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Abstract— Hand-drawn sketch is a powerful modality to 

query 3D shape models. However, specifying a detailed 3D 
shape by a sketch on the first try without reference (i.e., 3D 
model or real object) is difficult. In this paper, we aim at a 
sketch-based 3D shape retrieval system that tolerates coarsely 
drawn or incomplete sketches having small number of strokes. 
Such a system could be used to start a sketch-retrieve-refine 
interactive loop that could lead to a 3D shape having required 
shape details. Proposed algorithm uses deep feature 
embedding into common feature embedding space to 
compare sketches and 3D shape models. To handle coarse or 
incomplete sketches, a sketch, which is a sequence of strokes, 
is augmented by removing stroke for training a pair of DNNs 
to extract sketch features. A sketch feature is a fusion of an 
image based feature extracted by a convolutional neural 
network (CNN) and a 2D point sequence feature extracted by 
using a recurrent neural network (RNN). Embedding of 3D 
shape feature and the sketch feature is learned by using triplet 
loss. Experimental evaluation of the proposed method is 
performed using (simulated) incomplete sketches created by 
removing part of their strokes. The experiments show that 
sketch stroke removal augmentation significantly improved 
retrieval accuracy if queried by using such incomplete 
sketches. 

Keywords— 3D shape retrieval, sketch-based retrieval, deep 
metric learning, triplet network, recurrent neural network, 2D 
convolutional neural network. 

I.  INTRODUCTION 

Hand-drawn sketch can be a powerful modality to query 
3D shape models. We don’t need to possess 3D shape 
models close enough to retrieval target. We don’t have to 
know label of the target shape. And a sketch allows, albeit 
in 2D, for potentially detailed specification of shape, not 
just a broad category name, of the 3D models desired. 
However, we rarely have a concrete and detailed 3D shape 
in mind when we set about to sketch a query. We know what 
exact shape we wanted after the retrieval. However, we 
often don’t know what we want when we start the process 
of often exploratory search. It is an iterative and interactive 
query refinement loop that brings out the shape details we 
want.  

To support such an exploratory mode of search, a 3D 
shape retrieval system that supports a search with a not-so-
well-defined query is needed. Such an exploratory search 
should most likely support multiple query modalities 
including text, 2D sketch, 2D photograph, and 3D shape 

model. For example, a search would start with a text query 
that specify a semantic class. Then, the iteration using 
progressively refined 2D hand-drawn sketches narrows 
down the shape to be retrieved. There could be another step, 
e.g., by using one of (or some of) the retrieved 3D model(s) 
as queries to retrieve final candidates.  

Toward the goal of such an exploratory 3D shape search 
system having multiple query modalities, we explore in this 
paper a hand-drawn 2D sketch-based 3D shape retrieval 
system that supports partially drawn or coarse sketches as 
query. While there have been many studies on sketch-based 
3D model retrieval, all such system that we know of accepts 
final, or completed sketch as their query input. If incomplete 
sketches are given, retrieval accuracy of such systems 
would significantly degrade.  

In this paper, we propose and evaluate an algorithm for 
sketch-based 3D shape retrieval that assumes as its input 
incomplete or partially drawn sketches. Multimodal 
comparison of sketches and 3D shape models is handled by 
deep metric learning using Triplet Network [1], which 
creates a common feature embedding space (CFES). To 
improve features extracted from an incomplete sketch, the 
sketch is treated both as a series of 2D images whose stroke 
complexity gradually increases, and as a series of pen 
strokes that are trajectories of 2D points. Sketch image 
feature extracted by a convolutional neural network (CNN) 
and sketch stroke sequence feature extracted by using a 
recurrent neural network (RNN) are combined into a fused 
sketch feature via a shallow neural network (NN). The 
sketch feature extraction CNN is trained by using a data 
augmentation method that simulates unfinished sketches by 
removing sketch strokes. (The sketch stroke sequence 
feature does not require augmentation.) The fused sketch 
feature and 3D shape feature are transformed by a feature 

Fig. 1.  Our ultimate goal: Exploratory and interactive “sketch-retrieve-
refine” loop for coarse-to-fine sketch-based 3D model retrieval. 
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embedding network into features embedded in the CFES for 
direct comparison.  

Experimental evaluation showed that proposed 
algorithm trained with the sketch stroke removal data 
augmentation produced good retrieval accuracy even for 
coarse sketch consisting of small number of strokes. Also, 
combining image feature and stroke sequence feature 
significantly improved retrieval accuracy compared to the 
case where only one of the features is used. 

Contribution of our work can be summarized follows; 

 Proposal of a sketch-based 3D shape retrieval 
algorithm that can handle partially drawn or coarse 
sketches. To do so, the system uses a sketch feature 
that combines image-based and stroke-sequence based 
features. The feature extractor is trained using a sketch 
data augmentation that removed strokes from sketch 
stroke sequence to simulate partially drawn sketches.  

 Multimodal comparison of heterogeneous data objects, 
sketch and 3D shape, is done by using common feature 
embedding space induced by Triplet Network [1]. 

 Experimental evaluation of the above approaches that 
showed the proposed approaches are effective for 3D 
shape retrieval using coarsely drawn sketches. 

The rest of this paper is structured as follows. We review, 
in the next section, work related to the proposed algorithm. 
We then describe the proposed algorithm in Section III, 
followed by experiments and results in Section IV. We 
conclude the paper in Section V.  

II. PREVIOUS WORK 

We briefly review previous work on sketch-based 3D 
model retrieval methods.  

A. Sketch-based 3D model retrieval 

Retrieval of 3D models based on hand-drawn 2D 
sketches has been a difficult problem for several reasons. 
First, a sketch, be it a sketch image or a sequence of pen 
strokes that produces the sketch, is of different data type, or 
in a different data domain, than a 3D shape model. 
Comparison requires a mean to bridge the domain gap. 
Second, a sketch can be highly variable. It varies 
significantly due, for example, to semantic abstraction, 
incomplete knowledge of or ambiguities in the 3D shape to 
be drawn, drawing technique, drawing style preference, 
drawing medium and tool used, time allotted for drawing.  

Eitz et al. [2] tried to bridge the domain gap by rendering 
a 3D model into sketch-like images from multiple 
viewpoints. The comparison between a sketch image and a 
3D model is made in the domain of sketch-like images by 
using hand-crafted image features. Furuya et al. [3] tried to 
bridge the domain gap by employing a cross-modal 
manifold learning so that 3D shape features of 3D models 
can be compared with sketch images on a manifold 
constructed from sketch and 3D model data. 

Recent advent in deep neural network (DNN) made 
comparison between heterogeneous data domains easier. 
Wang et al. [4] used Siamese network and contrastive loss 
to compare sketch-like rendering of 3D models with 

sketches. The features are embedded into a learned CFES 
for direct feature to feature similarity computation. The 
system achieved good retrieval accuracy given finished 
sketches. However, as the system assumed finished 
sketches as its input, retrieval accuracy would degrade 
significantly if the sketches are unfinished and have fewer 
number of strokes. 

 In Shape2Vec by Tasse et al. [5], 3D shape feature, 
sketch feature, and photographic image feature are all 
embedding into a CFES for cross-domain comparison. The 
common embedding space is formed as a feature space of 
words induced by Word2Vec [5] from a text corpus such as 
a Wikipedia snapshot. Features from 3D models (which is 
view-based using DNN), sketches, and photographs are 
embedded in the common feature space so that features of 
the same category are closer regardless of their original data 
domains. Common feature embedding space is a powerful 
approach that allows comparison of data from 
heterogeneous domains. Our proposed method employs 
CEFS to compare sketches with 3D models. 

Majority of the work in sketch-based retrieval (or sketch 
image classification) are based on “coarse” sketches, that is, 
finer differences isn’t an issue so far as their object classes 
match. In many practical retrieval tasks, however, details do 
matter. The user often wants a pair of shoes with a specific 
detail (e.g., toe shape or heel height), not just a shoe. Qian 
et al. [7] tackled this issue by using a DNN structure called 
Triplet Network [1] to retrieve images of objects based on 
sketches having specific details. This method also uses a 
CFES, and it is induced by training by using triplet loss. The 
Triplet Netowrk is trained by using triplets of features 
(freference, fpositive, fnegative). A set of triplets induces a feature 
space where freference and fpositive are close while freference and 
fnegative are distant. Note that this training does not explicitly 
use labels. The triplet simply specifies ranking among a pair 
of similarities. We employ Triplet Network to induce the 
CFES among 3D shape features and sketch features.  

While a sketch is most commonly seen as a 2D image, 
it could also be a sequence of strokes or points if so recorded. 
Ha, et al. [8] in Sketch-RNN regarded a sketch as a 
sequence of strokes, each of which is in turn a sequence of 
points, for sketch recognition. A stroke sequence of a sketch 
is fed into an RNN to extract a stroke-based sketch feature. 
Xu et al. [9] in Sketchmate also treated a sketch as a point 
to retrieve sketches. Sketchmate treated a sketch both as a 
sequence of pooints as well as images. An image of a sketch 
is fed to a 2D CNN to extract 2D image feature. At the same 
time, a sequence of 2D points of a sketch is fed to an RNN 
to produce a stroke-based feature. These two features are 
combined using a neural network for retrieval. To speed up 
search, the combined feature is the hasned, using a DNN 
into a binary domain for fast comparison using Hamming 
distance. Our approach in this paper also use a combination 
of image based feature and stroke (2D point) sequence 
based feature for sketches to retrieve 3D shape models. 

All the previous methods that we know of for sketch-
based 3D shape retrieval considered a query sketch as 
finshed product. However, this assumption is not accurate 
if we were to support exploratory retrieval of the sketch-
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retrieve-refine loop. Our proposed method compares 3D 
shape feature and sketch feature in the CFES learned by 
Triplet Network. The sketch feature is a combination of 
sketch stroke sequence feature and sketch image feature, 
latter of which is trained by using data augmentation that 
simulates unfinished, or partially drawn, sketches. (As 
noted before, the sketch stroke sequence feature does not 
require explicit augmentation.) 

B. 3D shape feature 

Many classical approaches that employ hand-crafted 3D 
shape features, for example, [10], [11], [12], [13], exist. A 
good survey of work in this class can be found in [14]. With 
recent advance in neural network, many end-to-end neural 
network have been proposed for 3D shape recognition.  

Voxel representaion is used in [15], [16], and others. 
Voxel representation of 3D shape is a natural extension of 
2D image as 2D array of pixels. Many 2D CNNs can be 
extended naturally to accommodate voxels, a 3D array of 
scalar values. Voxel representation has some disadvantages, 
however. Due to limitation in DNN complexity, voxel size 
is limited so the shape details are often lost when 3D shape 
is converted to low-resolution voxel representation. It is 
also difficult to realize full 3D rotation invariance. Another 
popular approach is view-based. 3D shape models are 
rendered from multiple viewpoints into a set of images and 
2D CNN for images are applied to each image (for example 
[17] and [18]). Rendered images could capture details to 
achieve high retrieval accuracy, but full rotation invariance 
is still difficult to achieve. 

A more recent trend is to use point set representation of 
3D shape, as in PointNet [19], PointNet++ [20], and SO-net 
[21]. PointNet achieves partial invariance to rotation via 

Spatial Transformer network embedded in it. Another trend 
is to extend DNN to handle polygonal representation [22]. 
3D point set representation of 3D shape is a “minimal” 
representation without connectivity or topology, somewhat 
like raw pixels in 2D images. Point-based representation is 
spatially efficient, in that there is no point allocated for 
empty space. We employ PointNet for 3D shape feature 
extraction.  

III. PROPOSED METHOD 

Proposed method employs CFES to compare 3D shape 
feature of 3D models in the database with sketch feature 
extracted from a query sketch (See Fig. 2). Embedding of 
3D shape feature and sketch feature is handled by using a 
pair of 4 layer fully connected NNs trained by using triplet 
loss [7]. Fused sketch feature is a combination of sketch 
image feature extracted by a CNN and sketch stroke 
sequence feature extracted by an RNN. Fusion of the two 
sketch features is performed either by simple vector 
concatenation or by a NN. A 3D shape feature is extracted 
from the 3D point set representation of a 3D shape by using 
PointNet [19]. The following sections will describe each of 
these components in more details.  

A. Triplet Network for Feature Embedding 

Embedding of 3D shape features from the PointNet 
(256D) and fused sketch features (128D) into the CFES 
having 128D is done by using a Triplet Network [1], a 
network for deep metric learning without using explicit 
labels. During training, the Triplet Network uses two DNNs, 
one for embedding fused sketch feature and another for 
embedding 3D shape feature. The 3D shape feature 
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Fig. 2.  The proposed method compares two heterogeneous datatypes, 3D shape and 2D sketch, in a common feature subspace induced by deep metric learning. 
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extracted from point-set representation of the 3D model. 

on-the-fly 
point sequence 

Sketch image 
feature (128D) 

Sketch stroke 
feature (256D) CNN-LSTN 

PointNet 

PointNet 

VGG-16 

Sketch data augmented by 
removing sketch strokes 

(3D polygon models are first 
converted to 3D pointset 

models to be fed to PointNet) 



S. Kuwabara, R. Ohbuchi and T. Furuya, "Query by Partially-Drawn Sketches for 3D Shape Retrieval,"  
2019 International Conference on Cyberworlds (CW), Kyoto, Japan, 2019, pp. 69-76.   doi: 10.1109/CW.2019.00020 

embedding DNN embeds a 3D shape feature similar to the 
sketch (“positive” 3D model), as well as a 3D shape feature 
less similar to the sketch than the “positive” 3D model 
(“negative” 3D model). Thus, the dataset for training the 
network is a set of triplets (fsketch, fpositive_3D, fnegative_3D), in 
which fsketch is the fused sketch feature, fpositive_3D is the 3D 
shape feature for the positive 3D model, and fnegative_3D is the 
3D shape feature for the negative 3D model. Training is 
done so that the following loss function is minimized.  

 arg max(0, )pos neglossT m d d    (1) 

where posd  is the distances between fsketch and fpositive_3D , and  
negd  is the distance between  fsketch  and  fnegative_3D. The 

margin m is set at 0.2 for the experiments below. 
Table 1 and Table 2 show detailed network 

architectures of the feature embedding networks. L2 
normalization of feature is applied at the output layers of 
respective embedding network. These embedding networks 
are rather shallow having only 4 layers, compared to the 23 
layers for the deepest path of the proposed method depicted 
in Fig. 1. Such a shallow network appears reasonable since 
input features for sketch and 3D shape are already refined.  

Input dimensionalities of the embedding NNs are 
chosen to match those of PointNet feature (256D) and fused 
sketch feature. Output dimensionalities of the embedding 
networks must equal the dimensionality of the CFES. We 
chose the dimensionality of the CFES at 128D for the 
experiments described below.  

Note that the dimensionality of fused sketch feature, and 
thus the input dimensionality of the sketch feature 
embedding NN, depends on the sketch feature fusion 
method used. It will be 384D if the fusion is done by simple 
concatenation, and 128D if the fusion is done by sketch 
feature fusion NN described below. 

TABLE 1.   SKETCH FEATURE EMBEDDING NN STRUCTURE 

Layer # neurons Activation Dropout 
Input 128 - - 

Layer1 512 ReLU 0.5 
Layer2 256 ReLU 0.5 
Output 128 - - 

TABLE 2.   3D FEATURE EMBEDDING NN STRUCTURE 

Layer # neurons  Activation Dropout 
Input 256  - - 

Layer1 2,048  ReLU 0.5 
Layer2 1,024  ReLU 0.5 
Output 128  - - 

B. Sketch Feature Extraction 

As described before, a sketch feature is a combination 
of sketch image feature and sketch stroke sequence feature. 
We compare two combination methods, simple vector 
concatenation and a shallow neural network that performs 
feature refinement and dimension reduction. 

1) Sketch Image Feature CNN (SIF-CNN) 
To extract an image feature, a sketch image, which is 

generated as each complete stroke is added, is given to the 

Sketch Image Feature CNN (SIF-CNN). The SIF-CNN is 
VGG-16 [11] implemented as a part of Keras library. The 
numbers of neurons of the last three fully connected (FC) 
layers are changed from (4,096, 4,096, 1,000) to (256, 128, 
75). The number of neurons of the last layer is set to 75 to 
match the number of classes of the training dataset. The 
SIF-CNN is pre-trained by using natural images contained 
in ImageNet dataset. Then the last 3 layers are fine-tuned by 
using sketch image classification task. After the training, 
activation of next to the last layer is used as 128D feature 
vector of sketch images. 

For the fine tuning, to make the SIF-CNN robust against 
unfinished sketches having smaller number of strokes, data 
augmentation is done. The augmentation increased the 
number of images by the factor four. Details of the 
augmentation is described below. 

2) Sketch Stroke Feature RNN (SSF-RNN) 
Sketch stroke feature is extracted from 2D trajectory of 

points by using Sketch Stroke Feature RNN (SSF-RNN). 
SSF-RNN is modeled loosely after the encoder part of 
Sketch-RNN [8]. The SSF-RNN takes a sequence of 5D 
vectors 1 2 3( , , , , ),x y p p p   each of which contains 2D 
displacement ,x y   and three attributes. The attributes 

1 2 3, ,p p p  indicate, if “1”, “pen down”, “pen up”, and “end 
of sketch”, respectively.  

The SSF-RNN is configured as three CNNs followed by 
two LSTMs (Table 3). The sequence of  1 2 3( , , , , )x y p p p   
is processed first by the 3 layers of 1D CNN, whose output 
enters the LSTM having 2 units. Output of the LSTM are 
refined by using three layers of fully connected network 
(FCN) followed by a softmax classification layer. The 
LSTM is implemented using CuDNNLSTM for efficiency.  

SSF-RNN is trained by using sketch classification task 
using categorical loss. No data augmentation is done for the 
training. After training the network using cross entropy loss 
with a 75 class sketch dataset, activation of 256 neurons of 
the next to the last layer is used as a 256D sketch stroke 
sequence feature. 

TABLE 3.   STRUCTURE OF SKETCH STROKE FEATURE RNN 

Layers Description 
Input 1D sequence of 5D vectors 

1D convolution 48D, kernel size 5, batch normalize 
1D convolution 64D, kernel size 5 
1D convolution 96D, kernel size 3 

LSTM 128D 
LSTM 128D 

Fully connected 256D, return sequence 
Fully connected 256D 
Fully connected 75D 

Softmax - 

3) Sketch Feature Fusion NN (SFF-NN) 
Fusion of sketch image feature and sketch stroke feature 

is done either by vector concatenation or by a shallow fully 
connected NN called Sketch Feature Fusion NN (SFF-NN). 
Sketch image feature (128D) and sketch stroke sequence 
feature (256D) are concatenated to become 384D feature 
vector. If SFF-NN is employed, the concatenated vector 
then enters the SFF-NN to yield refined and dimension 
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reduced feature having 128D. The architecture of SFF-NN 
is shown in Table 4. SFF-NN is trained by using sketch 
image classification task, and the activation of the next to 
the last layer having 128 neurons is used as fused and 
refined sketch feature vector. As noted, number of neurons 
of the sketch feature embedding NN is adjusted to either 
384D or 128D depending on the method of fusion used. 

In Section IV, we will experimentally compare the two 
sketch feature fusion methods for their impact on accuracy. 

TABLE 4.   STRUCTURE OF THE SFF-NN 

Layer # neurons Activation Dropout 
Input 384 - - 

Layer1 256 ReLU 0.5 
Layer2 128 ReLU 0.5 

Softmax  75 - - 

C. 3D Shape Feature DNN 

3D shape feature of a 3D shape model is extracted by 
using PointNet [10]. PointNet accepts a set of 3D points, 
and performs recognition of, or, if so trained, segmentation 
of the point set. Thanks to the maximum pooling of point-
wise features, 3D shape recognition results (and features) 
are unaffected by ordering of input 3D points. 

As PointNet accepts 3D point set as its input, polygon 
based 3D shape models in the datasets are converted into 
3D point sets. The conversion is done by sampling a 3D 
model with points randomly and uniformly placed on its 
polygonal surfaces. In the experiment described in this 
paper, 3D models are sampled by 2,048 points. 

The PointNet is trained from scratch by a set of 3D 
shape models having 65 classes using cross entropy loss. 
(See next section for the 3D model dataset used.) After the 
training, activation of 256 neurons of the last layer before 
the softmax classification layer of the PointNet is used as 
3D shape feature vector having 256D. 

D. Training the Networks 

Training of the proposed network is done part by part, 
in stages, to facilitate convergence and to keep cost of 
training concise. We first train SIF-CNN, SSF-RNN, and 
PointNet independently. We then train SFF-NN by using 
feature vectors generated by the trained SIF-CNN and SSF-
RNN. Finally, we train the feature embedding network 
using the fused sketch features and 3D shape features.  

1) Dataset 
The dataset for training and testing requires both sketch 

data and 3D shape model data.  
As the sketch data, we use 75,000 sketches of the 

Quick, Draw! dataset [12] having 75 classes, 1,000 sketch 
per class. A sketch of the Quick, Draw! dataset is a 
sequence of 2D points in which each point has pen up/down 
and end-of-sketch flag. The 75,000 sketches are split into 
56,250 training set and 18,750 test set. Sketches in the 
Quick, Draw! dataset is coarse and simple, as they are 
drawn with the constraint of “draw until the system 
correctly recognizes what is drawn, or 20 seconds, 
whichever comes earlier”. Consequently, sketches contain 

relatively small number of strokes. Fig. 3 show the 
histogram of stroke counts, whose mode 3.0 and averages 
5.4.  

Note that, while the SIF-CNN and SSF-RNN are trained 
using 75 categories of the sketch dataset for feature 
extraction, sketch (and 3D model) dataset used for retrieval 
experiment has only 65 categories. This is the result of 
matching (taking intersection of) classes in sketch dataset 
and 3D model dataset.  

As the 3D model dataset, we use a set of 42,393 3D 
shape models defined as polygonal models. It is a union of 
ShapeNetCore55 dataset [12] and SHREC 2015 non-rigid 
retrieval track dataset [13]. ShapeNetCore55 contains 
mostly rigid models of automobiles, chairs, airplanes, etc., 
while SHREC 2015 non-rigid contains non-rigid 
(articulated or deformed) models of animals, human, etc. 
The set of 3D models is split into 33,914 model train set and 
8,479 test set.  

Fig. 3 shows examples of sketches and 3D models in 
corresponding categories from the databases. 

 

 
Fig. 3.  Distribution of number of strokes of sketches in a subsampled 

Quick, Draw! dataset [12]. 

     
  

  
   

                   

Fig. 4.  Examples of sketches in the sketch dataset and corresponding 3D 
models in the 3D model dataset. 

2) Training SIF-CNN:  
We start with the VGG-16 network pre-trained by using 

natural images of the ImageNet database. We then fine tune 
the last 3 fully connected layers by using sketches. To train 
SIF-CNN, the sketch strokes sequence of a sketch is 
rendered into a 6464 pixel image. For the proposed 
method, to increase robustness against unfinished or 
partially drawn sketches, we apply data augmentation that 
removes 1, 2, and 3 strokes from the original (“finished”) 
sketch stroke sequence. For each sequence, strokes are 
removed from the tail (last) of the sequence. This data 
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augmentation increases the sketch image count by the factor 
4 to 225,000 sketches. For comparison, we also trained the 
SIF-CNN using finished sketches only.  

Fig. 4 shows examples of sketches of airplane and ship 
with and without sketch stroke removal. As the original 
“finished” sketches of the Quick, Draw! dataset have small 
number of strokes, removing 3 strokes leaves little.  

The SIF-CNN training is run for 400 epochs, with batch 
size 1,024. The training converged after about 200 epochs. 
The set of CNN parameters having the best validation 
accuracy is used for sketch image feature extraction.  

 
Finished              -1 stroke               -2 strokes               -3 strokes 

 

 
Fig. 5.  Examples of Quick, Draw! sketches. Finished sketch (left) and 

sketches whose strokes are removed by 1, 2, or 3 strokes. 

3) Training SSF-RNN 
The RNN for sketch stroke feature is trained by using 

the stroke sequences of 75,000 sketches of the Quick, Draw! 
dataset. No data augmentation using stroke removal is 
applied to the training the SSF-RNN. SSF-RNN naturally 
deals with partially drawn sketches as it processes the 
sketch stroke-by-stroke (point by point, to be precise.) 

The SSF-RNN training is run for 150 epochs with batch 
size 1,024. The training converged after about 100 epochs. 
The set of NN parameters having the best validation 
accuracy is used for stroke sequence feature extraction. 

4) Training SFF-NN 
After the SIF-CNN and SSF-RNN have finished 

training, their parameters are fixed to generate their 
respective feature vectors. Sketch image features and sketch 
stroke features are thus generated by using 56,250 sketches 
of the training set. With the factor of 4 data augmentation 
due to stroke removal, this amounts to 225,000 sketch 
features for training. Note that the SFF-NN is affected by 
the presence/absence of data augmentation by sketch stroke 
removal in training the SIF-CNN.  

5) Training PointNet 
PointNet is trained from scratch by using the 33,914 

model train set of the 3D models. As mentioned above, 
these 3D models defined using polygonal representation are 
converted to 3D point set representation to be processed by 
PointNet. No data augmentation is used for 3D models. 

6) Training Triplet Network 
Training of the feature embedding triplet network is 

done by using a set of triplets (fsketch, fpositive_3D, fnegative_3D). 
These triplets are generated randomly, based on their class 
labels, from 3D models and sketches. Given a sketch fsketch 
having class c, a 3D model from class c becomes fpositive_3D, 
while a 3D model from classes other than c becomes 

fnegative_3D. For the experiments described below, we 
generated 100,000 triplets to train the triplet network. The 
number of triplets for embedding network training is fixed 
at 100,000 with or without the stroke removal data 
augmentation of sketches. Note that the data augmentation 
by sketch stroke removal (or lack of thereof) in SIF-CNN 
consequently affects training of the Triplet Network for data 
embedding and thus the CFES resulted. 

IV. EXPERIMENTS AND RESULTS 

We experimentally evaluate (1) effectiveness of sketch 
features, that are, image feature, stroke sequence feature, 
and combined feature, and (2) effectiveness of training by 
using unfinished sketches. After all the training is done, we 
presented the system with a sketch from the test set, and 
computed precision and recall of the ranked list of 3D 
models retrieved based on the class labels attached to the 
sketch and retrieved 3D models.  

We implemented the proposed algorithm using 
TensorFlow and Keras, and run the experiments on a PC 
with Intel Xeon E5-2680v2 CPU running Ubuntu 14.04LTS 
equipped with an Nvidia GeForce GTX1080 GPU.  

A. Effectiveness of Combined Sketch Feature 

This experiment compares accuracy of various sketch 
features. In this comparison, SIF-CNN for sketch image 
feature extraction is trained without stroke removal data 
augmentation of sketches. The evaluation is done using 
finished sketches (i.e., no strokes removed).  

Table 5 lists retrieval accuracies in Mean Average 
Precision (MAP) [%]. In the table, “C+R (NN)” and “C+R” 
show the cases in which both sketch image feature extracted 
using CNN and sketch stroke feature extracted using RNN 
are used. The former with “NN” uses SFF-NN to fuse the 
two, while the latter simply concatenated the two features. 
The other two entries “R” and “C”, respectively, show SSF-
RNN only and SIF-CNN only cases.  

As expected, using the two features fused by SFF-NN 
produced the highest accuracy. Between CNN and RNN, 
RNN performs significantly better if presented with 
finished sketches as queries. 

TABLE 5.  RETRIEVAL ACCURACY WHEN QUERIED USING FINISHED 
SKETCHES. (THE SYSTEM IS TRAINED WITHOUT STROKE REMOVAL 

DATA AUGMENTATION) 

Feature MAP [%] 

C 23.8 

R 38.9 

C+R 40.2 

C+R(NN) 44.4 

B. Effectiveness of stroke removal augmentation 

In this experiment, effect of training SIF-CNN by using 
data augmentation, that is, sketch stroke removal to 
simulate unfinished sketches, is evaluated.  

This evaluation is done by using (simulated) unfinished 
sketches, in which last 0, 1, 2, or 3 strokes are removed from 
the stroke sequence. For comparison, NNs are trained with 
or without sketch stroke removal data augmentation. Cases 
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with data augmentation are marked “augmented”, while 
cases without data augmentation are marked “not 
augmented”.  

Fig. 6 shows “averaged” retrieval accuracy for various 
sketch features with/without data augmentation. The 
average is over the number of removed strokes of the in the 
test set. As expected, “R+C(NN)(augmented)”, which uses 
stroke removal augmentation, combined with NN-fused 
sketch feature, performs the best (MAP=0.447). 
Interestingly, when evaluated using stroke removed 
sketches, sketch image feature trained with data 
augmentation C(augmented) produced MAP=0.355. This 
accuracy is better than that of the sketch stroke feature R 
with MAP=0.301. (Recall that, in Table 5, when trained and 
evaluated without data augmentation, sketch stroke feature 
R outperformed sketch image feature C.) 

Fig. 7 shows, for NN-fused sketch feature (R+C(NN)) 
and for sketch image feature only (C), retrieval accuracy 
evaluated with unfinished sketches simulated by removing 
last few strokes of query sketches. “0”, “-1”, “-2” or “-3” of 
the horizontal axis indicates strokes removed from the test 
set sketches. “0” corresponds to the completed sketch with 
all the strokes. As expected, accuracies drop as the strokes 
are removed. However, those trained with stroke removal 
data augmentation (solid lines) are more robust against loss 
of strokes in the test set, with smaller losses in accuracy. 

 
Fig. 6.   Retrieval accuracy (MAP) averaged over number of strokes (0, 1, 

2, and 3) removed from test set query sketches. 

 
Fig. 7.   Effect of removing strokes in query sketches to simulate 

unfinished sketches.  

Fig. 8 shows examples of retrieval using sketches of an 
automobile and a train. Sketching a car starting from its 
characteristic wheel well quickly retrieved 3D models of 
automobiles. Positive contribution of fusing sketch-image 
and sketch stroke sequence feature is observed.  

V. CONCLUSION AND FUTURE WORK 

Sketch based 3D models retrieval is a powerful modality 
in querying 3D shape models. However, when put to 
practical use, making a detailed sketch of a 3D shape that 
exists only in one’s mind is not easy thing to do. It is a 
minority who could draw bicycle or automobile with 
enough accuracy and detail to retrieve a specific (not any) 
bicycle or automobile she/he wants. A 3D shape retrieval 
system that supports “exploratory” mode of search that 
allow coarse or unfinished sketch having small number of 
strokes is thus needed. The search would start with a coarse 
sketch, but the sketch and 3D shape retrieval results would 
be refined over interactive search iterations.  

With such ultimate goal in mind, we proposed a sketch 
based 3D shape retrieval system that supports coarse, 
partially drawn sketches. The system extracts sketch feature 
from both sketch stroke sequence and sketch image 
sequence that are trained by using sketch dataset augmented 
by removing last few strokes of sketches. The sketch feature 
and 3D shape feature are compared in a common feature 
embedding space induced by deep feature embedding. 
Experimental evaluation showed that the data augmentation 
via sketch stroke removal significantly improved retrieval 
accuracy when unfinished sketches are given as queries. 

In the future, we would like to find more accurate and 
less computationally expensive ways to induce common 
feature embedding space. We also need a better data 
augmentation method to handle partial and diverse sketches. 
We then need to develop and quantitatively evaluate a 
system that allows multiple query modalities (text, sketch, 
etc.) and interactive sketch-retrieve-refine loop. To that end, 
we have to establish datasets and evaluation protocol for 
such coarse-to-fine interactive search of 3D models.  
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(a) Success case: Sketching a wheel well, a very characteristic feature, retrieved automobiles. 

 
(b) Failure case: Sketching a train car, even after completion, had many similar shapes in wrong class (sofa, etc.) retrieved. 

Fig. 7.   Example of sketch-based retrieval of 3D models. 
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