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ABSTRACT 

As the scale of 3D model databases increase, speed, in addition to 

accuracy, of its search becomes very important. One way to achieve 

fast search is to use a compact 3D shape feature whose cost of 

comparison is very small. Binarization of a real-valued feature 

vector, via hashing, is a way to obtain such compact feature vector. 

Previous algorithms for producing binarized 3D model features via 

hashing consisted of two disconnected stages; handcrafted real-

valued 3D shape feature extraction followed by hashing into binary 

code. This compartmentalized approach, however, leads to less-

than optimal binary codes, as these two stages are optimized 

independently. This paper proposes a deep semantic hashing 

algorithm called Binarized Deep Local feature Aggregation 

Network (BDLAN) which jointly optimizes real-valued feature 

extraction per 3D model and its banarization via hashing. BDLAN 

training minimizes quantization error caused by binarization. 

However, this constraint alone often maps real-valued features to 

their nearest binary codes in Hamming space, which are nonoptimal 

local minima. To alleviate the issue, we add a simple regularization 

called Probabilistic Bit Inversion (PBI) of binary codes. 

Experimental evaluation of the proposed algorithms demonstrates 

superior efficiency and competitive accuracy to the existing 3D 

model retrieval algorithms employing real-valued features. 

CCS CONCEPTS 
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1 INTRODUCTION 

3D shape model has been rapidly growing in numbers, 

prompted in part, by proliferation of low-cost 3D range scanners 

and 3D printers. A large number of 3D models are stored in a 

database to reuse 3D CAD models for mechanical design, to 

analyze 3D structure of molecules for medicine, to diagnose 

diseases from 3D MRI scans of organs, etc. Effective management 

of these 3D models requires a technology of shape-based 3D Model 

Retrieval (3DMR) that could handle a large-scale database 

containing a large number, e.g., 1M or more, of 3D models.  

Various approaches aiming at efficient 3DMR have been 

proposed (e.g., [19][22][24]). A popular approach is to “compress” 

3D model features, e.g., via dimensionality reduction [13][24]. 

Dimensionality reduction could yield low-dimensional and salient 

features. However, dimensionality reduction alone is not sufficient 

to attain enough scalability. Resulting feature vector is not compact 

enough if a 32bit floating point number is used for each dimension. 

In addition, distance computation among features, by using Lp-

norm, information divergence, etc., can be costly. 

A way to obtain more compact and quick-to-compare feature is 

by hashing of a real-valued feature vector into a binary-valued 

vector (e.g., [19][31]). This approach describes each 3D model by 

a binary vector, or code, in which each element is either “0” or “1”. 

As a binary code, it is memory-efficient. In addition, a distance 

between a pair of binary codes in Hamming space can be computed 

very efficiently by an Exclusive-OR and a “1” population count 

operations found in vector instruction set of a modern CPU. 

However, binary codes produced by hashing real-valued vectors 

tended to have lower retrieval accuracy than the original. We 

observe that a compartmentalized strategy that combines a 

handcrafted feature with an independently developed hashing 

algorithm (e.g., [19][31]) leads to a binary feature vector 

nonoptimal in terms of accuracy. 

Another approach to retrieval efficiency is by reduction in 

number of features per 3D model. If a 3D model is described by a 

set of features, which are typically local and low-level, a small 

subset of it can be selected to describe a 3D model [22] or the set 

of features can be aggregated into a feature per 3D model [32]. 

Aggregation local features has been quite popular. A set of local 

features can describe diverse partial shapes of a 3D model [5], and 

an aggregated feature can be robust against non-rigid deformation 

of the 3D models [36]. Also, the aggregated feature is much less 
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costly to store and compare than the set of local features. Still, an  

aggregated feature is often very high-dimensional (~100k), real-

valued vector (e.g., [13][28]) and is too costly for scalable 3DMR. 

Our goal is to obtain compact and discriminative binary features 

of 3D models suitable for efficient and accurate shape-based 3D 

model retrieval. We approach this goal by using a processing 

pipeline derived by using an integrated, not compartmentalized, 

optimization approach driven by a labeled set of training 3D models. 

The proposed integrated feature extraction and hashing pipeline 

is a Deep Neural Network (DNN) called Binarized Deep Local 

feature Aggregation Network (BDLAN). BDLAN is designed to 

produce an accurate binary code per 3D model that is robust against 

3D rotation and non-rigid deformation of the 3D model. BDLAN 

performs the following three steps in a single deep architecture; 

(1) extraction of a set of rotationally invariant, local 3D geometric 

features, (2) aggregation of the local features to a feature per 3D 

model, and (3) hashing of the aggregated feature. BDLAN is built 

upon the recently proposed Deep Local feature Aggregation 

Network (DLAN) [30] that produces real-valued and semantic 

features for 3DMR. We inject binary constraints into the output of 

DLAN to obtain semantic, salient, binarized, compact feature 

vector, or codes. Compact binary codes (e.g., 64 bits per code) 

generated by BDLAN enable efficient 3DMR both in terms of 

memory footprint and computational time. To our knowledge, 

BDLAN is the first deep learning-based feature extraction and 

hashing algorithm to produce binary codes for scalable 3DMR. 

As with DNN-based hashing algorithms for 2D images (e.g., 

[10][12][14]), the objective of BDLAN training is to obtain binary 

codes that preserve, as much as possible, distances among real-

valued features in their binarized counterparts. Such binary features 

could be learned by minimizing error caused by binarization, or 

quantization, of the real-valued features ([10][12][14][16]). 

However, minimizing quantization error alone could result in a 

deep hashing neural network that produces suboptimal binary codes.  

In an effort to minimize quantization error, the optimization could 

get stuck at local minima at which real-valued vector are close to 

subopotimal binary codes.  

To alleviate this issue, we introduce Probabilistic Bit Inversion 

(PBI), a simple regularization technique. During training of 

BDLAN, PBI randomly inverts several bits of the binary feature. 

PBI is expected to help the training escape from the local minima 

by stochastically quantizing a real-valued feature onto a certain 

stochastic neighborhood, not a point, in Hamming space.  

Experiments using 3D model retrieval benchmark databases 

show that 3DMR using binary codes generated by BDLAN, trained 

by using PBI, retains retrieval accuracy comparable to the original, 

real-valued feature vector by DLAN. Using binary codes by 

BDLAN, however, makes the processing much less memory 

intensive and much faster.  

Contributions of this paper can be summarized as follows; 

 Proposition of a deep semantic hashing algorithm called 

BDLAN for scalable 3DMR.  

 Proposition of a regularization algorithm called PBI designed 

specifically to learn salient binarized feature, or code. 

 Evaluation of BDLAN and PBI by using 3DMR benchmarks.  

Rest of this paper is organized as follows. We review related 

work in the next section. In Section 3, the proposed algorithms are 

described. Experiments and their results are presented in Section 4, 

followed by conclusion and future work in Section 5.  

2 RELATED WORK 

2.1 Feature Hashing for 3D Model Retrieval 

Previous algorithms for hashing 3D model feature combine 

handcrafted, real-valued features with hashing algorithms based on 

shallow architectures ([19][25][29][31]). [19] employs a single 

layer neural network to hash handcrafted features extracted from 

3D models. The single layer neural network is trained by using 

pairwise constraints that define two 3D models to be semantically 

similar or dissimilar. [31] adopts unsupervised feature hashing to 

efficiently perform part-based 3DMR where a query is a partial 3D 

shape. [31] describes each part of a 3D model by a compact binary 

code. For the task of 3DMR queried by a hand-drawn sketch, [25] 

uses simple thresholding to binarize real-valued features of 2D 

images, while [29] employs cross-modal manifold learning that 

embeds features of sketches and features of 3D models into their 

common Hamming space. 

However, the approaches mentioned above do not necessarily 

yield binary codes optimal for 3DMR since they combine 

handcrafted features having limited descriptive power with 

learning models having inadequate expressive power. Recently, 
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deep learning has been introduced to 3DMR for extracting accurate, 

real-valued feature per 3D model. A variety of DNNs tailored to 3D 

model have been proposed, accepting a variety of 3D shape 

representations including voxels [35], point set [1][30], manifold 

mesh [15], and rendered 2D views [11][26]. To our knowledge, 

however, no prior work has studied feature hashing by using deep 

architecture for scalable 3DMR.   

2.2 Probabilistic Approach to Regularized 
Training of Deep Neural Network 

Introducing randomness to training DNN could regularize the 

training to avoid overfitting. Dropout [20] and DropConnect [17]  

are widely-used algorithms that randomly prune neuronal 

activations and neuronal connections, respectively. [9] shows that 

adding Gaussian noise to connection weights improves 

generalization ability of neural networks for regression and 

classification tasks. [21] proposes a denoising autoencoder, which 

gains robustness against Gaussian noise or masking noise by 

adding such a noise to the input of the autoencoder. [4] adds 

Gaussian noise to gradient of objective function computed during 

back propagation. Noisy gradient prevents the training from 

overfitting and enables effective training of a very deep neural 

network. [6] adds noise to activation functions when training gets 

stuck due to saturated gradient of the activation functions. 

The proposed PBI can also be classified into the probabilistic 

approach for regularizing DNN training. While we applied PBI to 

learn binary codes for 3D models, it is general enough to be applied 

to other deep hashing algorithms, e.g., ones for 2D image features. 

3 PROPOSED ALGORITHM 

3.1 Overview of the Proposed Algorithm 

The proposed algorithm consists of two parts, the Binarized 

Deep Local feature Aggregation Network (BDLAN) architecture for 

extracting salient binary codes of 3D models, and a novel 

regularization strategy designed specifically for binary-valued 

hashing called Probabilistic Bit Inversion (PBI). Figure 1 shows the 

processing pipeline of the proposed algorithm. BDLAN takes as its 

input a 3D model represented as an oriented point set and produces 

a compact binary code of the 3D model. By using Hamming 

distance, which can be computed very efficiently, computing 

retrieval ranks of 3D models can be very quick.  

Like its predecessor DLAN [30], BDLAN generates 3D model 

features that have invariance against similarity transformation, i.e., 

a combination of translation, uniform scaling, and rotation in 3D 

space. A BDLAN feature is also robust against non-rigid 

deformation as it uses a set of local features, each of which has 

invariance to rotation and translation, to describe a 3D model. 

3.2 Extracting Binary Codes using BDLAN 

BDLAN comprises four sub-blocks, that are, I-block to compute 

low-level local geometrical feature to be input to BDLAN, E-block 

to encode the local features, A-block to aggregate the encoded local 

features, and H-block to hash the aggregated features into binary 

codes (Figure 1). Structures of the first three blocks of BDLAN, I-

block, E-block, and A-block, are identical those of DLAN. The last, 

H-block, is newly designed for feature hashing. 

I-block: Given a 3D model represented as a 3D polygonal mesh, it 

is first converted into an oriented point set by using the algorithm 

by Osada et al. [23]. We randomly and uniformly sample 3k points 

on the surface of the 3D model. Orientation of each point 

corresponds to the normal vector of the triangle at which the point 

is sampled. We then sample 100 Spheres-Of-Interest (SOIs) with 

random position and random scale from the oriented point set. Each 

SOI is rotationally normalized by applying Principal Component 

Analysis (PCA) to the points enclosed by the SOI. The rotationally 

normalized SOI is spatially divided into 3D cells by using a 3D grid. 

Oriented points within each cell are described by a 10-dim. POD 

feature [27] to form a Rotation Normalized Grid (RNG) for the SOI.  

E-block: Each of the 100 RNGs representing the 3D model is 

independently fed into the E-block to encode the RNG into a mid-

level local 3D geometric feature. E-block has two 3D convolution 

layers and subsequent three fully-connected layers with ReLU 

activation function [2]. The E-block generates a set of 512-dim., 

real-valued local geometrical features of the 3D model.  

A-block: The set of 100 mid-level local features from E-block is 

aggregated to a single feature having 512 dim. per 3D model via 

average pooling.  

H-block: H-block first dimension reduce the aggregated feature  

above to a 256-dim. real-valued feature via a fully-connected layer. 

Then, a subsequent hash layer binarizes the dimension reduced 

feature. The hash layer is also fully-connected but uses hyperbolic 

tangent activation function to limit the activation to a range (−1, 

+1). The activated real-valued feature (denoted as r) is binarized by 

its sign to generate a binary code (denoted as b) of the 3D model. 

When computing Hamming distance, -1 and +1 of the hashing 

result are mapped to binary digits 0 and 1, respectively. The number 

of bits Nb for binary codes corresponds to the number of neurons 

(e.g., 64) in the hash layer.  

3.3 Training BDLAN with PBI 

To learn accurate semantic binary codes, a BDLAN is trained so 

that it could correctly predict object category labels of training 3D 

models while minimizing quantization error due to binarization of 

the real-valued 3D model features produced at the output end of the 

BDLAN. Such an objective L can be formalized as follows; 

� = �� + ��� (1) 

where Lc is cross-entropy loss that defines classification error of 

category labels and �� = ‖� − �‖�  indicates quantization error 

between real-valued feature r and binary code b. To compute cross-

entropy loss, we append a classification layer with softmax function 

behind the hash layer during training of a BDLAN. The hyper-

parameter α balances Lc and Lq. We fix α to 1.0 in the experiments.  

PBI regularization tries to prevent the training of binary codes 

to fall into poor local minima. Specifically, for each time BDLAN 

quantizes the real vector r to the binary code b during training, PBI 

randomly inverts up to P % of Nb bits of b. For example, when 

Nb = 128 and P = 10%, PBI inverts the maximum of 12 bits 
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randomly chosen from the 128 bit of the code. This operation 

means that r could be quantized not only into its nearest binary code  

but also to binary codes within its stochastic proximity. The bit-

inverted binary code b is used to compute the loss described in 

equation 1. Note that PBI is performed only in the training phase. 

After training, the binary code of the 3D model is computed by 

using BDLAN without PBI as described in Section 3.2. 

To effectively train BDLAN by using small number (~10k) of 

labelled 3D models, we adopt two-stage training of BDLAN. That 

is, the first stage trains only E-block by using a large number of 

(300k in this paper) labelled RNGs. Each RNG is sampled from 

either of labelled 3D models in the training dataset and category 

label for the RNG is identical to that for 3D model from which the 

RNG is sampled. We append a classification layer at the output end 

of E-block and train the E-block so that cross-entropy loss could be 

minimized. The second stage trains the whole BDLAN by using the 

labelled 3D models to minimize the entire loss (equation 1). EE-

block inherits the result of the first stage while weights of H-block 

are randomly initialized. PBI is used at the second stage training. 

For both the first and the second stage training, we use Adam [7] 

with mini-batch size = 32. Training is iterated for 200 epochs and 

20 epochs at the first and second stage training, respectively.  

4 EXPERIMENTS AND RESULTS 

4.1 Experimental Setup 

Benchmark datasets: Efficiency and accuracy of the proposed 

algorithm are evaluated by using two standard benchmark datasets 

for 3DMR, i.e., ModelNet40 and ModelNet10 [35]. Figure 2 shows 

examples of 3D models contained in the datasets. ModelNet40 has 

9,843 3D models for training and 2,468 3D models for testing. 

These 3D models are classified into 40 semantic object categories 

such as airplane, car, plant, sofa, etc. On the other hand, 

ModelNet10, which is a subset of ModelNet40, contains 3,991 3D 

models for training and 908 3D models for testing. The 3D models 

in ModelNet10 are categorized into 10 indoor objects, e.g., chair, 

table, bed, etc. For both datasets, BDLAN is trained by using 3D 

models in the training set and retrieval accuracy is evaluated by 

using those in the test set. We use Mean Average Precision (MAP) 

[%] as accuracy index. Since the proposed algorithm is influenced 

by randomness caused by initialization of DNN parameters, PBI, 

etc., every experiment is performed three times and their average 

MAP score will be reported.  

Competitors: We compare performance of BDLAN with the 

following four algorithms; 

 DLAN [30] extracts real-valued, non-negative feature per 3D 

model. This is the algorithm on which BDLAN is based.. 

 DLAN+LSH hashes the real feature vectors obtained from 

DLAN by using Locality Sensitive Hashing [3].  

 DLAN+ITQ uses Iterative Quantization [34] for hashing. 

 DLAN+AQBC uses Angular Quantization-based Binary 

Codes [33] which is designed to hash non-negative feature 

vectors. 

Hash functions for ITQ and AQBC are learned by using DLAN 

features extracted from 3D models in the training set. LSH doesn’t 

require learning as it is a data-independent hashing algorithm. To  

generate ranking results, DLAN uses Cosine distance while the 

other three algorithms use Hamming distance. We also compare 

accuracy of BDLAN against the existing 3DMR algorithms using 

handcrafted [8][28] or deep learning-based [11][26][35], real-

valued feature of 3D model.  

We use Nb = 64 and P = 30% for BDLAN unless otherwise 

stated. We used TensorFlow library [18] to implement BDLAN. All 

the experiments were conducted on a PC with an Intel Core i7 6700 

CPU, a NVIDIA GeForce GTX 1080 GPU, and 64GB DRAM.  

4.2 Experimental Results 

Accuracy of BDLAN: Figure 3 plots retrieval accuracies of the 

five algorithms against the number of feature dimensions (i.e., Nb 

for BDLAN). For the four algorithms except for “DLAN+LSH”, 
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Figure 2: Examples of 3D models in benchmark datasets. 
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the number of feature dimensions corresponds to the number of 

neurons at the output layer of the DNN. On the other hand, for 

“DLAN+LSH”, 128-dim. real-valued features are extracted by 

using DLAN and N hyperplanes are randomly generated to yield N-

bit binary codes. Note that only “DLAN”, denoted by dashed lines 

in Figure 3, uses real vectors while the others use binary codes for 

retrieval.  

For both ModelNet40 (Figure3a) and ModelNet10 (Figure3b), 

we can observe that “BDLAN” and “DLAN” yield almost the same 

MAP scores if binary codes with more than 8~16 bits are used. This 

result indicates that BDLAN generates accurate semantic binary 

codes of 3D models with low quantization error due to feature 

hashing. Also, BDLAN shows retrieval accuracies higher than the 

three compartmentalized hashing algorithms, i.e., “DLAN+ITQ”, 

“DLAN+AQBC”, and “DLAN+LSH”. Joint optimization of 

extracting semantic real features and their hashing would have a 

positive effect to obtain binary codes for accurate 3DMR. 

“DLAN+AQBC” performs well for the simple ModelNet10 dataset 

but suffers for ModelNet40 dataset having more object categories.  

Table 1 compares retrieval accuracies of the six state-of-the-art 

3DMR algorithms including the proposed BDLAN. All the existing 

algorithms in Table 1 employs real-valued features for retrieval. 

Note that accuracies of DLAN in Table 1 differs from the original 

paper [30] since we used our own implementation of DLAN for the 

experiment. BDLAN yields competitive MAP scores to the other 

real feature-based algorithms. Accurate 3DMR can be performed 

also by using binary codes obtained from DNN. Efficiency of 

BDLAN will be evaluated in the later subsection. 

Table 1: Comparison of retrieval accuracy. 

Algorithms 
MAP [%] 

ModelNet40 ModelNet10 
LFD [8] 40.9  49.8 

SV-DSIFT [28] 58.1 68.0 
3D ShapeNets [35] 49.2 68.3 

MVCNN [11] 79.5 － 
GIFT [26] 81.9 91.1 

DLAN [30] 83.3 89.5 
BDLAN 83.1 89.8 

 

Effectiveness of PBI: We investigate the efficacy of PBI for 

learning accurate binary codes of 3D models. Figure 4 shows 

retrieval accuracies of BDLAN with PBI (P=30%) or without PBI. 

For both ModelNet40 and ModelNet10 datasets, PBI slightly but 

consistently improves MAP scores of BDLAN. The gain of 

retrieval accuracy would be the result from regularization of binary 

code learning. PBI would help the training of BDLAN find a 

solution having better generalization capability.   

Figure 5 shows influence of the hyper-parameter P for PBI on 

retrieval accuracy. For the experiments, we fixed the number of bits 

for binary codes Nb to 64. In the figure, P = 0% means PBI is not 

performed during the training of BDLAN. Interestingly, in Figure 

5, we can observe that P doesn’t have a large impact on retrieval 

accuracy. Very slight peaks can be found at around P = 30%. When 

P = 30%, at most 19 bits of a 64-bit code could be inverted. 

Efficiency of BDLAN: This subsection evaluates efficiency of 

BDLAN both for training and retrieval. As we described in Section 

3.3, BDLAN adopts two-step training. The first step (i.e., training 

of E-block) took about 2~3 days and the second step (i.e., training 

of whole BDLAN) took about 2 hours.  

We wanted to evaluate retrieval scalability of BDLAN. 

Unfortunately, however, the number of 3D models in the test set of 

ModelNet40 (i.e., 2,468) is too small to evaluate scalability. We 

therefore duplicated the 2,468 features of the 3D models up to 

100M features to simulate a large-scale 3D model database. Table 

2 summarizes retrieval efficiency of BDLAN and DLAN for the 

simulated large-scale database. In the table, “Feat.” indicates 

computation time for extracting a feature from a query 3D model, 

“Dist.” means time for computing distances among the feature of 

the query and the 100M features in the database, and “Memory 

footprint” is spatial cost to store 100M features of the 3D models. 

We used 64-dim. real-valued features for DLAN and 64 bit binary 

codes for BDLAN. 

Table 2 clearly shows that BDLAN is quite a bit faster than 

DLAN. Computing Hamming distances among binary codes 

drastically reduces computational time per retrieval.  

BDLAN is memory efficient as well; it requires less than 

1 GByte for as many as 100M 3D models. DLAN, on the other hand, 

requires 24 GBytes as it uses a 32 bit floating-point number per 

feature dimension. 

 
Figure 4: Effectiveness of Probabilistic Bit Inversion (PBI). 

 

 
Figure 5: Probability of bit inversion and retrieval accuracy. 
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Table 2: Comparison of retrieval efficiency. 

Algorithms 
Per-query time [s] Memory 

footprint [GB] Feat. Dist. Total 
DLAN [30] 0.08 11.50 11.58 24.41 

BDLAN 0.08 0.37 0.45 0.76 
 

4 CONCLUSION AND FUTURE WORK 

Explosive increase in number of 3D models in recent years 

requires scalable algorithms for shape-based 3D model retrieval 

(3DMR). Nevertheless, few prior work has been studied 3D model 

feature that satisfies both high efficiency and high accuracy. In this 

paper, we proposed a deep semantic hashing algorithm intended for 

scalable 3DMR. The proposed algorithm called Binarized Deep 

Local feature Aggregation Network (BDLAN) extracts compact 

semantic binary code per 3D model. Compared to real-valued 

feature, binary code is much efficient; binary codes can be 

compared more quickly by using Hamming distance and they 

require much less memory. To obtain salient binary codes, BDLAN 

embeds features of 3D models into the Hamming space that well 

reflects semantics of the 3D models by regularizing the training by 

using a novel, binary-code specific regularization algorithm called 

Probabilistic Bit Inversion (PBI). The experiments demonstrated 

superior efficiency and competitive accuracy of BDLAN compared 

to the state-of-the-art 3DMR algorithms. 

Future work includes evaluation of BDLAN on larger-scale 

databases having more 3D models classified into more diverse 

object categories. Also, efficacy of PBI regularization should be 

evaluated under different settings and scenarios, e.g., by deep 

hashing of 3D model features using base architectures other than 

DLAN (e.g., [11] [26][35]), or by deep hashing of 2D image 

features  (e.g., [10][12][14]).  
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