
Deep Semantic Hashing of 3D Geometric Features
for Efficient 3D Model Retrieval

 Takahiko Furuya
University of Yamanashi
4-3-11 Takeda, Kofu-shi

Yamanashi-ken, 400-8511, Japan
takahikof AT yamanashi.ac.jp

Ryutarou Ohbuchi
University of Yamanashi
4-3-11 Takeda, Kofu-shi

Yamanashi-ken, 400-8511, Japan
ohbuchi AT yamanashi.ac.jp

ABSTRACT

As the scale of 3D model databases increase, speed, in addition to

accuracy, of its search becomes very important. One way to achieve

fast search is to use a compact 3D shape feature whose cost of

comparison is very small. Binarization of a real-valued feature

vector, via hashing, is a way to obtain such compact feature vector.

Previous algorithms for producing binarized 3D model features via

hashing consisted of two disconnected stages; handcrafted real-

valued 3D shape feature extraction followed by hashing into binary

code. This compartmentalized approach, however, leads to less-

than optimal binary codes, as these two stages are optimized

independently. This paper proposes a deep semantic hashing

algorithm called Binarized Deep Local feature Aggregation

Network (BDLAN) which jointly optimizes real-valued feature

extraction per 3D model and its banarization via hashing. BDLAN

training minimizes quantization error caused by binarization.

However, this constraint alone often maps real-valued features to

their nearest binary codes in Hamming space, which are nonoptimal

local minima. To alleviate the issue, we add a simple regularization

called Probabilistic Bit Inversion (PBI) of binary codes.

Experimental evaluation of the proposed algorithms demonstrates

superior efficiency and competitive accuracy to the existing 3D

model retrieval algorithms employing real-valued features.

CCS CONCEPTS
• Information systems → Information retrieval → Search

engine architectures and scalability

KEYWORDS
3D model retrieval, feature hashing, binary codes, deep learning.

1 INTRODUCTION

3D shape model has been rapidly growing in numbers,

prompted in part, by proliferation of low-cost 3D range scanners

and 3D printers. A large number of 3D models are stored in a

database to reuse 3D CAD models for mechanical design, to

analyze 3D structure of molecules for medicine, to diagnose

diseases from 3D MRI scans of organs, etc. Effective management

of these 3D models requires a technology of shape-based 3D Model

Retrieval (3DMR) that could handle a large-scale database

containing a large number, e.g., 1M or more, of 3D models.

Various approaches aiming at efficient 3DMR have been

proposed (e.g., [19][22][24]). A popular approach is to “compress”

3D model features, e.g., via dimensionality reduction [13][24].

Dimensionality reduction could yield low-dimensional and salient

features. However, dimensionality reduction alone is not sufficient

to attain enough scalability. Resulting feature vector is not compact

enough if a 32bit floating point number is used for each dimension.

In addition, distance computation among features, by using Lp-

norm, information divergence, etc., can be costly.

A way to obtain more compact and quick-to-compare feature is

by hashing of a real-valued feature vector into a binary-valued

vector (e.g., [19][31]). This approach describes each 3D model by

a binary vector, or code, in which each element is either “0” or “1”.

As a binary code, it is memory-efficient. In addition, a distance

between a pair of binary codes in Hamming space can be computed

very efficiently by an Exclusive-OR and a “1” population count

operations found in vector instruction set of a modern CPU.

However, binary codes produced by hashing real-valued vectors

tended to have lower retrieval accuracy than the original. We

observe that a compartmentalized strategy that combines a

handcrafted feature with an independently developed hashing

algorithm (e.g., [19][31]) leads to a binary feature vector

nonoptimal in terms of accuracy.

Another approach to retrieval efficiency is by reduction in

number of features per 3D model. If a 3D model is described by a

set of features, which are typically local and low-level, a small

subset of it can be selected to describe a 3D model [22] or the set

of features can be aggregated into a feature per 3D model [32].

Aggregation local features has been quite popular. A set of local

features can describe diverse partial shapes of a 3D model [5], and

an aggregated feature can be robust against non-rigid deformation

of the 3D models [36]. Also, the aggregated feature is much less

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

CGI '17, June 27-30, 2017, Yokohama, Japan
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5228-4/17/06…$15.00
http://dx.doi.org/10.1145/3095140.3095148

2

costly to store and compare than the set of local features. Still, an

aggregated feature is often very high-dimensional (~100k), real-

valued vector (e.g., [13][28]) and is too costly for scalable 3DMR.

Our goal is to obtain compact and discriminative binary features

of 3D models suitable for efficient and accurate shape-based 3D

model retrieval. We approach this goal by using a processing

pipeline derived by using an integrated, not compartmentalized,

optimization approach driven by a labeled set of training 3D models.

The proposed integrated feature extraction and hashing pipeline

is a Deep Neural Network (DNN) called Binarized Deep Local

feature Aggregation Network (BDLAN). BDLAN is designed to

produce an accurate binary code per 3D model that is robust against

3D rotation and non-rigid deformation of the 3D model. BDLAN

performs the following three steps in a single deep architecture;

(1) extraction of a set of rotationally invariant, local 3D geometric

features, (2) aggregation of the local features to a feature per 3D

model, and (3) hashing of the aggregated feature. BDLAN is built

upon the recently proposed Deep Local feature Aggregation

Network (DLAN) [30] that produces real-valued and semantic

features for 3DMR. We inject binary constraints into the output of

DLAN to obtain semantic, salient, binarized, compact feature

vector, or codes. Compact binary codes (e.g., 64 bits per code)

generated by BDLAN enable efficient 3DMR both in terms of

memory footprint and computational time. To our knowledge,

BDLAN is the first deep learning-based feature extraction and

hashing algorithm to produce binary codes for scalable 3DMR.

As with DNN-based hashing algorithms for 2D images (e.g.,

[10][12][14]), the objective of BDLAN training is to obtain binary

codes that preserve, as much as possible, distances among real-

valued features in their binarized counterparts. Such binary features

could be learned by minimizing error caused by binarization, or

quantization, of the real-valued features ([10][12][14][16]).

However, minimizing quantization error alone could result in a

deep hashing neural network that produces suboptimal binary codes.

In an effort to minimize quantization error, the optimization could

get stuck at local minima at which real-valued vector are close to

subopotimal binary codes.

To alleviate this issue, we introduce Probabilistic Bit Inversion

(PBI), a simple regularization technique. During training of

BDLAN, PBI randomly inverts several bits of the binary feature.

PBI is expected to help the training escape from the local minima

by stochastically quantizing a real-valued feature onto a certain

stochastic neighborhood, not a point, in Hamming space.

Experiments using 3D model retrieval benchmark databases

show that 3DMR using binary codes generated by BDLAN, trained

by using PBI, retains retrieval accuracy comparable to the original,

real-valued feature vector by DLAN. Using binary codes by

BDLAN, however, makes the processing much less memory

intensive and much faster.

Contributions of this paper can be summarized as follows;

 Proposition of a deep semantic hashing algorithm called

BDLAN for scalable 3DMR.

 Proposition of a regularization algorithm called PBI designed

specifically to learn salient binarized feature, or code.

 Evaluation of BDLAN and PBI by using 3DMR benchmarks.

Rest of this paper is organized as follows. We review related

work in the next section. In Section 3, the proposed algorithms are

described. Experiments and their results are presented in Section 4,

followed by conclusion and future work in Section 5.

2 RELATED WORK

2.1 Feature Hashing for 3D Model Retrieval

Previous algorithms for hashing 3D model feature combine

handcrafted, real-valued features with hashing algorithms based on

shallow architectures ([19][25][29][31]). [19] employs a single

layer neural network to hash handcrafted features extracted from

3D models. The single layer neural network is trained by using

pairwise constraints that define two 3D models to be semantically

similar or dissimilar. [31] adopts unsupervised feature hashing to

efficiently perform part-based 3DMR where a query is a partial 3D

shape. [31] describes each part of a 3D model by a compact binary

code. For the task of 3DMR queried by a hand-drawn sketch, [25]

uses simple thresholding to binarize real-valued features of 2D

images, while [29] employs cross-modal manifold learning that

embeds features of sketches and features of 3D models into their

common Hamming space.

However, the approaches mentioned above do not necessarily

yield binary codes optimal for 3DMR since they combine

handcrafted features having limited descriptive power with

learning models having inadequate expressive power. Recently,

Sample SOIs &
generate RNGs

…

Convert to
oriented points

Encode local features Aggregate local features

mid-level
local features

Hash aggregated feature

…

0.05
0.00
0.42
0.88

0.00
0.13
1.78
0.01

Figure 1: BDLAN extracts and then aggregates local 3D geometric features to produce a semantic binary code per 3D model.
During training of BDLAN, several bits of a binary code are stochastically inverted for regularization.

0.08
0.12
0.70
0.39

real-valued
feature r

binary
code b

r reflects semantics
of 3D model.

training objectives

b is close to r.
(regularized by PBI)

…

neural
network

neural
network

neural
network …

aggregated
feature

pool by
averaging

hash by
sign

E-block I-block A-block H-block

oriented
point set

polygonal
3D model

…

…

…

-0.98
 0.84
 0.91
-0.87

-1
 1
 1
-1

RNGs

 3

deep learning has been introduced to 3DMR for extracting accurate,

real-valued feature per 3D model. A variety of DNNs tailored to 3D

model have been proposed, accepting a variety of 3D shape

representations including voxels [35], point set [1][30], manifold

mesh [15], and rendered 2D views [11][26]. To our knowledge,

however, no prior work has studied feature hashing by using deep

architecture for scalable 3DMR.

2.2 Probabilistic Approach to Regularized
Training of Deep Neural Network

Introducing randomness to training DNN could regularize the

training to avoid overfitting. Dropout [20] and DropConnect [17]

are widely-used algorithms that randomly prune neuronal

activations and neuronal connections, respectively. [9] shows that

adding Gaussian noise to connection weights improves

generalization ability of neural networks for regression and

classification tasks. [21] proposes a denoising autoencoder, which

gains robustness against Gaussian noise or masking noise by

adding such a noise to the input of the autoencoder. [4] adds

Gaussian noise to gradient of objective function computed during

back propagation. Noisy gradient prevents the training from

overfitting and enables effective training of a very deep neural

network. [6] adds noise to activation functions when training gets

stuck due to saturated gradient of the activation functions.

The proposed PBI can also be classified into the probabilistic

approach for regularizing DNN training. While we applied PBI to

learn binary codes for 3D models, it is general enough to be applied

to other deep hashing algorithms, e.g., ones for 2D image features.

3 PROPOSED ALGORITHM

3.1 Overview of the Proposed Algorithm

The proposed algorithm consists of two parts, the Binarized

Deep Local feature Aggregation Network (BDLAN) architecture for

extracting salient binary codes of 3D models, and a novel

regularization strategy designed specifically for binary-valued

hashing called Probabilistic Bit Inversion (PBI). Figure 1 shows the

processing pipeline of the proposed algorithm. BDLAN takes as its

input a 3D model represented as an oriented point set and produces

a compact binary code of the 3D model. By using Hamming

distance, which can be computed very efficiently, computing

retrieval ranks of 3D models can be very quick.

Like its predecessor DLAN [30], BDLAN generates 3D model

features that have invariance against similarity transformation, i.e.,

a combination of translation, uniform scaling, and rotation in 3D

space. A BDLAN feature is also robust against non-rigid

deformation as it uses a set of local features, each of which has

invariance to rotation and translation, to describe a 3D model.

3.2 Extracting Binary Codes using BDLAN

BDLAN comprises four sub-blocks, that are, I-block to compute

low-level local geometrical feature to be input to BDLAN, E-block

to encode the local features, A-block to aggregate the encoded local

features, and H-block to hash the aggregated features into binary

codes (Figure 1). Structures of the first three blocks of BDLAN, I-

block, E-block, and A-block, are identical those of DLAN. The last,

H-block, is newly designed for feature hashing.

I-block: Given a 3D model represented as a 3D polygonal mesh, it

is first converted into an oriented point set by using the algorithm

by Osada et al. [23]. We randomly and uniformly sample 3k points

on the surface of the 3D model. Orientation of each point

corresponds to the normal vector of the triangle at which the point

is sampled. We then sample 100 Spheres-Of-Interest (SOIs) with

random position and random scale from the oriented point set. Each

SOI is rotationally normalized by applying Principal Component

Analysis (PCA) to the points enclosed by the SOI. The rotationally

normalized SOI is spatially divided into 3D cells by using a 3D grid.

Oriented points within each cell are described by a 10-dim. POD

feature [27] to form a Rotation Normalized Grid (RNG) for the SOI.

E-block: Each of the 100 RNGs representing the 3D model is

independently fed into the E-block to encode the RNG into a mid-

level local 3D geometric feature. E-block has two 3D convolution

layers and subsequent three fully-connected layers with ReLU

activation function [2]. The E-block generates a set of 512-dim.,

real-valued local geometrical features of the 3D model.

A-block: The set of 100 mid-level local features from E-block is

aggregated to a single feature having 512 dim. per 3D model via

average pooling.

H-block: H-block first dimension reduce the aggregated feature

above to a 256-dim. real-valued feature via a fully-connected layer.

Then, a subsequent hash layer binarizes the dimension reduced

feature. The hash layer is also fully-connected but uses hyperbolic

tangent activation function to limit the activation to a range (−1,

+1). The activated real-valued feature (denoted as r) is binarized by

its sign to generate a binary code (denoted as b) of the 3D model.

When computing Hamming distance, -1 and +1 of the hashing

result are mapped to binary digits 0 and 1, respectively. The number

of bits Nb for binary codes corresponds to the number of neurons

(e.g., 64) in the hash layer.

3.3 Training BDLAN with PBI

To learn accurate semantic binary codes, a BDLAN is trained so

that it could correctly predict object category labels of training 3D

models while minimizing quantization error due to binarization of

the real-valued 3D model features produced at the output end of the

BDLAN. Such an objective L can be formalized as follows;

� = �� + ��� (1)

where Lc is cross-entropy loss that defines classification error of

category labels and �� = ‖� − �‖� indicates quantization error

between real-valued feature r and binary code b. To compute cross-

entropy loss, we append a classification layer with softmax function

behind the hash layer during training of a BDLAN. The hyper-

parameter α balances Lc and Lq. We fix α to 1.0 in the experiments.

PBI regularization tries to prevent the training of binary codes

to fall into poor local minima. Specifically, for each time BDLAN

quantizes the real vector r to the binary code b during training, PBI

randomly inverts up to P % of Nb bits of b. For example, when

Nb = 128 and P = 10%, PBI inverts the maximum of 12 bits

4

randomly chosen from the 128 bit of the code. This operation

means that r could be quantized not only into its nearest binary code

but also to binary codes within its stochastic proximity. The bit-

inverted binary code b is used to compute the loss described in

equation 1. Note that PBI is performed only in the training phase.

After training, the binary code of the 3D model is computed by

using BDLAN without PBI as described in Section 3.2.

To effectively train BDLAN by using small number (~10k) of

labelled 3D models, we adopt two-stage training of BDLAN. That

is, the first stage trains only E-block by using a large number of

(300k in this paper) labelled RNGs. Each RNG is sampled from

either of labelled 3D models in the training dataset and category

label for the RNG is identical to that for 3D model from which the

RNG is sampled. We append a classification layer at the output end

of E-block and train the E-block so that cross-entropy loss could be

minimized. The second stage trains the whole BDLAN by using the

labelled 3D models to minimize the entire loss (equation 1). EE-

block inherits the result of the first stage while weights of H-block

are randomly initialized. PBI is used at the second stage training.

For both the first and the second stage training, we use Adam [7]

with mini-batch size = 32. Training is iterated for 200 epochs and

20 epochs at the first and second stage training, respectively.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

Benchmark datasets: Efficiency and accuracy of the proposed

algorithm are evaluated by using two standard benchmark datasets

for 3DMR, i.e., ModelNet40 and ModelNet10 [35]. Figure 2 shows

examples of 3D models contained in the datasets. ModelNet40 has

9,843 3D models for training and 2,468 3D models for testing.

These 3D models are classified into 40 semantic object categories

such as airplane, car, plant, sofa, etc. On the other hand,

ModelNet10, which is a subset of ModelNet40, contains 3,991 3D

models for training and 908 3D models for testing. The 3D models

in ModelNet10 are categorized into 10 indoor objects, e.g., chair,

table, bed, etc. For both datasets, BDLAN is trained by using 3D

models in the training set and retrieval accuracy is evaluated by

using those in the test set. We use Mean Average Precision (MAP)

[%] as accuracy index. Since the proposed algorithm is influenced

by randomness caused by initialization of DNN parameters, PBI,

etc., every experiment is performed three times and their average

MAP score will be reported.

Competitors: We compare performance of BDLAN with the

following four algorithms;

 DLAN [30] extracts real-valued, non-negative feature per 3D

model. This is the algorithm on which BDLAN is based..

 DLAN+LSH hashes the real feature vectors obtained from

DLAN by using Locality Sensitive Hashing [3].

 DLAN+ITQ uses Iterative Quantization [34] for hashing.

 DLAN+AQBC uses Angular Quantization-based Binary

Codes [33] which is designed to hash non-negative feature

vectors.

Hash functions for ITQ and AQBC are learned by using DLAN

features extracted from 3D models in the training set. LSH doesn’t

require learning as it is a data-independent hashing algorithm. To

generate ranking results, DLAN uses Cosine distance while the

other three algorithms use Hamming distance. We also compare

accuracy of BDLAN against the existing 3DMR algorithms using

handcrafted [8][28] or deep learning-based [11][26][35], real-

valued feature of 3D model.

We use Nb = 64 and P = 30% for BDLAN unless otherwise

stated. We used TensorFlow library [18] to implement BDLAN. All

the experiments were conducted on a PC with an Intel Core i7 6700

CPU, a NVIDIA GeForce GTX 1080 GPU, and 64GB DRAM.

4.2 Experimental Results

Accuracy of BDLAN: Figure 3 plots retrieval accuracies of the

five algorithms against the number of feature dimensions (i.e., Nb

for BDLAN). For the four algorithms except for “DLAN+LSH”,

(a) ModelNet40 (b) ModelNet10

Figure 2: Examples of 3D models in benchmark datasets.

(a) ModelNet40

(b) ModelNet10

Figure 3: Feature dimensions and retrieval accuracy.

BDLAN (proposed) DLAN
DLAN+AQBC DLAN+ITQ
DLAN+LSH

10
20
30
40
50
60
70
80
90

100

4 8 16 32 64 128 256 512 1,024

M
A

P
 [

%
]

Number of feature dimensions

10
20
30
40
50
60
70
80
90

100

4 8 16 32 64 128 256 512 1,024

M
A

P
 [

%
]

Number of feature dimensions

 5

the number of feature dimensions corresponds to the number of

neurons at the output layer of the DNN. On the other hand, for

“DLAN+LSH”, 128-dim. real-valued features are extracted by

using DLAN and N hyperplanes are randomly generated to yield N-

bit binary codes. Note that only “DLAN”, denoted by dashed lines

in Figure 3, uses real vectors while the others use binary codes for

retrieval.

For both ModelNet40 (Figure3a) and ModelNet10 (Figure3b),

we can observe that “BDLAN” and “DLAN” yield almost the same

MAP scores if binary codes with more than 8~16 bits are used. This

result indicates that BDLAN generates accurate semantic binary

codes of 3D models with low quantization error due to feature

hashing. Also, BDLAN shows retrieval accuracies higher than the

three compartmentalized hashing algorithms, i.e., “DLAN+ITQ”,

“DLAN+AQBC”, and “DLAN+LSH”. Joint optimization of

extracting semantic real features and their hashing would have a

positive effect to obtain binary codes for accurate 3DMR.

“DLAN+AQBC” performs well for the simple ModelNet10 dataset

but suffers for ModelNet40 dataset having more object categories.

Table 1 compares retrieval accuracies of the six state-of-the-art

3DMR algorithms including the proposed BDLAN. All the existing

algorithms in Table 1 employs real-valued features for retrieval.

Note that accuracies of DLAN in Table 1 differs from the original

paper [30] since we used our own implementation of DLAN for the

experiment. BDLAN yields competitive MAP scores to the other

real feature-based algorithms. Accurate 3DMR can be performed

also by using binary codes obtained from DNN. Efficiency of

BDLAN will be evaluated in the later subsection.

Table 1: Comparison of retrieval accuracy.

Algorithms
MAP [%]

ModelNet40 ModelNet10
LFD [8] 40.9 49.8

SV-DSIFT [28] 58.1 68.0
3D ShapeNets [35] 49.2 68.3

MVCNN [11] 79.5 －
GIFT [26] 81.9 91.1

DLAN [30] 83.3 89.5
BDLAN 83.1 89.8

Effectiveness of PBI: We investigate the efficacy of PBI for

learning accurate binary codes of 3D models. Figure 4 shows

retrieval accuracies of BDLAN with PBI (P=30%) or without PBI.

For both ModelNet40 and ModelNet10 datasets, PBI slightly but

consistently improves MAP scores of BDLAN. The gain of

retrieval accuracy would be the result from regularization of binary

code learning. PBI would help the training of BDLAN find a

solution having better generalization capability.

Figure 5 shows influence of the hyper-parameter P for PBI on

retrieval accuracy. For the experiments, we fixed the number of bits

for binary codes Nb to 64. In the figure, P = 0% means PBI is not

performed during the training of BDLAN. Interestingly, in Figure

5, we can observe that P doesn’t have a large impact on retrieval

accuracy. Very slight peaks can be found at around P = 30%. When

P = 30%, at most 19 bits of a 64-bit code could be inverted.

Efficiency of BDLAN: This subsection evaluates efficiency of

BDLAN both for training and retrieval. As we described in Section

3.3, BDLAN adopts two-step training. The first step (i.e., training

of E-block) took about 2~3 days and the second step (i.e., training

of whole BDLAN) took about 2 hours.

We wanted to evaluate retrieval scalability of BDLAN.

Unfortunately, however, the number of 3D models in the test set of

ModelNet40 (i.e., 2,468) is too small to evaluate scalability. We

therefore duplicated the 2,468 features of the 3D models up to

100M features to simulate a large-scale 3D model database. Table

2 summarizes retrieval efficiency of BDLAN and DLAN for the

simulated large-scale database. In the table, “Feat.” indicates

computation time for extracting a feature from a query 3D model,

“Dist.” means time for computing distances among the feature of

the query and the 100M features in the database, and “Memory

footprint” is spatial cost to store 100M features of the 3D models.

We used 64-dim. real-valued features for DLAN and 64 bit binary

codes for BDLAN.

Table 2 clearly shows that BDLAN is quite a bit faster than

DLAN. Computing Hamming distances among binary codes

drastically reduces computational time per retrieval.

BDLAN is memory efficient as well; it requires less than

1 GByte for as many as 100M 3D models. DLAN, on the other hand,

requires 24 GBytes as it uses a 32 bit floating-point number per

feature dimension.

Figure 4: Effectiveness of Probabilistic Bit Inversion (PBI).

Figure 5: Probability of bit inversion and retrieval accuracy.

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512 1,024

M
A

P
 [

%
]

Number of bits Nb for feature hashing

ModelNet10, BDLAN with PBI
ModelNet10, BDLAN without PBI
ModelNet40, BDLAN with PBI
ModelNet40, BDLAN without PBI

70

75

80

85

90

95

0 20 40 60 80 100

M
A

P
 [

%
]

Hyper-parameter P for PBI [%]

ModelNet10

ModelNet40

6

Table 2: Comparison of retrieval efficiency.

Algorithms
Per-query time [s] Memory

footprint [GB] Feat. Dist. Total
DLAN [30] 0.08 11.50 11.58 24.41

BDLAN 0.08 0.37 0.45 0.76

4 CONCLUSION AND FUTURE WORK

Explosive increase in number of 3D models in recent years

requires scalable algorithms for shape-based 3D model retrieval

(3DMR). Nevertheless, few prior work has been studied 3D model

feature that satisfies both high efficiency and high accuracy. In this

paper, we proposed a deep semantic hashing algorithm intended for

scalable 3DMR. The proposed algorithm called Binarized Deep

Local feature Aggregation Network (BDLAN) extracts compact

semantic binary code per 3D model. Compared to real-valued

feature, binary code is much efficient; binary codes can be

compared more quickly by using Hamming distance and they

require much less memory. To obtain salient binary codes, BDLAN

embeds features of 3D models into the Hamming space that well

reflects semantics of the 3D models by regularizing the training by

using a novel, binary-code specific regularization algorithm called

Probabilistic Bit Inversion (PBI). The experiments demonstrated

superior efficiency and competitive accuracy of BDLAN compared

to the state-of-the-art 3DMR algorithms.

Future work includes evaluation of BDLAN on larger-scale

databases having more 3D models classified into more diverse

object categories. Also, efficacy of PBI regularization should be

evaluated under different settings and scenarios, e.g., by deep

hashing of 3D model features using base architectures other than

DLAN (e.g., [11] [26][35]), or by deep hashing of 2D image

features (e.g., [10][12][14]).

ACKNOWLEDGMENTS
This research is supported by JSPS Grant-in-Aid for Young

Scientists (B) #16K16055.

REFERENCES
[1] A. Garcia-Garcia, F. Gomez-Donoso†, J. Garcia-Rodriguez, S. Orts-Escolano,

M. Cazorla, and J. Azorin-Lopez. 2016. PointNet: A 3D Convolutional Neural
Network for real-time object class recognition. Proc. IJCNN 2016.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. Proc. NIPS 2012.

[3] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search
in High Dimensions via Hashing. Proc. VLDB 1999, 518–529.

[4] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser,
Karol Kurach, and James Martens. 2016. Adding Gradient Noise Improves
Learning for Very Deep Networks. Proc. ICLR workshop 2016.

[5] Bo Li, Yijuan Lu, Chunyuan Li, Afzal Godil, Tobias Schreck, et al. 2014.
SHREC' 14 Track: Large Scale Comprehensive 3D Shape Retrieval. Proc.
EG3DOR 2014, 131–140.

[6] Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. 2016.
Noisy Activation Functions. Proc. ICML 2016, 48, 3059–3068.

[7] Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A Method for Stochastic
Optimization. Proc. ICLR 2015.

[8] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On
Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum,
22(3), 223–232.

[9] Guozhong An. 1996. The effects of adding noise during backpropagation
training on a generalization performance. Neural Computation, 8(3), 643–
674.

[10] Han Zhu, Mingsheng Long, Jianmin Wang and Yue Cao. 2016. Deep Hashing
Network for Efficient Similarity Retrieval. Proc. AAAI 2016, 2415–2421.

[11] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition.
Proc. ICCV 2015, 945–953.

[12] Haomiao Liu, Ruiping Wang, and Shiguang Shan. 2016. Deep Supervised
Hashing for Fast Image Retrieval. Proc. CVPR 2016, 2064–2072.

[13] Hedi Tabia, David Picard, Hamid Laga, and Philippe-Henri Gosselin. 2013.
Compact Vectors of Locally Aggregated Tensors for 3D shape retrieval. Proc.
EG 3DOR 2013, 17–24.

[14] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. 2017. Supervised Learning
of Semantics-Preserving Hash via Deep Convolutional Neural Networks.
TPAMI, DOI: 10.1109/TPAMI.2017.2666812.

[15] Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre
Vandergheynst. 2015. Geodesic convolutional neural networks on
Riemannian manifolds. Proc. ICCV Workshop 2015, 832–840.

[16] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. 2016. Learning
Compact Binary Descriptors with Unsupervised Deep Neural Networks.
Proc. CVPR 2016, 1183–1192.

[17] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. 2013.
Regularization of Neural Networks using DropConnect. JMLR: Workshop
and Conference Proceedings, 28(3), 1058–1066.

[18] Martín Abadi et al. 2016. TensorFlow: a system for large-scale machine
learning. Proc. OSDI 2016, 265-283.

[19] Michael M. Bronstein, Alexander M. Bronstein, Fabrice Michel, Nikos
Paragios. 2010. Data Fusion through Cross-modality Metric Learning using
Similarity-Sensitive Hashing. Proc. CVPR 2010, 3594–3601.

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. JMLR, 15 (2014), 1929–1958.

[21] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion. JMLR,
11 (2010), 3371–3408.

[22] Philip Shilane and Thomas Funkhouser. 2006. Selecting Distinctive 3D Shape
Descriptors for Similarity Retrieval. Proc. SMI 2006, DOI:
10.1109/SMI.2006.34.

[23] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin.
2002. Shape distributions. TOG 21(4), 807–832.

[24] Ryutarou Ohbuchi, Akihiro Yamamoto, and Jun Kobayashi. 2007. Learning
Semantic Categories for 3D Model Retrieval. Proc. MIR 2007, 31–40.

[25] Shuang Liang, Long Zhao, Yichen Wei, and Jinyuan Jia. 2014. Sketch-Based
Retrieval Using Content-Aware Hashing, Proc.PCM 2014, 8879, 133–142.

[26] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan
Latecki. 2016. GIFT: A Real-time and Scalable 3D Shape Search Engine.
Proc. CVPR 2016, 5023–5032.

[27] Takahiko Furuya and Ryutarou Ohbuchi. 2015. Diffusion-on-Manifold
Aggregation of Local Features for Shape-based 3D Model Retrieval. Proc.
ICMR 2015, 171–178.

[28] Takahiko Furuya and Ryutarou Ohbuchi. 2014. Fusing Multiple Features for
Shape-based 3D Model Retrieval. Proc. BMVC 2014,
http://dx.doi.org/10.5244/C.28.16.

[29] Takahiko Furuya and Ryutarou Ohbuchi. 2014. Hashing Cross-Modal
Manifold for Scalable Sketch-based 3D Model Retrieval. Proc. 3DV 2014.

[30] Takahiko Furuya and Ryutarou Ohbuchi. 2016. Deep Aggregation of Local
3D Geometric Features for 3D Model Retrieval. Proc. BMVC 2016.

[31] Takahiko Furuya, Seiya Kurabe, and Ryutarou Ohbuchi. 2015. Randomized
Sub-Volume Partitioning for Part-Based 3D Model Retrieval. Proc. EG
3DOR 2015, 15–22.

[32] Yi Liu, Hongbin Zha, and Hong Qin. 2006. Shape Topics: A Compact
Representation and New Algorithms for 3D Partial Shape Retrieval. Proc.
CVPR 2006, 2, 2025–2032.

[33] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. 2012.
Angular quantization-based binary codes for fast similarity search. Proc.
NIPS 2012, 1196–1204.

[34] Yunchao Gong, Svetlana Lazebnik, and Albert Gordo. 2013. Iterative
Quantization: A Procrustean Approach to Learning Binary Codes for Large-
Scale Image Retrieval. TPAMI, 35(12), 2916–2929.

[35] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 2015. 3D ShapeNets: A Deep
Representation for Volumetric Shapes. Proc. CVPR 2015.

[36] Zhouhui Lian, Jun Zhang, et al. 2015. SHREC’15 Track: Non-rigid 3D shape
retrieval. Proc. EG3DOR 2015, 107–120.

