number of 
features Nf can be controlled by (1) the number of view Ni, (2) the 
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number of sample points per depth image Np, or both. We 
compared the following four cases using the PSB dataset. In the 
experiment, we used the values Ni∈{6, 20, 42, 80, 162, 320}, and 
10≤ Np≤900. For the BF-GSIFT, grid spacing controlled Np 

• BF-SSIFT-E(Ni): Increase Ni for more Nf. Np depends on the 
salient point detector of the SIFT algorithm.  

• BF-DSIFT-E(Ni): Increase Ni for more Nf. Np is fixed at 300. 
• BF-DSIFT-E(Np): Increase Np for more Nf. Ni is fixed at 42. 
• BF-GSIFT-E(Np): Reduce grid interval for more Np, thus 

more Nf.  Ni is fixed at 42. 

Plots in Figure 3 show that, as the Nf increases, the retrieval 
performances of all the methods are saturated probably due to 
limited features that can be captured. Also, the performance of 
BF-SSIFT-E(Ni) is saturated at a point much lower than the other 
three, presumably due to the limited number of salient points 
detected per image by the BF-SSIFT. Grid sampling of the BF-
GSIFT performed better than saliency-based sampling of the BF-
SSIFT, but not as well as the random sampling of the BF-DSIFT. 

4.3 Vocabulary size and retrieval 
performance 
In this experiment, we try to find the relationship between the 
vocabulary size (codebook size) and retrieval performance. The 
peak in performance for the BF-SSIFT appeared when Nv is at or 
slightly lower than the number of features Nf=1.5k. For BF-DSIFT, 
the peak is much less prominent; it is almost non-recognizable. 
While the BF-DSIFT has Nf=13k, retrieval performance goes up 

even if Nv surpasses Nf=13k. Two other databases, MSB and ESB, 
produced similar curves for both BF-SSIFT and BF-DSIFT. It can 
be said that the retrieval performance of BF-DSIFT is much less 
sensitive to the vocabulary size Nv. than BF-SSIFT. 

4.4 Performance comparison with the other 
methods 
Table 5 compares the retrieval performance of the proposed 
method, BF-DSIFT-E, with the other methods. We included our 
original SIFT-based method BF-SSIFT-k using k-means 
clustering.  We also included the dense, but grid-sampled version 
BF-GSIFT-E. For comparison, the table lists figures for the AAD 
[22], SPRH [34], SHD [17], LFD [5], IM-SIFT [24]. (Executables 
for the AAD and the SPRH can be found at [23].) The BF-SSIFT-
k used Np=700~1,100, while the BF-DSIFT-E and BF-GSIFT-E 
used Np~13,000. For the BF-GSIFT-E, grid interval is chosen so 
that the number of sample points per depth image Np is about 
equal to that of the BF-DSIFT-E. Number of views Ni for the IM-
SIFT, BF-SSIFT, BF-DSIFT, and BF-GSIFT are all 42. The 
Figure 5 shows the recall-precision plots for all these methods. 

As Table 5 shows, for the MSB and ESB, the proposed BF-
DSIFT-E performed about as well as the BF-SSIFT-k. For the 
PSB, however, the proposed BF-DSIFT-E significantly 
outperformed all the others. Without supervised learning, R-
precision=55.8% for the PSB test set is the highest we have seen 
so far. For the PSB, the dense grid sampling of the BF-GSIFT did 
better than the BF-SSIFT, but not as good as the dense random 
sampling of the BF-DSIFT. For the MSB and ESB, BF-GSIFT 
performed worse than the BF-SSIFT and BF-DSIFT. Overlap of 
sample positions at every resolution levels may be the reason for 
the performance worse than the BF-DSIFT.  

Figure 6 shows examples of retrieval results by using the 
proposed BF-DSIFT-E, our previous BF-SSIFT-k, and the LFD. 
In these examples, the BF-DSIFT-E clearly outperforms our 
previous algorithm, BF-SSIFT-k. The BF-SSIFT-k retrieved plant 
models with and without pot. The BF-DSIFT-E, however, 
succeeded in retrieving potted plant models well, presumably 
recognizing visual features of the pot.  

Table 5. Retrieval performances in R-precision [%] of the 
seven methods measured on three databases.  

Methods PSB MSB ESB 
AAD 33.2  56.3 33.1 
SPRH 37.3  53.9 34.7 
SHD 40.5  56.7 34.6 
LFD 45.9  56.9 34.7 

IM-SIFT (Ni =42) 44.7  64.2 31.0 
BF-SSIFT-k (Ni =42) 46.1  76.9 42.6 
BF-GSIFT-E (Ni =42) 52.3 71.6 39.5
BF-DSIFT-E (Ni =42) 55.8  76.4 42.5 

5. CONCLUSION AND FUTURE WORK 
Our previous shape-based 3D model retrieval algorithm [24] 
aimed at retrieving articulate 3D models well by using saliency-
based 2D image features and bag-of-feature approach to local 
feature integration. The algorithm performed well for retrieving 
highly articulated yet geometrically simple models in the McGill 
Shape Benchmark (MSB) [37]. However, the method did not 
perform as well for the Princeton Shape Benchmark (PSB) [26], 

Figure 3. Number of features Nf versus retrieval 
performance for the PSB dataset. 

Figure 4. Vocabulary size Nv versus retrieval performance 
for the PSB dataset. 
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which contains diverse, more detailed shape models having little 
articulation.  

 This paper presented an improvement to our previous algorithm 
so that geometrically detailed models as well as highly articulated 
models can be retrieved well. To achieve this goal, we sampled 
the depth image densely at random locations by disabling the 
salient point detector of the original SIFT algorithm. To extract 
and encode an increased number of local features efficiently, we 
adopted a GPU implementation of the SIFT algorithm by Wu [36] 
and a very fast tree-based encoder called Extremely Randomized 
Clustering Trees [9]. Our experiment showed that the proposed 
algorithm retrieves better and runs faster. For the PSB, retrieval 
performance measured in R-precision improved from 45.1% to 
55.8%. Retrieval performance for the other two benchmark 
databases, the MSB and the Engineering Shape Benchmark (ESB) 
[15], a set of machine parts models, are unchanged.  

We are planning to exploit GPU further for a faster, more 
convenient, and more accurate 3D model retrieval. We would also 
like to investigate methods to capture internal structures of 3D 
models for such application as 3D machine parts model retrieval. 
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Figure 6. Retrieval examples using the PSB for the three algorithms, the LFD (a)(d), BF-SSIFT-E (b)(e), and BF-DSIFT-E(c)(f).  
Queries are helicopter (above) and potted plant (below). Higher ranked results are displayed to the left in each row. 
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