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Abstract
Unsupervised representation learning of unlabeled multimedia data is important yet challeng-
ing problem for their indexing, clustering, and retrieval. There have been many attempts to
learn representation from a collection of unlabeled 2D images. In contrast, however, less
attention has been paid to unsupervised representation learning for unordered sets of high-
dimensional feature vectors, which are often used to describe multimedia data. One such
example is set of local visual features to describe a 2D image. This paper proposes a novel
algorithm called Feature Set Aggregator (FSA) for accurate and efficient comparison among
sets of high-dimensional features. FSA learns representation, or embedding, of unordered
feature sets via optimization using a combination of two training objectives, that are, set
reconstruction and set embedding, carefully designed for set-to-set comparison. Experimental
evaluation under three multimedia information retrieval scenarios using 3D shapes, 2D
images, and text documents demonstrates efficacy as well as generality of the proposed
algorithm.

Keywords Unsupervised learning . Feature aggregation . Set-to-set comparison .Multimedia
information retrieval . Autoencoder . Neural network

1 Introduction

Recent advances in deep learning have achieved great successes in many computer vision
tasks. The successes, especially for 2D images, are attributed in large part to availability of
labels required to effectively train deep neural networks. However, in practice, many multi-
media data collections are often left unlabeled due to high cost of manually annotating large
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number of data items. Motivated by this situation, unsupervised representation learning, which
attempts to obtain meaningful features from unlabeled dataset, has been gaining much
attention for indexing, clustering, or retrieval of multimedia data without labels.

A multimedia datum, that is, a 2D image, a 3D shape, or a text document, can often be
represented by an unordered set of high-dimensional feature vectors. For example, a 2D image
is often represented as a set of local visual features (e.g., SIFT [40]). A 3D shape is represented
as a set of local geometric features (e.g., [12]) or 3D point set (e.g., [6]). Also, Bag-of-Words
model treats a document as a set of words where each word is described by a high-dimensional
vector (e.g., [62]). Such unordered sets that ignore spatial relations among parts of the datum
are robust against variation of context, for example, varied poses of articulated objects or
swapped phrases in a sentence.

This paper addresses the problem of Set-to-Set Comparison (SSC) that measures distances
among unlabeled data, each of which is described by a set of high-dimensional feature vectors.
Achieving accuracy and efficiency for SSC under unsupervised setting is quite challenging.
Earth Mover’s distance [56] or Hausdorff distance [22] have been conventionally employed
for SSC. However, these distances are sensitive to outlier features and suffer from high cost of
finding element-to-element correspondences between two sets.

To improve accuracy and efficiency of SSC, feature aggregation algorithms including Bag-
of-Features [8] and its variants (e.g., [54, 66]) have been proposed. Feature aggregation is
performed by encoding each feature within the set and then pooling the encoded features to
form a single feature vector that succinctly describes the set. Most of the feature aggregation
algorithms optimize feature encoding via codebook learning. However, the aggregated fea-
tures, typically generated by simple sum of the encoded features, are not necessarily optimized
for SSC. In addition, aggregated features are often very high-dimensional (e.g., more than 10 k
dimensions [54]) and thus are not suitable for efficient multimedia indexing, clustering, and
retrieval.

In this paper, towards more accurate and efficient SSC, we propose a novel unsupervised
representation learning algorithm dedicated to multimedia data described by unordered feature
sets. A neural network, called Feature Set Aggregator (FSA), aggregates an input feature set to
a compact representation for effective SSC. Training of the FSA is more data-driven than the
previous SSC algorithms ([8, 54, 66]). To effectively train the FSA, we design two training
objectives for SSC. The first objective is set reconstruction using angular chamfer distance
which aims to learn accurate representations of “whitened” input feature sets. The set
reconstruction loss differs from vector reconstruction loss used by standard autoencoders
[16]. The second objective is set embedding using triplets on family of sets to learn “smooth”
embedded feature space appropriate for SSC. Different from the common label-based triplet
sampling (e.g., [23]), our approach creates diverse triplets from an unlabeled collection of
feature sets.

Efficacy and generality of the FSA are demonstrated via experiments under three multi-
media information retrieval scenarios, that are, 3D shape retrieval, 2D image retrieval, and text
document retrieval. In majority of the retrieval experiments, the FSA significantly outperforms
the conventional SSC algorithms including state-of-the-art feature aggregation algorithms.

Contribution of this paper can be summarized as follows;

& We propose a novel unsupervised representation learning algorithm for comparison among
sets, where each set consists of unordered features vectors. The algorithm, called Feature
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Set Aggregator, uses a pair of training objectives designed for accurate reconstruction of
set and accurate embedding of aggregated features.

& We extensively evaluate the proposed algorithm under three multimedia information
retrieval scenarios to demonstrate accuracy, efficiency, and generality of the algorithm.

2 Related work

2.1 Supervised deep learning for unordered Sets

Motivated in part by successes in 2D image recognition, a variety of Deep Neural Network
(DNN) architectures for diverse data representation, including those for unordered sets, have
been proposed. Zaheer et al. [74] proposed a DNN called DeepSets that processes sets of high-
dimensional features. To obtain invariance against permutation of elements in a set, DeepSets
performs max-pooling over mid-level features that appear at an intermediate layer of the DNN
to form a global feature of the set. Application of DeepSets includes 3D point set classification,
set anomaly detection, and others. The DNN proposed by Furuya and Ohbuchi [14] aggregates
a set of local geometric features to describe a 3D shape for 3D model retrieval. PointNet [6]
and its variant PointNet++ [55], both by Qi et al., enables end-to-end learning of 3D point sets
for their classification and semantic segmentation. For the task of person re-identification, Liu
et al. [39] proposed a DNN that handles sets comprising 2D images of identical person. In the
field of 2D image recognition, Arandjelović et al. [3] and Lin et al. [36] proposed feature
aggregation modules called NetVLAD and NeXtVLAD, respectively. These modules treat a
feature map activated in a hidden layer of Convolutional Neural Network (CNN) as an
unordered set of visual features. The set of visual features is aggregated to a single feature
vector for subsequent classification.

Note, however, that all the DNNs described above are trained by using a large collection of
labeled data. On the other hand, our approach is unsupervised. That is, representations of
unordered feature sets are learned from multimedia data without having labels.

2.2 Unsupervised representation learning for unordered Sets

Learning meaningful feature representation from unlabeled data is challenging since direct
supervision can’t be used. Thus, surrogate tasks are generally adopted to train DNNs without
supervision by labels. Autoencoder [16] and its variants (e.g., [46, 63]) learn feature repre-
sentation via reconstruction task. An autoencoder consists of a pair of an encoder and a
decoder. The encoder transforms an input to its latent representation, or code, and the decoder
reconstructs the input from the code. Other surrogate tasks to learn visual representation of 2D
images include, for example, solving jigsaw puzzle [49], sorting video sequence [30], tracking
objects in video [65], inpainting images [53], and generating images [18].

In contrast to unsupervised representation learning for 2D images, there has been little study
on representation learning using unlabeled sets of high-dimensional features. Recently,
Achlioptas et al. [2] and Yang et al. [73] proposed autoencoders for unordered sets of 3D
points to learn 3D shape feature representation. Compared to the autoencoders for 3D point set,
our approach is more general. That is, the FSA can handle unordered sets of feature vectors
having arbitrary number of dimensions including but not limited to 3.
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Meanwhile, unsupervised feature aggregation is widely adopted to obtain a representation
for inter-set comparison of an unordered set of features. Bag-of-Features [8], Locality-
constrained Linear coding [66], Fisher vector coding [54], and Vector of Locally Aggregated
Descriptors [25] are popular feature aggregation algorithms. They learn a codebook containing
representative features, or codewords. By using the codebook, each input feature in an input
set is encoded into one of the codewords. The encoding is performed by using first-order
statistics [8, 66] or higher-order statistics [25, 54] in the input feature space. The encoded
features are pooled by summing to form an aggregated feature per set for classification or SSC.
More recently, feature aggregation algorithms aiming at more accurate feature encoding [13,
38] or codebook-free aggregation [37, 67] have been proposed. However, these feature
aggregation algorithms are not necessarily optimized for SSC. In addition, these methods
often yield very high-dimensional aggregated features. In this study, we introduce a neural
network to learn representations of feature sets for accurate and efficient SSC than the previous
approaches.

In addition to multimedia indexing and retrieval, use cases of aggregated features that
describe unordered sets include biometric identification. For example, matching fingerprint
images or palmprint images [43] involves comparison among unordered sets of keypoints
detected on skin images. In order to secure biometric verification system and protect privacy of
users, skin images are often encoded to their feature representations. To achieve accurate and
fast verification, previous studies adopt techniques such as feature selection [33], feature
compression [41], or feature fusion [32, 34, 35, 42]. Although we don’t conduct experiments
on fingerprint/palmprint recognition in this paper, our proposed learning algorithm for unor-
dered sets would be applicable to such biometric identification problems that require compar-
ison of unordered sets.

3 Proposed algorithm

3.1 Overview of feature set aggregator

A Feature Set Aggregator (FSA) is a shallow neural network for learning accurate and compact
representations of unordered sets of high-dimensional features. Figure 1 shows a processing
pipeline of the FSA. We use 3D shapes as the datatype for the explanation here, but the
arguments hold for other multimedia data as 2D images and text documents. The FSA is an
asymmetric tandem of an encoder and a decoder. The encoder encodes and aggregates a set of
(pre-whitened) features via three processing steps. Each input feature is first transformed into a
sparse code. The set of sparse-code is then pooled by sum to form a single feature vector per
input set. Finally, the pooled feature is embedded, via metric learning, into a feature space
suitable for SSC.

The FSA is trained by using a combination of two training objectives. The first objective,
set reconstruction, attempts to learn accurate representations of sets. We propose to use angular
chamfer distance as the loss function for reconstruction of sets of whitened input features. The
second objective, set embedding, is designed to learn accurate distance metric among sets. To
train FSA using these objectives, the algorithm generates, from unlabeled training data, a large
number of triplets by generating family of sets from input sets.

During the inference, the encoder part only of the FSA is utilized to obtain an embedded
feature of an input set. That is, the decoder part of the FSA is not used for feature aggregation
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after the training. SSC is performed by computing Euclidean distances among the embedded
features produced by the encoder. Note that, although we evaluate the FSA using multimedia
information retrieval scenario, the FSA would be applicable to other tasks such as clustering
that requires inter-set distance/ similarity computation.

3.2 Architecture of feature set aggregator

Encoder. The encoder function f transforms a set SI = {x1, ..., xn}∈ℝdf of n feature vectors
having df dimensions into a de-dimensional feature vector. For example, these numbers would
be n = 512, df = 64 and de = 256. For simplicity, we assume the cardinality n of each set is equal
among all the sets contained in a dataset. As shown in Fig. 1, the encoder comprises three
blocks, that are, the sparse coding block, the average pooling block, and the sparse embedding
block. The sparse coding block has an architecture similar to an encoder part of k-sparse
autoencoder [46]. That is, each input feature is transformed into a dc-dimensional vector via a
single fully-connected (FC) layer activated by ReLU [17] function. Then, the vector of
activation values is sparsified by keeping the kc largest activations while setting the rest to
zero. Formally, each input feature xi is sparsely encoded to hi by using the following equation.

hi ¼ top k ReLU xiWsc þ bscð Þð Þ ð1Þ
In Eq. 1, Wsc is a linear projection matrix having size df × dc and bsc is a dc-dimensional bias
vector. Wsc and bsc are tuned during the training. The function “top_k” chooses the kc largest
values from the vector activated by ReLU. We use dc = 2048 and kc = 5 throughout the
experiments unless otherwise stated.

The average pooling block aggregates the n sparse vectors to a single dc-dimensional vector
per set by using the following equation.

Fig. 1 Proposed Feature Set Aggregator (FSA) effectively and efficiently compares sets of high-dimensional
features in the embedded feature space. Embedding is optimized by using the two training objectives, i.e., set
reconstruction and set embedding, designed for set-to-set comparison
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hpooled ¼ 1

n
∑n

i¼1hi ð2Þ

Pooling operation provides for invariance against permutation of elements in the set and
reduces both spatial and temporal costs for comparison among sets. We found that, in
preliminary experiments, average-pooling performed better than max-pooling.

The sparse embedding block refines the pooled feature hpooled to a more compact and
accurate feature. Similar to the sparse coding block, we use the following equation to obtain de-
dimensional vector f.

f ¼ top k ReLU hpooledWse þ bse
� �� � ð3Þ

In Eq. 3,Wse is a matrix having size of dc × de and bse is a de-dimensional vector. The function
“top_k” in Eq. 3 extracts the largest ke activations from the vector produced by ReLU. We set
the number of non-zero elements ke to roughly one tenth of de. For example, when we use de =
256, ke is set to 25. Finally, the sparse vector f is normalized by its Euclidean norm to form an
embedded feature of the input set.

Injecting sparseness into the encoder is motivated by the success of feature aggregation
algorithms based on sparse coding (e.g., [13, 66]). Sparse coding is expected to enhance
saliency of features. Positive impact of sparseness adopted by FSA on SSC accuracy will be
demonstrated in the experimental section.

Decoder. The decoder reconstructs the input feature set from its embedding f produced by
the encoder. We use an FC layer without activation function for decoding. As shown in Eq. 4,
the de-dimensional embedded feature f is linearly transformed to an ndf-dimensional vector r.
Wd is a matrix having size of de × ndf and bd is a ndf-dimensional bias vector. The vector r is
then reshaped to a matrix having size n × df that represents the reconstructed set of n features
having df dimensions.

r ¼ f Wd þ bd ð4Þ
Preprocessing. Prior to be passed onto the FSA, each input feature is normalized by using
PCA-whitening [24] for fast and effective training. PCA-whitening reduces dimensionality of
features and spheres their distribution to have zero-mean, unit-variance, and no correlation
among the dimensions. Equation 5 computes the normalized input xnormalized from the input
feature x, where μ(x) and σ(x) are mean and standard deviation of x, respectively. P is a PCA
projection matrix learned by 250,000 input features randomly collected from the training
dataset. Matrix P of size dorig × df reduces dimensionality of input feature x from dorig to df. The
value dorig depends on the input feature while df is set manually. In this study, df is set at 64 for
most cases in the experiments.

xnormalized ¼ x−μ xð Þ
σ xð Þ P ð5Þ

3.3 Effective training of feature set aggregator

The FSA is trained by using a combination of two objective functions, that are, set recon-
struction loss LR and set embedding loss LE described below. Overall loss for the FSA is a
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weighted sum of the two losses; L = LR +αLE. The hyper-parameter α balances the two terms.
Impact of α on retrieval accuracy will be evaluated in the experiments.

Set reconstruction using angular chamfer distance We require a reconstruction loss that
satisfies the following two criteria; (1) suitable for comparing sets of whitened features that
have sphered distribution, and (2) invariant against permutation of elements both in input sets
and reconstructed output sets. To meet these criteria, we propose to use angular chamfer
distance shown in Eq. 6 as the set reconstruction loss LR.

LR ¼ ∑
N

i¼1

1

n
∑
x∈SI

min
y∈SO

1−
x � y
xk k yk k

� �
þ 1

n
∑

y∈SO
min
x∈SI

1−
x � y
xk k yk k

� � !
ð6Þ

In Eq. 6, SI and SO indicate the input and the output feature set of the FSA, respectively. n is
cardinality of the sets and N is the number of sets used for training. While standard chamfer
distance usually adopts Euclidean distance to find a pair of elements that are closest across two
sets (e.g., [2, 73]), we employ Cosine distance (i.e., angle) as it is a better metric for comparing
whitened high-dimensional features having sphered distribution. The experiments will dem-
onstrate validity of choosing the angular chamfer distance.

Set embedding using triplets on family of sets For accurate SSC, sets consisting of similar
features should be close to each other, while sets having dissimilar features should be distant
from each other, in the embedded feature space. Such embedded feature space is obtained via
training by using triplets. We use a triplet (Sa, Sp, Sn), in which the anchor set Sa is considered
to be more similar to the positive set Sp than the negative set Sn.

To collect diverse and a large number of such triplets from unlabeled training dataset, we
propose a novel triplet generation algorithm based on family of sets (see Fig. 2). Specifically,
we first randomly pick two different sets, i.e., SA and SB, from the training dataset. Assume that
both SA and SB have n elements, and importantly, the pair of sets is at least partially distinct. We
then generate a family of sets out of the union SA ∪ SB to be used as either Sa, Sp, or Sn. That is,
a generated set S ⊂ SA ∪ SB consists of rn elements randomly sampled from SA and (1 − r)n
elements randomly sampled from SB where the ratio r is randomly determined from a uniform
distribution in the range [0, 1]. From SA ∪ SB, three member sets of a triplet, Sa, Sp, and Sn, are
created by using three different ratios ra, rp, and rn such that ra < rp < rn. We form numerous
such triplets (Sa, Sp, Sn) as training samples for set embedding.

Fig. 2 Low-cost triplet generation using family of sets. We use n = 10, ra = 0.1, rp = 0.4, rn = 0.8 for description
in the figure
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Intuitively, the relation among the sets in the triplet, i.e., “Sa is more similar to Sp than Sn.”
would hold since Sa is likely to share more elements with Sp than Sn. Our triplet generation
algorithm enables us to collect numerous and diverse triplets at very low cost from the
unlabeled training dataset. We use the triplet hinge loss [57] shown in Eq. 7 as the embedding
loss LE, where f (·) denotes the encoder function of the FSA. Note that output of the function f
corresponds to the embedded feature vector f described in Section 3.2. Minimizing LE leads
FSA to form the desired embedded feature space where Sa lies closer to Sp than Sn.

LE ¼ ∑
N

i¼1
max 0; f Sað Þ− f Sp

� ��� ��2
2
− f Sað Þ− f Snð Þk k22 þ 1

� �
ð7Þ

Optimization We employ stochastic gradient descent algorithm with mini batch to train the
FSA. Specifically, each parameter of the FSA is iteratively updated by using the following
equation.

wi←wi−η
∂L
∂wi

ð8Þ

In Eq. 8, L = LR +αLE is the overall objective function and wi indicates each element of
projection matrices and bias vectors of FSA, i.e.,Wsc, bsc,Wse, bse,Wd, and bd. η is a learning
rate. Details on optimization will be described in Section 4.1.

4 Experiments and results

4.1 Experimental setup

We verify effectiveness of the proposed FSA under 3D shape retrieval, 2D image retrieval, and
document retrieval scenarios where each datum is described by an unlabeled feature set.

Benchmark datasets We use nine datasets. Table 1, Table 2, and Table 3 summarize statistics
of the datasets. For 3D shape retrieval, we use ModelNet10, ModelNet40 [69] and
ShapeNetCore55 [5] that consist of polygonal 3D models. We use the training/testing data
split provided by [5, 69]. For 2D image retrieval, we use Caltech101 [10], Flowers102 [48],
and Animals with Attributes 2 (AwA2) [71] datasets. Although the images of AwA2 have
animal class labels and attribute labels, we use only animal class labels as groundtruth for
evaluation. For document retrieval, we use News20 [29], Amazon4 [4], and DBpedia14 [31]
datasets. News20 includes text messages posted to newsgroups. Amazon4 contains product
reviews. DBpedia14 comprises documents that summarize Wikipedia articles. We use only the
testing set of DBpedia having 70,000 documents for our experiments. For Caltech101,
Flowers102, AwA2, News20, Amazon4, and DBpedia14, we randomly split the whole dataset
so that each category contains nearly equal number of samples between the training set and the
testing set.

For each dataset, the training set is used to train the FSA, while the testing set is used for
evaluation. We use Mean Average Precision (MAP) [%] as a quantitative measure of retrieval
accuracy. For each query of category c, retrieval targets of the same category c are treated as
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correct while those belonging to categories other than c are treated as incorrect. Since training
of the FSA is affected by randomness in its initialization and triplet generation steps, we run
every experiment three times and their averaged accuracies are reported. We do not report
deviations of accuracy since they are within 1% in MAP for most cases.

Features We use multiple (i.e., two to four) features per retrieval scenario to make the
evaluation convincing. Most of the features described below have dimensionality of about
100 to 500. The preprocessing by using PCA-whitening compresses them down to df = 64
dimensions.

For 3D shapes, we employ RoPS [20], POD [12], and raw oriented points (OP) as local
geometric features. A 3D polygon model is first converted into a set of 2048 oriented points by
using the algorithm by Ohbuchi et al. [50]. We then extract a set of either 512 RoPS or 512
POD features from the oriented point set to describe shape of the 3D model by the set of
features. We also use a set of randomly subsampled 1024 OPs to describe the 3D model where
each OP is represented by a 6-dimensional vector (i.e., 3 dimensions for point position and the
other 3 dimensions for point orientation). As an exception, we don’t reduce the dimensionality
of OPs at the preprocessing stage for it already has low dimensionality.

For 2D images, we use Dense SIFT (DSIFT) and convolutional neural network activation
(CNNA) as local visual features. From each image, we extract a set of 1024 SIFT [40] features
sampled at random positions and at random scales. For CNNA, we use three CNNs, that are,
AlexNet [27], VGG19 [60], and ResNet50 [21] trained by using ImageNet corpus [9]. Each
CNNA feature is denoted by “CNNA-Alex”, “CNNA-Vgg19”, and “CNNA-Res50” depend-
ing on the CNN used for local feature extraction. CNNA-Alex is extracted as follows. We first
randomly crop an image to obtain 20 patches having size 224 × 224 pixels each. Each patch is
fed into AlexNet to obtain the pool5 feature map having 6 × 6 spatial resolution. We partition
the feature map into 36 feature vectors. As a result, we obtain a set of 20 × 36 = 720 CNNA-
Alex features per image. Similarly, for CNNA-Vgg19 (or CNNA-Res50), we feed 5 patches
randomly cropped per image into the CNN. We then obtain the block4_pool feature map of
VGG19 (or the activation_48 feature map of ResNet50) having 14 × 14 spatial resolution.

Table 1 Benchmark datasets for 3D shape retrieval

datasets ModelNet10 ModelNet40 ShapeNetCore55

# of training data 3991 9843 35,764
# of testing data 908 2468 10,265
# of categories 10 40 55
examples of

category
bathtub, bed, chair, table,

monitor
airplane, chair, plant, car,

piano
knife, guitar, table, lamp, sofa,

clock

Table 2 Benchmark datasets for 2D image retrieval

datasets Caltech101 Flowers102 AwA2

# of training data 4367 4119 18,670
# of testing data 4310 4070 18,652
# of categories 101 102 50
examples of category ant, ferry, crocodile,

umbrella, mandolin
lotus, rose,

marigold, sunflower,
hibiscus

antelope, dalmatian,
hippopotamus, wolf
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Thus, we obtain 5 × 14 × 14 = 980 CNNA-Vgg19 features (or 980 CNNA-Res50 features) per
image.

For text documents, we use word vectors learned by using Latent Semantic Analysis (LSA)
[28] or Word2Vec (W2V) [47] algorithms. After removing stop words, each document is
described by a set of 200 words randomly sampled from the document. Each word is
transformed into a word vector by using the trained model either of LSA [19] or W2V [68].

Competitors We compare the FSA against 13 unsupervised SSC algorithms roughly grouped
into four approaches described below.

& No aggregation. Chamfer distance (CD) [15] performs SSC by all-pair matching of
features between two sets. We also tried SSC using Earth Mover’s distance, but we found
it was infeasible since computing bijections of feature vectors was temporally inefficient.

& Aggregation using first-order statistics. Each feature in a set is encoded based on
similarities, or weights, to one or more codewords. The encoded features are pooled, by
summing, to form an aggregated feature per set. We adopt Bag-of-Features (BF) [8],
Locality-constrained Linear coding (LL) [66], and Database-adaptive k-Sparse
Autoencoder (DkSA) [13] as competitors. Additionally, we evaluate sum pooling of raw
input features, denoted by “sum”. Without elaborate encoding, this probably is the simplest
of feature aggregation methods.

& Aggregation using higher-order statistics. A set of features is aggregated by using
higher-order statistics, such as covariance, of features distributed around codewords. We
use Vector of Locally Aggregated Descriptors (VLAD) [25], Fisher Vector coding (FV)
[54], Super Vector coding (SV) [70], Fine-residual VLAD (FVLAD) [38], Second-order
aggregation with Matrix Power Normalization (SMPN) [37], and Grassmann Pooling (GP)
[67] as competitors.

& Aggregation using neural network. NetVLAD [3] and NeXtVLAD [36] are feature
aggregation modules which can be incorporated in neural networks having various
architectures. To verify effectiveness of feature aggregation by FSA, we replace the
encoder part of FSA described in Section 3.2 with NetVLAD or NeXtVLAD modules.
Note that NetVLAD and NeXtVLAD do not explicitly constrain embedded features to be
sparse during their training. This way, we can evaluate the effect sparseness has on
accuracy. For a fair comparison, we use the same decoder and loss function for NetVLAD,
NeXtVLAD, as well as for FSA.

Implementation details of FSA To train the FSA, we use Adam optimizer [26] with initial
learning rate η = 0.001 to minimize the overall objective function L described in Section 3.3.

Table 3 Benchmark datasets for document retrieval

datasets News20 Amazon4 DBpedia14

# of training data 5652 4000 35,000
# of testing data 5662 4000 35,000
# of categories 20 4 14
examples of

category
baseball, motorcycle, gun,

religion, space
book, DVD, electronics,

kitchen
company, animal, film, artist,

building
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Each mini-batch contains 8 triplets (i.e., 24 sets) that are created on-the-fly during training.
Training is iterated for 100 epochs. We used TensorFlow r1.7 [1] to implement the FSA.

Table 4 summarizes values of the hyper-parameters for the FSA. We used the values in
Table 4 unless otherwise noted. As we will show in Section 4.4, the balancing parameter α has
an impact on retrieval accuracy. Therefore, in the case of the 3D shape retrieval scenario, we
searched for an optimal value of α for each input feature. On the other hand, for 2D image and
document retrieval, we fixed α to 1. This is because searching for optimal values of α for all
the pairs of input features and datasets in these scenarios is computationally too expensive.

4.2 Comparison with existing unsupervised SSC algorithms

Accuracy Table 5, Table 6, and Table 7 compare retrieval accuracies of 3D shapes, 2D images,
and documents, respectively. Each table shows MAP scores for every combination of the input
features and the 14 SSC algorithms including the proposed FSA. BF, LL, DkSA, NetVLAD,
and NeXtVLAD produce aggregated features having 2048 dimensions, while VLAD, FV, SV,
and FVLAD produce aggregated features with nearly 8000 dimensions. For the FSA, we use
two embedded feature dimensions, i.e., de = 2048 and 256, denoted by “FSA-2048” and “FSA-
256”, respectively, in the tables. We do not report accuracies of CD for the AwA2 dataset and
the DBpedia14 dataset. This is because chamfer distance when applied to such a large dataset
had excessively high temporal cost.

Table 4 Values of hyper-parameters for FSA used in the experiments

hyper-parameters 3D shape retrieval 2D image retrievaland document retrieval

(dc, kc) (2048, 5) (2048, 5)
(de, ke) (2048, 200) or (256, 25) (2048, 200) or (256, 25)
α 5 for RoPS and POD feature0.5 for OP feature 1

Table 5 3D shape retrieval accuracy (MAP [%])

Algorithms ModelNet10 ModelNet40 ShapeNetCore55

RoPS POD OP RoPS POD OP RoPS POD OP

CD [15] 50.4 50.3 51.5 39.0 38.4 40.8 35.5 35.7 41.6
sum 38.0 42.6 19.4 27.1 30.5 10.4 26.5 31.3 10.9
BF [8] 54.1 57.0 48.6 38.0 40.6 38.1 36.6 40.3 41.1
LL [66] 54.0 55.6 50.8 40.7 42.7 43.4 37.8 41.7 45.4
DkSA [13] 59.6 61.2 53.6 44.3 48.4 38.4 42.8 47.9 38.1
VLAD [25] 50.4 53.7 50.1 37.4 41.8 36.7 34.7 40.2 39.0
FVLAD [38] 50.2 53.8 47.9 38.5 41.5 35.0 35.3 40.0 35.6
FV [54] 51.9 54.1 47.9 39.8 42.6 37.3 36.7 43.7 39.2
SV [70] 52.7 54.1 47.0 40.1 42.5 34.5 37.4 41.6 33.3
SMPN [37] 55.4 58.6 39.2 42.7 46.9 23.1 41.2 46.7 34.5
GP [67] 55.2 57.3 31.5 42.1 45.9 15.8 41.0 45.2 25.8
NetVLAD [3] 58.1 60.4 51.3 41.8 45.1 34.7 42.0 43.3 40.9
NeXtVLAD [36] 60.3 61.4 53.2 42.3 44.8 36.7 40.9 43.6 44.2
FSA-2048 (proposed) 70.0 71.6 68.1 52.3 56.6 44.5 51.5 55.0 53.9
FSA-256 (proposed) 69.4 71.4 67.9 51.6 55.5 43.8 50.6 53.8 53.5
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The results in Table 5, Table 6, and Table 7 demonstrate high accuracy as well as high
generality of the FSA. While not true in all the cases, FSA-2048 significantly outperforms the
other SSC algorithms for diverse combination of benchmark datasets and input features. The
proposed neural network architecture and its training objectives of the FSA appears to learn
better representation of unordered feature sets for SSC. In many cases, more compact FSA-256
still yields accuracies superior or comparable to its competitors. On the other hand, the existing
feature aggregation algorithms show limited generality compared to the FSA. For example,
VLAD and FVLAD perform well in 2D image retrieval, but their accuracies are lower than
those of the simple sum aggregation in the most cases of text document retrieval.

Comparison of FSA-2048 with NetVLAD and NeXtVLAD verifies effectiveness of the
embedding function of FSA. FSA-2048 consistently outperforms NetVLAD and NeXtVLAD
for all the datasets in Table 5, Table 6, and Table 7. The dimensionality of these three features
are identical at 2048. As we will show in Section 4.4, introducing sparseness to feature coding
and feature embedding of FSA has positive impact on retrieval accuracy.

Table 7 Document retrieval accuracy (MAP [%])

algorithms News20 Amazon4 DBpedia14

LSA W2V LSA W2V LSA W2V

CD [15] 8.1 9.7 42.0 44.7 – –
sum 12.6 16.4 51.6 55.9 57.0 60.6
BF [8] 13.0 11.1 47.6 45.5 43.5 42.3
LL [66] 12.9 11.9 48.3 46.5 50.0 46.9
DkSA [13] 14.3 12.6 47.0 42.9 37.9 34.6
VLAD [25] 14.0 12.9 37.4 36.3 28.9 41.3
FVLAD [38] 8.7 8.6 35.1 36.4 32.2 39.0
FV [54] 11.4 11.1 44.8 37.3 36.1 39.4
SV [70] 12.8 12.7 48.7 37.2 35.2 40.9
SMPN [37] 21.7 16.8 61.2 55.8 56.7 56.4
GP [67] 17.1 14.3 59.8 55.8 41.5 35.7
NetVLAD [3] 10.7 20.1 50.0 53.2 58.9 65.8
NeXtVLAD [36] 12.9 20.0 52.4 55.1 57.2 56.7
FSA-2048 (proposed) 23.5 29.0 61.4 64.8 66.3 69.9
FSA-256 (proposed) 18.9 28.0 61.5 65.3 64.2 66.3

(a) sum,

MAP = 38.0 %

(b) DkSA,

MAP = 59.6 %

(c) FSA (proposed),

MAP = 69.4 %

Fig. 3 Visualization of feature spaces formed by aggregated RoPS features. Each colored dot represents an
embedded feature of a 3D shape belonging to one of the ten object categories
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Visualization We visualize feature spaces produced by three feature aggregation algorithms,
i.e., sum of feature vectors, DkSA, and the proposed FSA. We use t-SNE algorithm [45] for
visualization. Figure 3 visualizes feature spaces formed by aggregated RoPS features of test-set
3D shapes contained in the ModelNet10 dataset. Similarly, Fig. 4 compares feature spaces
formed by aggregated W2V features of test-set text documents in the Amazon4 dataset. We
can observe that, especially in the case of 3D shape shown in Fig. 3, the FSA yields an
embedded feature space where categories are better separated than feature spaces produced by
the sum aggregation and the DkSA aggregation.

Temporal complexity Table 8 compares temporal complexity of SSC algorithms to
compute a distance between two feature sets. Recall that each feature set contains n
vectors having df dimensions. Chamfer distance (CD) requires high computational cost
for distance computation since it does not aggregate features. Sum aggregation is
temporally very efficient since it aggregates features by simple summing. VLAD
requires O(m·n·df) for aggregation, whose computation is dominated by searching
codewords closest to each of n input features. m is number of the codewords for
VLAD. FSA requires O(dc·(n·df + de)) for aggregation since it needs O(n·df·dc), O(n·dc),
and O(dc·de) for sparse coding, average pooling, and sparse embedding, respectively.

For feature aggregation, FSA has the highest complexity in Table 5 since dc is typically
larger than m (e.g., dc = 2048 and m = 128). On the other hand, for distance computation, FSA
is more efficient than CD and VLAD. Dimensionality of aggregated feature de of FSA is
significantly smaller than that of VLAD.

Table 9 shows computation time per query on the ModelNet40 test set including
2468 3D models. We used a PC having an Intel Core i7 6700 CPU, a GeForce GTX
1080 Ti GPU, and 64GB DRAM for the timing. In Table 9, the columns named
“feature extraction” and “feature aggregation” are processing times for extracting 512
RoPS features from the query 3D model and aggregating these RoPS features of the

(a) sum,

MAP = 55.9 %

(b) DkSA,

MAP = 42.9 %

(c) FSA (proposed),

MAP = 65.3 %

Fig. 4 Visualization of feature spaces formed by aggregated W2V features. Each colored dot represents an
embedded feature of a text document belonging to one of the four topics

Table 8 Temporal complexity for set-to-set comparison

SSC algorithms feature aggregation distance computation

CD – O (n2·df)
sum O (n·df) O (df)
VLAD O (m·n·df) O (m·df)
FSA O (dc·(n·df + de)) O (de)
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query, respectively. The column “distance computation” means time for comparing the
aggregated feature of the query against aggregated features of the 2467 retrieval targets.
Note that codes of the SSC algorithms used for the timing were accelerated by different
hardware. For example, our implementation of FSA employs the GPU for acceleration
while VLAD utilizes multiple cores of the CPU.

Although direct comparison is difficult for the reason described above, Table 9 indicates
that the three algorithms that employ feature aggregation based approach, that are, sum,
VLAD, and FSA, are more efficient than the algorithm without aggregation, that is, CD.
Retrieval time of FSA is comparable to that of sum aggregation, which pools features very
quickly. In the feature aggregation based approaches, computation time are dominated by
RoPS feature extraction. In the case of CD, the cost of distance computation is dominant, in
which element-to-element comparison of all the features between pairs of sets must be
performed.

Since the proposed FSA is based on neural network, its training cost is much higher than
the existing feature aggregation algorithms. VLAD took about 20 s for codebook learning with
m = 128 while FSA took about 4 h of training for the ModelNet40 dataset. Note, however, that
training of FSA is preprocessing. It is required only once per dataset before querying the
dataset.

Table 9 Computation time [s] per query

SSC algorithms feature extraction feature aggregation distance computation total

CD 0.053 – 3.216 3.269
sum 0.053 0.0006 0.002 0.056
VLAD 0.053 0.0035 0.006 0.063
FSA 0.053 0.0059 0.001 0.060

We used n = 512, df = 64, m = 128, dc = 2048, de = 64

Table 10 3D shape retrieval accuracy (MAP [%])

algorithms supervision bylabels? ModelNet10 ModelNet40

D2 [51] No 28.6 19.1
SPRH [64] No 41.2 32.9
LFD [7] No 49.8 40.9
SPH [52] No 44.1 33.3
PANORAMA [58] No 60.3 46.1
SV-DSIFT [11] No 60.2 49.5
LL-MO1SIFT [11] No 63.1 48.0
DkSA-POD [13] No 61.2 48.4
FSA-DSIFT (proposed) No 73.3 58.8
FSA-MO1SIFT (proposed) No 73.1 60.3
FSA-POD (proposed) No 71.6 56.6
3D ShapeNets [69] Yes 68.3 49.2
MVCNN [61] Yes – 79.5
DeepPano [59] Yes 84.2 76.8
DLAN [14] Yes 90.6 85.0
PANORAMA-ENN [58] Yes 93.3 86.3
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4.3 Comparison with existing 3D shape retrieval algorithms

The experiments under the 3D shape retrieval scenario using ModelNet10 and ModelNet40
follow the evaluation protocol provided byWu et al. [69]. Therefore, we can compare accuracy
of our 3D shape matching algorithm using the FSA against accuracies of existing algorithms
for 3D shape retrieval.

Table 10 compares MAP scores for the ModelNet10 and the ModelNet40 datasets. As
competitors, we use eight algorithms that compare unlabeled 3D shapes without any supervi-
sion. Among the eight algorithms, SV-DSIFT [11], LL-MO1SIFT [11], and DkSA-POD [13]
are state-of-the-art algorithms for comparing unlabeled 3D shapes. They extract a set of
handcrafted feature vectors called DSIFT, MO1SIFT, or POD, respectively. The set of features
is aggregated per 3D shape by using feature aggregation algorithms, i.e., SV, LL, or DkSA. We
replace these feature aggregation algorithms used by these algorithms with the proposed FSA.
In addition, we also list, in Table 10, retrieval accuracies of five deep neural network-based 3D
shape matching algorithms that rely on supervised training using object category labels.

In Table 10, those algorithms using FSA outperform the other eight unsupervised algo-
rithms. Feature aggregation using the FSA significantly boosts MAP scores, by about 10% for
most cases, compared to such state of the art feature aggregation algorithms as SV, LL, and
DkSA. As expected, deep neural networks trained with supervision yield higher retrieval
accuracies than the algorithms without supervision. Interestingly, however, the FSA-based
algorithms outperform the 3D ShapeNets. This result would partially supports our argument,
that is, the FSA learns accurate representation of feature sets without relying on labels.

Table 11 Comparison of set reconstruction loss (MAP [%] for ModelNet10)

set-to-set distance element-to-element distance

Euclidean distance Manhattan distance Cosine distance

Earth Mover’s distance 61.1 61.3 63.8
Hausdorff distance 52.4 52.4 58.5
chamfer distance 60.2 60.0 66.6
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4.4 In-depth evaluation of feature set aggregator

This section explores effect design parameter has on the proposed algorithm. We use the
ModelNet10 dataset along with the RoPS feature for the experiments described below.

Set reconstruction loss We compare nine set reconstruction losses. We employ three set-to-
set distances, i.e., Earth Mover’s distance, Hausdorff distance, and chamfer distance for LR.
Besides, for each set-to-set distance, we vary distance metric among set elements. That is, we
use Euclidean, Manhattan, and Cosine distances as element-to-element distances. We disable
set embedding loss LE by fixing the hyper-parameter α to 0 in the experiment. The results
shown in Table 11 indicates that choice of set reconstruction loss has a significant impact on
retrieval accuracy. Chamfer distance combined with Cosine distance, in other words, angular
chamfer distance, performs the best among the nine loss functions. Angle would be an
appropriate metric to compare the whitened input features having sphered distribution.

Set embedding loss We investigate effectiveness of the set embedding loss LE by varying the
hyper-parameter α from 0 to 50. Figure 5 plots MAP scores against the different values of α.
In the figure, α = 0 means the FSA is trained solely by set reconstruction loss LR. Mixing LR
and LE by using values of α > 0, for example, α = 0.5, improves retrieval accuracy for all the
three 3D shape features we experimented with. The proposed triplet generation algorithm
using family of sets has a positive impact on learning better embedding feature space for SSC.
In Fig. 5, peaks of retrieval accuracy appear at different values of α depending on the feature
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(and also probably on the dataset). This implies that manually searching an appropriate value
of α is required to obtain the best result when using the proposed FSA algorithm. Note,
however, that the FSA is not very sensitive to the value of α. The FSA consistently produced
good MAP scores (over 60%) for the wide range of α we experimented with.

Embedded feature dimension Figure 6 plots MAP scores against the number of dimensions
of aggregated features. For the FSA, aggregated feature dimension corresponds to dimension-
ality de of the embedded feature space. Accuracies of the conventional feature aggregation
algorithms, i.e., LL and DkSA, drop significantly if dimensionality of features becomes low. In
contrast, the FSA keeps high MAP value (nearly 60%) even at dimensionality as small as 8.

Sparseness in encoder Figure 7 and Fig. 8 show an impact of sparsity in the encoder part of
the FSA on retrieval accuracy. Figure 7 plots accuracies against the number of non-zero
activations kc of the sparse coding block. We fixed the other hyper-parameters dc, de, and ke to
2048, 256, and 25, respectively. For all the features in Fig. 7, accuracies have peaks at around
kc = 5. Increasing kc, i.e., having the coding block produce denser activations, lowers retrieval
accuracy. Sparseness in the coding block enhances saliency of each encoded input features.
Meanwhile, Fig. 8 plots accuracy against ke, i.e., the number of non-zero activations in the
sparse embedding block, while keeping the number of non-zero activations kc at 5. The plots of
accuracy have weak peaks around ke = 25 or ke = 50. Although not so evident as in the case of
sparse coding block, sparseness of the embedding block also helps the FSA learn better feature
representation of sets.

Ablation study Table 12 demonstrates importance of whitening input features, sparseness in
encoder, and objective function for training. In the table, “No” for the “whitening input
features” column indicates that input sets of RoPS features are fed into the FSA as-is without
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Table 12 Ablation study of FSA (MAP [%] for ModelNet10)

whitening input features sparseness in encoder objective function MAP [%]

Yes Yes LR +αLE 69.4
Yes Yes LE only 66.7
Yes Yes LR only 66.9
Yes No LR only 59.7
No No LR only 55.4
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whitening. “No” for the “sparseness in encoder” column means sparsification using top-k
activations is omitted at the sparse encoding layer and the sparse embedding layer of the FSA.
The results validate the design of FSA algorithm that aims at accurate SSC.

5 Conclusion and future work

In indexing, clustering, or retrieval of multimedia data, each datum is often described by an
unordered set of high-dimensional feature vectors. To perform these operations effectively and
efficiently, Set-to-Set Comparison (SSC) among such unordered sets is very important.
Aiming at accurate and efficient SSC, this paper proposed an unsupervised representation
learning algorithm called Feature Set Aggregator (FSA). To learn effective embedding of
unlabeled sets in an unsupervised manner, we designed two training objectives for FSA, that
are, set reconstruction using angular chamfer distance and set embedding using triplets
generated on family of sets. Extensive evaluation under three multimedia information retrieval
scenarios using 3D shapes, 2D images, and text documents demonstrated efficacy and
generality of the FSA.

As future work, we will seek better neural network architecture and better training objective
than the current FSA. For example, the current FSAwith only a few layers is much shallower
than recent neural networks used, for example, for image recognition. We need to evaluate
influence of increasing the number of layers of FSA on SSC accuracy. Also, we plan to
evaluate the FSA under scenarios other than multimedia information retrieval, e.g., clustering,
to further verify the quality and generality of feature representation of sets learned by the FSA.
Possible evaluation scenarios include more specific tasks such as fingerprint recognition or
palmprint recognition (e.g., [43]). Recognizing fingerprints or palmprints often requires set-to-
set comparison where each set consists of keypoints extracted from a skin image. Furthermore,
we envision extending the FSA to the problem of cross-modal set-to-set comparison. Learning
common representation of sets describing different types of multimedia data would be valuable
for cross-modal information retrieval (e.g., [72]) or more challenging cross-modal multimedia
understanding problem [44].
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