
Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

Aggregating sparse binarized local features
by summing for efficient 3D model retrieval

Takahiko Furuya
Graduate School of Medicine and Engineering

University of Yamanashi
Kofu, Japan

takahikof@yamanashi.ac.jp

Ryutarou Ohbuchi
Graduate School of Medicine and Engineering

University of Yamanashi
Kofu, Japan

ohbuchi@yamanashi.ac.jp

Abstract—An effective and widespread approach for shape-based
3D model retrieval (3DMR) is to use a feature vector per 3D model
obtained by aggregating, or pooling, a set of local features
extracted from the 3D model. State-of-the-art feature aggregation
algorithms, such as Fisher Vector (FV) coding [7] or Super Vector
(SV) coding [22], used in the approach is not spatially efficient,
however. The FV or SV, for example, typically encodes a local
feature into a very high-dimensional (e.g., 300k-dimensional)
vector. For a database containing a large number of 3D models,
the spatial cost of storing all the aggregated feature vectors for the
database becomes very high. In this paper, we propose a novel,
spatially efficient yet accurate feature aggregation algorithm
called Sum of Sparse Binary codes (SSB) aggregation. The SSB first
encodes a local feature into a highly sparse binary code. Then, a
set of sparse binary codes are aggregated efficiently by simple
summing into a compact feature vector. We also propose fast SSB
(fSSB) aggregation, which is a computationally efficient
approximation of the SSB. Experiments using a 3DMR scenario
show that the proposed algorithms are significantly more efficient
than the state-of-the-art feature aggregation algorithms we have
compared against. At the same time, retrieval accuracies of the
proposed algorithms are equal or better than the state-of-the-art
aggregation algorithms.

Keywords- feature encoding, feature aggregation, local feature,
sparse coding, binary feature, shape-based 3D model retrieval

I. INTRODUCTION

Three-dimensional (3D) shape model has become an
important media data type for a wide variety of application areas
including mechanical design, medical diagnosis and treatment
planning, architectural design, or for navigation of autonomous
vehicle. Recent proliferation of 3D printers and 3D scanners
(e.g., RGB-D cameras) has afforded us opportunities for
capturing, editing, or generating 3D shapes in our daily life.
These trends have given impetus to develop effective and
efficient, and scalable methods for 3D shape analysis,
recognition, or retrieval.

The most popular approach for shape-based 3D model
retrieval (3DMR) (e.g., [4], [17]) is to extract a set of local
features from a 3D model and then aggregating them into a
single feature vector per 3D model. A feature vector per 3D
model generated by such an approach often possesses invariance
against articulation or global deformation of the 3D model. By

using aggregated features, comparison of a pair of shapes is more
efficient. In comparison, a naïve approach for comparing two
sets of local features can be expensive. In whole-based 3DMR
(e.g., [4], [28]), an entire 3D model is the query, a set of local
features extracted from the 3D model is aggregated into a feature
vector for the 3D model. In part-based 3DMR (e.g., [20]), a
partial 3D shape is the query. An aggregated feature vector for
the query is compared against a large number of aggregated
feature vectors corresponding to multiple 3D region-of-interests
(ROIs) sampled from 3D models in a database.

A number of feature aggregation algorithms have been
proposed [25]. Feature aggregation generally consists of two
steps, i.e., encoding and pooling of local features. A codebook,
or a set of codewords, is determined, typically, by clustering the
set of local features. A local feature is encoded by using
codewords around the feature as well as the statistics associated
with the codewords. A state-of-the-art approach, e.g., Fisher
Vector (FV) coding [7] or Super Vector (SV) coding [22],
performs accurate feature encoding by using statistics such as
density, mean, and/or variance of local features. The set of
encoded local features is pooled into a single feature to reduce
temporal and spatial cost for feature comparison. In whole-based
3DMR scenario [18], SV coding especially showed superior
retrieval accuracy to the other state-of-the-art approaches
including, FV, Locality-constrained Linear (LL) coding [12],
and Vector of Locally Aggregated Descriptors (VLAD) [9].

Despite their success, most of these feature aggregation
algorithms are spatially inefficient. Their feature encoding step
produces a very high-dimensional (e.g., 300k dim.), dense, and
real-valued representation for a local feature. Therefore, for a
database having a significant size, memory footprint for storing
the set of encoded local features could become a problem. This
is so even though the set of encoded features is pooled into a
single feature per 3D model or per 3D ROI. Certain application,
e.g., part-based 3DMR, requires the encoded local features to be
stored on memory without pooling so that an encoded local
feature can be reused for computing aggregated features of a
large number of overlapping ROIs per 3D model.

In this paper, to achieve efficient and accurate feature
aggregation, we propose a pair of novel feature aggregation
algorithms that employ sparse binary encoding of local features.
One of the proposed algorithms is called Sum of Sparse Binary

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

codes (SSB) aggregation. The SSB encodes a local feature into a
sparse binary code in which a small number (e.g., 3) of bits are
‘1’ while the remaining bits are ‘0’. The sparse binary code is
very compact to store since only the positions of ‘1’ bits need to
be recorded. Feature encoding in SSB is done by combining k-
Sparse Autoencoder (kSA) [3] with Angular Quantization-based
Binary Codes (AQBC) algorithm [23]. A local feature, which is
typically dense, real-valued vector, is first sparsely encoded via
kSA and is then binarized by using AQBC. The kSA is expected
to perform accurate feature encoding for two reasons. Firstly,
kSA could jointly optimize the codebook learning and feature
encoding. In comparison, most of the previous feature
aggregation algorithms, e.g., SV and FV, employ a “greedy”
approach. That is, they first learn a codebook by clustering the
set of training local features. Then, in a disconnected step, they
encode local features by using the learned codebook. Secondly,
k-sparse constraint of kSA could enhance saliency of encoded
local features. Effectiveness of k-sparseness has been
demonstrated in several state-of-the-art feature aggregation
algorithms, e.g., LL or Localized Soft-assignment (LS) coding
[13]. The AQBC efficiently converts a sparsely encoded, real-
valued local feature into a binary code having low quantization
error. Then, simply by summing, a set of sparse binary codes are
efficiently pooled into a feature per 3D model.

In addition to SSB, we also propose fast SSB (fSSB)
aggregation, a computationally efficient approximation of SSB.
Computational bottleneck of the SSB is its feature encoding step
using kSA. We employ a set of “landmark” local features and
their tree-structured index to accelerate the feature encoding.

We evaluate the proposed algorithms by using a whole-based
3DMR scenario. Experimental results using multiple benchmark
databases and a variety of local features show superior
performance of the proposed algorithms in terms of memory
efficiency, time efficiency, and retrieval accuracy.

Contributions of this paper can be summarized as follows;

 Proposition of SSB aggregation and its approximation,
fSSB aggregation, for more efficient yet accurate
aggregation of local features.

 Empirical evaluation of the proposed feature aggregation
algorithms using a whole-based 3DMR scenario.

II. RELATED WORK

A. Aggregation of Local Features

Algorithms for aggregating local features may be classified
into two groups, that are, sparse coding (SC)-based approach and
higher-order statistics (HS)-based approach. The SC-based
approach includes Bag-of-Features (BF) [8], ScSPM [11], LL
coding, LS coding, and Diffusion-on-Manifold [19]. They
sparsely encode a local feature by using weighted linear sum of
neighboring codewords. Sparse representation of local features
is compact since it can be described by indices of codewords and
their coefficients. However, the existing SC-based aggregation
algorithms are not necessarily optimal in terms of accuracy since
their codebook learning and feature encoding are done
separately. The HS-based approach includes FV, SV, and
VLAD. They could perform accurate feature encoding by
exploiting high order statistics, e.g., density, mean, and/or

variances, computed from local features and codewords
associated with them. Since a HS-based approach often produces
very high dimensional encoded features, the HS-based feature
aggregation would not be suitable for spatially efficient 3DMR.

The proposed SSB aggregation falls into the SC-based
approach. The SSB differs from the other SC-based algorithms
in that the SSB jointly optimizes codebook and feature encoding
by using kSA for higher accuracy. The SSB also binarizes the
sparsely encoded local features to further compress the features.

B. Efficient 3DMR using Binary Local Features

Several recent studies employed binary local features for
efficient retrieval or matching of 3D shapes. Matsuda et al. [21]
proposed lightweight binary local features for 3D voxels, i.e.,
3DBRIEF and 3DORB. They can be extracted quickly from a
3D voxel. Also, these local features are compact since each local
feature is represented as a binary code whose length is hundreds
of bits. Prakhya et al. [16] proposed a fast-to-compute binary
local feature called B-SHOT for fast and memory-efficient
keypoint matching on 3D point clouds. However, these binary
local features discard a large amount of information about local
3D geometry during feature extraction. Therefore, aggregated
features computed from the set of binary local features tend to
yield insufficient retrieval accuracy. Also, feature aggregation
algorithms intended for binary local features, e.g., bag of binary
words [6] or Fisher Vector of Bernoulli Mixture Model [27],
yield high-dimensional and dense aggregated features as with
the BF or FV for real-valued local features. In contrast, the SSB
aggregation can be applied to a variety of rich real-valued local
features to produce compact yet salient aggregated features.

III. PROPOSED ALGORITHM

A. Overview of the Algorithm

Toward more efficient yet accurate aggregation of local
features, we propose novel feature aggregation algorithms that
employ sparse and binary representation of local features. One
of the proposed algorithms is called Sum of Sparse Binary codes
(SSB) aggregation. The SSB (Fig. 1b) encodes a set of real-
valued local features into a set of sparse binary codes.
Sparsifying local features enhances saliency of the local features.
Binarization that follows produces a compact representation for
the local features. The set of sparse binary codes are efficiently
aggregated into a single feature vector per 3D model by simple
sum-pooling. We employ k-Sparse Autoencoder (kSA) [3] to
generate sparse codes for the local features. The kSA is expected
to produce accurate sparse codes of the local features since it
jointly optimizes a codebook and feature encoding. To
accurately and efficiently binarize the sparse features, we use
Angular Quantization-based Binary Codes (AQBC) algorithm
[23]. The AQBC efficiently converts real vectors into binary
codes with low quantization error.

While the feature encoding of the SSB is memory-efficient
and accurate, it becomes time-consuming especially when the
kSA contains a large number of codewords. Computation time
for feature encoding increases linearly to the number of
codewords of the kSA. To alleviate this bottleneck, we also
propose a faster-to-compute approximation of the SSB, which
we call fast SSB (fSSB) aggregation (Fig. 1c), by using an index
structure in the local feature space. The fSSB is able to encode a

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

local feature in constant time regardless of number of
codewords. To be specific, as a pre-processing, a set of
“landmark” local features is selected and their sparse binary
codes are computed by using the kSA and the AQBC algorithm.
Also, the set of landmark local features is indexed by using a kd-
tree. At the feature encoding stage, each local feature is vector
quantized into its nearest landmark local feature and is encoded
into a sparse binary code for the landmark. This approximation
of feature coding for the fSSB can be computed very quickly
since the coding only need to find the nearest landmark for the
local feature via a tree-structured index. As with the original SSB,
an aggregated feature for the fSSB is formed by summing the
sparse binary codes.

Figure 1. Overview of the proposed feature aggregation algorithms.

B. Sum of Sparse Binary Codes (SSB) Aggregation

1) Aggregating Local Features by SSB

As with the other existing feature aggregation algorithms, the
SSB aggregation proceeds in two steps, that are, encoding and
pooling of local features. Pre-processing for the SSB, i.e.,
training kSA, will be described in Section III-B-2.

At the encoding stage, a set of local features extracted from
a 3D model is encoded into a set of sparse binary codes. Each
local feature is first fed into the trained kSA to generate sparse
representation of the local feature. We use the following
equation to sparsify each local feature;

   e  h y xW (1)

where x is a local feature represented as a real-valued and dense
vector, and We indicates a weight matrix for the encoder of kSA.
h is unit activation in the hidden layer of the kSA, which is a
sparse representation of the local feature of x. h is an n-
dimensional vector, where n is equal to the number of units (or
codewords) in the hidden layer, and h has only k non-zero
elements. σ is a non-linear activation function. The kSA
combines Rectified Linear Units (ReLU) [2] and k-largest value
selection for activation function. Specifically, each element yi of
y is rectified by ReLU, i.e., zi = max(0, yi). And k largest
elements among {zi | i = 1, …, n} are kept while the rest are set
to zero.

The set of sparsified local features is then binarized by using
the AQBC algorithm. In the n-dimensional feature space, the
AQBC binarizes each sparse local feature by vector-quantizing
it into a vertex of n-dimensional unit hyper-cube that has
maximum Cosine similarity with the local feature. Finding the
most similar vertex to the local feature can be computed very
efficiently when the feature is highly sparse [23]. Each binary
code is represented as an n-bit string. Since the local features
encoded by kSA are sparse, the binarized codes generated by the
AQBC are also sparse. That is, most bits within the n-bit binary
code are ‘0’. Note that the number of ‘1’ bits in the binary code
produced by the AQBC is not necessarily equal to k. In practice,
however, the AQBC most often generates a binary code having
k ‘1’s.

The set of sparse binarized local features produced by the
method described above is very compact. We only need to store
bit positions of ‘1’s within the binary code instead of storing the
whole n-bit code. For example, if we were to use 4 bytes to store
a bit position of ‘1’ and the kSA operates with k=3, each sparse
binarized local feature occupies only 4×3=12 bytes, and the
feature size does not depend on the length n of the binary code.

At the pooling stage, the set of binarized sparse local features
is efficiently aggregated into a single feature vector per 3D
model by sum-pooling. The aggregated feature is an n-
dimensional vector whose element is either zero or non-zero
integer. To effectively compare the aggregated features, each
aggregated feature vector is normalized, in succession, by
power-normalization and L2-normalization, as with [7].
Comparison of a pair of normalized aggregated features is done
by employing Cosine similarity.

Encode & decode
local features by

forward propagation

Tune parameters by
back propagation …

…

…
kSA

Encoder

Decoder

Feed into the kSA

A large set of
local features
extracted from

database 3D models

A real-valued
 local feature

…

…
Encoder Encode by

forward propagation

Feed into the kSA

A set of local
features extracted
from a 3D model

A set of
sparsely encoded

local features
Binarize by AQBC

Pool by summing

A set of
sparse binary
local features

An aggregated
feature

(01010)2
(01001)

2
 (10010)2…

(1, 4, 0, 3, 1)

A local feature space

Encode into
a sparse binary code

of the nearest landmark

A set of local
features extracted
from a 3D model

Pool by summing

A set of
sparse binary
local features

An aggregated
feature

(01010)
2

(01001)2 (10010)
2…

(1, 4, 0, 3, 1)

(01010)
2

(10010)
2

(01001)
2

An index using
 landmark local

features

a landmark
local feature

(a) Training a kSA (pre-processing).

(b) Sum of Sparse Binary codes (SSB) aggregation.

(c) fast SSB (fSSB) aggregation.

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

The SSB aggregation has two hyper-parameters that need to
be manually chosen, i.e., the number of units n in the hidden
layer of kSA and the number non-zero elements k of unit
activation. As we will show in the experimental section, n should
be large (e.g., n=8,000) and k should be small (e.g., k=3) to
obtain high retrieval accuracy. Small k is essential for a compact
sparse binary code.

2) Training kSA

Prior to training the kSA, we first normalize the set of local
features by using PCA-whitening. The set of local features is
projected onto a lower dimensional linear subspace by using
PCA, and then whitened so that each pair of dimensions in the
subspace is uncorrelated. We fix the dimension of the subspace
d to 64 throughout the experiments.

The kSA used in the SSB aggregation has a single layer,
which consists of an input layer, a hidden layer, and an output
layer (see Fig. 1a). The input layer and the output layer contains
d units while the hidden layer has n units. Each pair of units
between two adjacent layers are connected by a weighted edge.
The encoder associates the input layer with the hidden layer
while the decoder associates the hidden layer with the output
layer. The kSA is trained so that it can reconstruct the local
features with minimal error. We use the following objective
function for training.

 2

1 2 22

1
ˆT

i i iE
T

    e dx x W W (2)

In the equation above, two matrices We and Wd are weight
matrix for the encoder and the decoder, respectively, xi is one of
T training local features, ˆ ix is reconstructed local feature
generated by kSA of the input xi. x̂ is computed by decoding the
sparsely encoded local feature h in the hidden layer, i.e.,

dˆ x hW . In (2), the first term is mean squared reconstruction
error of T training local features, while the second term
regularizes the training. These two terms are balanced by a
hyper-parameter λ, which we fix at 0.0001 throughout the
experiments. We use T=250k local features randomly selected
from the database for training.

The two matrices We and Wd are tuned so that the objective
function is minimized through the training. Optimization of (2)
is performed by using Stochastic Gradient Descent (SGD) with
mini-batch. Each mini-batch includes 200 training local features
randomly chosen from the set of T training local features. To
adaptively assign a learning rate to each parameter in We and Wd,
we use AdaGrad algorithm [10] with an initial learning rate = 0.2.
The optimization is iterated for 50 epochs.

C. Fast SSB (fSSB) Aggregation

1) Aggregating Local Features by fSSB

The feature encoding using kSA (i.e., computing (1)) is time-
consuming when the kSA has a large number (e.g., thousands)
of units in the hidden layer, even if the process is accelerated by
using a GPU. To reduce the temporal cost for feature encoding,
we propose fSSB, which is an approximation of the SSB that
uses a tree-structured index in the local feature space. The fSSB
aggregation removes the kSA from the feature encoding step of
the SSB.

The tree-structured index is constructed as follows. Firstly, a
large set of landmark local features is selected. We use L=250k
landmark local features randomly sampled from the set of local
features extracted from all the 3D models in the database. Each
landmark feature is then encoded into a sparse binary code by
using the method described in Section III-B-1. Each sparse
binary code is associated with its corresponding landmark
feature. Also, a kd-tree is built in the d-dimensional local feature
space to index the set of L landmark features.

Once the tree-structured index is constructed, encoding of
local feature can be computed very efficiently. Given a set of
local features extracted from a 3D model, each local feature is
vector-quantized into its nearest landmark local feature, and is
encoded into the sparse binary code associated with the nearest
landmark. Finding nearest landmarks for the local features can
be computed quickly by using the kd-tree. After feature encoding,
pooling is performed identically to the SSB. That is, the set of
sparse binary codes for the 3D model is aggregated into a single
feature vector by sum-pooling. The pooled feature vector is
power-normalized and then L2-normalized for comparison.

2) Computational Complexity

Compared to the SSB, the fSSB has an increased spatial
complexity for it needs to store the index structure on memory.
However, memory usage of the fSSB is reasonable for practical
use. Assume that, for example, we use L=250k landmark local
features, each of which is a d=64 dimensional floating point
vector. Assume also that we use a kSA with the number of non-
zero elements in the hidden layer k=3. The set of landmark local
features occupies 250k×64×4byte=64Mbyte. And the set of
sparse binary codes for the landmarks requires
250k×3×4byte=3Mbyte. The index structure consumes about
70Mbyte including the kd-tree. The index fits easily in a main
memory of a resource-constrained computer.

Temporal cost of the fSSB for encoding a set of f local
features is O (f × logL), dominated by the cost of approximate
nearest neighbor search by using a kd-tree. In comparison, the
SSB, which uses a kSA having n units in the hidden layer in
place of the index structure, requires O (f × n) for feature
encoding by computing (1). Note that time complexity of feature
encoding for the fSSB is independent of n. We will show, in the
experiments, that the fSSB aggregation is done in near-constant
time regardless of n.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Benchmark Databases

To evaluate efficiency and accuracy of the proposed feature
aggregation algorithms, we use four benchmark datasets for
3DMR, that are, the Princeton Shape Benchmark (PSB) [14], the
Engineering Shape Benchmark (ESB) [15], the SHREC 2011
Non-Rigid watertight meshes dataset (SH11NR) [28], and the
SHREC 2014 Large-scale Comprehensive 3D shape retrieval
dataset (SH14LC) [4]. Fig. 2 shows examples of 3D models
contained in the benchmark datasets. In Fig. 2, Nm is the number
of 3D models in the dataset and Nc is the number of semantic
categories. The PSB and SH14LC contain diverse and rigid 3D
models of animals, plants, vehicle, furniture, building, etc. The

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

ESB consists of 3D CAD models of mechanical parts. The
SH11NR has non-rigid 3D models of humans or animals. For
each of these benchmarks, a 3D model in the dataset is used as
the query to retrieve the rest of the 3D models in the dataset.
Retrieval accuracy measured in average precision is averaged
over all the models in a benchmark to obtain a Mean Average
Precision (MAP) [%] value for the benchmark.

To measure computation times for the database pre-
processing and the query processing stages, we use a PC having
an Intel Core i7-5930K CPU, a GeForce GTX Titan X GPU, and
32GB DRAM.

(a) PSB (NM =907, NC =92) (b) ESB (NM =867, NC =45)

(c) SH11NR (NM =600, NC =30) (d) SH14LC (NM=8,987, NC=171)

Figure 2. Example of 3D models contained in benchmarks datasets.

2) Local Feature Aggregation Algorithms

We compare the SSB and the fSSB against six existing
feature aggregation algorithms, i.e., BF [8], LL [12], FV [7],
VLAD (VL) [9], SV [22], and DM [19]. To learn the codewords,
k-means clustering algorithm is used for BF, LL, and VL, while
Gaussian Mixture Model clustering algorithm is used for FV and
SV. For sparse coding-based aggregation methods including BF
and LL, we learn 8k codewords. For higher-order statistics-
based methods including VL, FV, and SV, the number of
codewords are determined so that dimensionality of aggregated
feature vector becomes about 8k. For DM, we use 8k local
features to generate a manifold graph for aggregation. All the
aggregated feature vectors are power-normalized and then L2-
normalized. We use Cosine similarity for comparison among
aggregated feature vectors.

For both SSB and fSSB aggregations, we set the hyper-
parameters n=8k, k=3, and L=250k unless otherwise stated.
Experimental evaluation of effects these hyper-parameters have
on retrieval accuracy and efficiency will be presented below.

3) Local Features

For the 3DMR experiment, we use six local features, that are;
Position and Orientation Distribution (POD) [19], Spin Image
(SI) [1], Local Statistical Feature (LSF) [26], Rotational
Projection Statistics (RoPS) [24], Dense SIFT (DSIFT) [17], and
Multi-Orientation One SIFT (MO1SIFT) [18]. They can be
classified into two groups; local 3D geometric feature including
POD, SI, LSF, RoPS, and local 2D visual feature including
DSIFT and MO1SIFT.

In this paper, we follow the experimental settings by Furuya
et al. [19]. For local 3D geometric features, i.e., POD, SI, LSF,
and RoPS, a 3D model is first converted into an oriented point

set for feature extraction. We sample 3k oriented points from
surfaces of a 3D model. Then, a local geometric feature is
computed from a local sphere of interest. Each local sphere has
random radius and its center is one of the 3k oriented points.
Each 3D model is thus described by a set of 3k local features.
For local 2D visual features, i.e., DSIFT and MO1SIFT, a 3D
model is first converted into a set of 42 depth images by
rendering the 3D model from 42 viewpoints spaced uniformly in
solid angle. DSIFT densely extracts a set of 300 SIFT [5]
features at random positions from a rendered image. A set of 13k
SIFT features is thus extracted from a 3D model. MO1SIFT
extracts a SIFT feature per rendered image. For improved
rotation invariance, each rendered image is rotated, in-plane, to
16 orientations prior to global SIFT extraction. Each 3D model
is thus described by a set of 42×16=672 MO1SIFT features.

B. Experimental Results

1) Hyper-parameters and Retrieval Accuracy

In this section, we investigate influences of hyper-parameters
of kSA used for the fSSB aggregation. We use the PSB dataset
for this evaluation. Please note that, while this section presents
results for the fSSB only, results similar to these have been
observed for the SSB aggregation as well.

Fig. 3 plots retrieval accuracies of the fSSB against the
number of units n in the hidden layer of kSA. Another hyper-
parameter for kSA, i.e., the number of non-zero hidden units k,
is fixed at 3 for the experiment. In Fig. 3, retrieval accuracies
saturate at around n=5k~10k for most local features. Note that,
in kSA, more hidden units leads to more computation time for
feature aggregation. We will evaluate accuracy and efficiency of
the approximation method used in fSSB in the next section.

Fig. 4 shows relationship between the number of non-zero
hidden units k for kSA and retrieval accuracy. Here, the number
of hidden units is fixed at n=8k. We observe that retrieval
accuracies have peaks at k=2 or k=3 for most local features for
the value of n. The DSIFT is an exception with its highest
retrieval accuracy at k=1. These results suggest that, kSA with
its k-sparseness, works best with a small k.

Figure 3. Number of hidden units and retrieval accuraccy (PSB).

25

30

35

40

45

50

55

60

65

70

0 5,000 10,000 15,000 20,000

M
A

P
 [

%
]

n (number of units in a hidden layer)

fSSB-POD fSSB-DSIFT
fSSB-MO1SIFT fSSB-LSF
fSSB-SI fSSB-RoPS

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

Figure 4. Number of non-zero hidden units and retrieval accuracy (PSB).

2) Effectiveness of fSSB Aggregation

We evaluate effectiveness of the fSSB, which is an
approximation of the SSB aggregation, both in terms of
computational efficiency and retrieval accuracy.

Fig. 5 plots feature aggregation time against the number of
hidden units n for kSA. We use a set of 3k POD features, each
of which is dimension reduced by PCA to d=64 dimensions, for
feature aggregation. Fig. 5 indicates that computation time for
the SSB roughly linearly increases with n. Note that feature
aggregation of the SSB is accelerated by using a GPU. More
computation time would be necessary if a CPU is used for the
SSB aggregation. In comparison, feature aggregation time for
the fSSB is nearly constant regardless of n. The fSSB replaces
kSA with a nearest neighbor search that uses an efficient spatial
index structure to find a landmark feature closest to a given local
feature to be encoded. For example, when n=8k, the fSSB takes
about 0.04s for feature aggregation, which is about 10 times
faster than feature encoding using the SSB aggregation that takes
about 0.39s.

Figure 5. Feature aggregation time per 3D model.

Fig. 6 plots retrieval accuracies of the fSSB aggregation
against the number of landmark local features L. Fig. 6 also
includes plots of retrieval accuracies of the SSB aggregation as
the base line. We can observe that the fSSB is able to
approximate the SSB well if a sufficient number (e.g., more than

200k) of landmark local features are used. Using L=250k
landmark local features, the fSSB yields retrieval accuracies
almost equal to those of the SSB aggregation for all the three
local features in Fig. 6.

Figure 6. Number of landmark features and retrieval accuracy (PSB).

3) Comparison with Other Feature Aggregation Algorithms

a) Retrieval Accuracy
Fig. 7 compares retrieval accuracies of eight feature

aggregation algorithms including the SSB and the fSSB by using
the POD feature. Horizontal axis of Fig. 7 is the dimensionality
of aggregated feature vectors. The maximum dimensionality is
set at 10k for we wanted to contain computational cost of feature
comparison.

Figure 7. Aggregated feature dimensions and retrieval accuracy (PSB).

Fig. 7 shows that the proposed feature aggregation
algorithms, i.e., the SSB and the fSSB, significantly outperform
most of the six previous feature aggregation algorithms we have
compared against. Among the six, only the DM aggregation
seems to compete with the SSB and the fSSB if aggregated
feature dimension n is larger than 5k. If the comparison is made
for a smaller aggregated feature dimensionality, the SSB and the

25

30

35

40

45

50

55

60

65

70

0 5 10 15 20 25 30

M
A

P
 [

%
]

k (number of non-zero units in hidden layer)

fSSB-POD fSSB-DSIFT
fSSB-MO1SIFT fSSB-LSF
fSSB-SI fSSB-RoPS

0

0.2

0.4

0.6

0.8

1

1.2

0 5,000 10,000 15,000 20,000

A
gg

re
ga

ti
on

 ti
m

e
[s

]

n (number of units in a hidden layer)

SSB
fSSB

50

52

54

56

58

60

62

64

66

68

70

0 100,000 200,000 300,000

M
A

P
 [

%
]

L (number of landmark local features)

fSSB-POD SSB-POD
fSSB-DSIFT SSB-DSIFT
fSSB-MO1SIFT SSB-MO1SIFT

25

30

35

40

45

50

55

60

65

70

0 2,000 4,000 6,000 8,000 10,000

M
A

P
 [

%
]

Aggregated feature dimensions

BF-POD LL-POD
FV-POD VL-POD
SV-POD DM-POD
SSB-POD fSSB-POD

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

fSSB do better than the others. We speculate that the joint
optimization of codebook learning and feature encoding using
kSA contributed to the high retrieval accuracy of the SSB and
the fSSB. In comparison, “greedy” approach to codebook
learning and feature encoding, which are done independently of
each other, has limited the accuracies of the six previous feature
aggregation algorithms.

The experiment shown in Figure 7 uses the PSB benchmark
and the POD feature. To assess generality of the proposed
algorithms against datasets and features, we conducted a
comprehensive set of experiments by using 4 benchmarks, 7
feature aggregation algorithms including the fSSB, and 6 local
features. The results for the PSB, ESB, SH11NR, and SH14LC
benchmarks are summarized in Table I, II, III, and IV. We set
the number of dimensions for the aggregated feature vectors to
roughly 8k for all the feature aggregation algorithms in these
tables. We can observe that the success of the fSSB aggregation
depends on local features to be aggregated. For most of the
benchmarks, for the features POD, MO1SIFT, and RoPS, the
fSSB yields equal or better retrieval accuracies than the state-of-
the-art feature aggregation algorithms including LL, FV, VL, SV,
and DM. On the other hand, for the features DSIFT, LSF, and SI,
retrieval accuracies of the fSSB are less than those of the DM
aggregation, which is arguably the most accurate feature
aggregation algorithms for 3DMR [19]. However, overall, the
fSSB performs about as well or better than the state-of-the-art
feature aggregation algorithms despite the fact that the fSSB uses
compact sparse binary representation for its feature encoding.

TABLE I. MAP [%] FOR PSB DATASET.

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 48.0 51.0 55.5 33.0 38.1 40.5
LL 53.1 57.6 56.5 33.8 41.0 46.4
FV 50.3 56.4 44.8 33.4 40.8 44.3
VL 51.8 56.3 43.5 32.7 41.4 42.6
SV 51.1 54.2 47.6 31.2 42.1 41.5
DM 56.3 59.1 56.9 39.0 43.1 47.9

fSSB 56.1 54.5 61.6 33.8 35.0 50.5

TABLE II. MAP [%] FOR ESB DATASET.

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 52.1 53.6 49.1 47.1 48.3 47.2
LL 53.0 56.0 53.8 50.7 50.9 49.1
FV 53.8 56.0 53.1 49.8 52.3 47.9
VL 52.7 54.5 49.7 50.1 51.3 47.4
SV 55.0 54.9 51.1 49.3 53.9 46.4
DM 55.6 56.5 56.4 55.2 54.9 49.3

fSSB 57.1 55.2 59.5 52.2 51.2 51.7

TABLE III. MAP [%] FOR SH11NR DATASET

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 87.3 94.3 75.7 87.5 85.8 89.0
LL 94.7 97.0 82.4 93.8 94.2 94.2
FV 95.2 95.1 70.2 88.3 92.2 94.9
VL 94.9 95.7 71.8 94.2 94.2 94.3
SV 95.6 95.7 71.7 92.4 94.0 95.5
DM 96.6 96.2 80.1 94.2 94.7 94.9

fSSB 93.2 96.0 86.4 90.9 91.3 90.2

TABLE IV. MAP [%] FOR SH14LC DATASET

algorithms POD DSIFT MO1SIFT LSF SI RoPS
BF 39.6 38.5 36.5 30.9 32.7 35.8
LL 44.7 41.7 39.4 31.4 34.6 39.2
FV 43.3 40.5 32.6 31.9 34.9 37.8
VL 43.9 39.8 31.3 30.9 34.8 36.0
SV 43.8 39.8 33.2 31.5 36.0 36.8
DM 47.4 41.5 40.1 36.2 36.5 40.7

fSSB 47.1 38.2 41.6 31.5 31.4 42.1

b) Temporal Cost and Spatial Cost
Table V compares efficiency of several feature aggregation

algorithms both in terms of computation time and memory
footprint. We used the PSB dataset and POD feature for the
experiments. In table V, column “Pre-processing” indicates a
computation time for codebook learning. The fSSB also includes
times for encoding landmark local features and building a tree-
structured index in the pre-processing step. “Feature aggregation
/ 3D model” is a time for aggregating a set of 3k POD features
extracted from a 3D model. “Codebook” is memory footprint for
storing the codebook. For SSB, a codebook is equivalent to a
trained kSA with n=8k hidden units. For fSSB, the codebook is
the set of 250k landmark local features and its tree-structured
index. “Encoded features / 3D model” is memory usage for
encoded local features before pooling, while “Aggregated
feature / 3D model” is memory footprint for a pooled
(aggregated) feature vector per 3D model.

Table V shows that the proposed kSA-based feature
aggregation algorithms, i.e., SSB and fSSB, takes longer time
than LL and SV for their pre-processing. Pre-processing time of
the SSB and fSSB is mostly dominated by training of the kSA.
As for the feature aggregation step, the fSSB aggregates faster
than LL and SSB.

The fSSB requires the largest memory footprint for its
codebook among all the algorithms listed in Table V, as its
“codebook” include tree-structured index. However, in practice,
memory footprint of about 70Mbyte is acceptable as it easily fits
on memory of an ordinary PCs.

One of the advantages for the proposed algorithms is
compactness of the encoded local features. Since the SSB and
fSSB generates highly sparse, binary representation of local
features, they require only 0.04Mbyte (40kbyte) to store 3k
encoded local features of a 3D model. Compared to the LL,
whose k-sparseness is set to k=15, memory consumption of
encoded local features for the SSB and fSSB is only about one-
tenth. Compactness of the encoded local features is required in
certain applications, e.g., part-based 3DMR, in which an
encoded local features need to be kept and reused many times to
generate aggregated features for a large number of possibly
overlapping sub-regions. Memory usage for the aggregated
feature is almost the same among the aggregation algorithms
since we set the number of aggregated feature dimensions to
roughly 8k.

Table VI shows computation time per query using the
proposed SSB and fSSB aggregation. We used the SH14LC
since it contains the largest number (i.e., 8,987) of 3D models
among the four benchmark datasets we have used in the
experiments. In the table, column “Feat.” is a computation time

Takahiko Furuya, Ryutarou Ohbuchi, Aggregating sparse binarized local features by summing for efficient 3D model retrieval, Proc.
of the Second IEEE Int’l Conf. on Multimedia Big Data (BigMM 2016), Oral paper, April 20-22, 2016, Taipei, Taiwan, (2016)

for extracting 3k POD features from a query 3D model, “Agg.”
is a time for aggregating the set of 3k POD features extracted
from the query, and “Sim.” indicates a time for computing
similarities among the aggregated feature of the query and the
aggregated features of the 3D models in the database. Clearly, in
this case, feature aggregation time of the SSB (0.39s) is a
bottleneck for retrieval. This bottleneck can be removed by the
fSSB aggregation, which employs tree-structured index of
landmark local features for faster encoding, with no loss of
retrieval accuracy as we showed in Section IV-B-2.

TABLE V. COMPARISON OF TEMPORAL AND SPATIAL COST.

algorithms

Computation time [s] Memory footprint [Mbyte]

Pre-
processing

Feature
aggregation
/ 3D model

Codebook
Encoded
features

/ 3D model

Aggregated
feature

/ 3D model
LL 74.77 0.11 2.56 0.36 0.03
SV 9.16 0.01 0.06 97.20 0.03
SSB 649.24 0.39 2.10 0.04 0.03
fSSB 694.53 0.04 71.02 0.04 0.03

TABLE VI. COMPUTATION TIME PER QUERY FOR SH14LC DATASET.

algorithms Feat. Agg. Sim. Total
SSB 0.15 0.39 0.02 0.56
fSSB 0.15 0.04 0.02 0.21

V. CONCLUSION AND FUTURE WORK

In this paper, for efficient and accurate aggregation of local
features, we proposed the Sum of Sparse Binary codes (SSB)
aggregation and its faster-to-compute approximation fast SSB
(fSSB) aggregation. They employ very compact, sparse, binary
representation to encode local features. Aggregation, or pooling,
of the encoded features is efficiently performed by summing.
Accurate feature encoding of the proposed algorithms is
achieved by using k-Sparse Autoencoder [3] and Angular
Quantization-based Binary Codes algorithm [23]. Experimental
evaluations using a whole-based 3D model retrieval scenario
demonstrated that both SSB and fSSB is memory-efficient. In
addition, their retrieval accuracies are comparable, or sometimes
superior, to the existing feature aggregation algorithms including
Fisher Vector coding [7], Super Vector coding [22], and
Diffusion-on-Manifold aggregation [19]. The fSSB accelerates
the SSB aggregation with almost no loss of retrieval accuracy.

As a future work, we will evaluate the proposed algorithms
under part-based 3DMR setting that puts the compact sparse
binary encoding and efficient sum-pooling of the proposed
feature aggregation algorithms to good use.

ACKNOWLEDGMENT

This research is supported by JSPS Grants-in-Aid for
Scientific Research (C) #26330133.

REFERENCES
[1] A.E. Johnson and M. Hebert “Using spin images for efficient object

recognition in cluttered 3D scenes,” PAMI, 21(5), pp.433–449, 1999.

[2] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Proc. NIPS 2012, pp.1097–
1105, 2012.

[3] A. Makhzani and B. Frey, “k-Sparse Autoencoders,” arXiv:1312.5663,
2012.

[4] B. Li et al., “Large Scale Comprehensive 3D Shape Retrieval,” Proc. EG
3DOR 2014, pp.131–140, 2014.

[5] D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” IJCV, 60(2), pp.91–110, 2004.

[6] D. Galvez-Lopez and J.D. Tardos, “Real-time loop detection with bags of
binary words,” Proc. IROS 2011, pp. 51–58, 2011.

[7] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” Proc. ECCV 2010, Part IV, pp.143–
156, 2010.

[8] G. Csurka et al., “Visual Categorization with Bags of Keypoints,” Proc.
ECCV 2004 workshop on Statistical Learning in Computer Vision, pp.59–
74, 2004.

[9] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” Proc. CVPR 2010,
pp.3304–3311, 2010.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, 12, pp.2121–2159, 2011.

[11] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching
using sparse coding for image classification,” Proc. CVPR 2009, pp.794–
1801, 2009.

[12] J. Wang et al., “Locality-constrained Linear Coding for Image
Classification,” Proc. CVPR 2010, pp.3360–3367, 2010.

[13] L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,”
Proc. ICCV 2011, pp.2486–2493, 2011.

[14] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton
Shape Benchmark,” Proc. SMI 2004, pp.167–178, 2004.

[15] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani, “Developing an
engineering shape benchmark for CAD models,” Proc CAD, 38(9),
pp.939–953, 2006.

[16] S.M. Prakhya, L. Bingbing, and L. Weisi, “B-SHOT: A binary feature
descriptor for fast and efficient keypoint matching on 3D point clouds,”
Proc. IROS 2015, pp.1929–1934, 2015.

[17] T. Furuya and R. Ohbuchi, “Dense sampling and fast encoding for 3D
model retrieval using bag-of-visual features,” Proc. ACM CIVR 2009,
Article No. 26, 2009.

[18] T. Furuya and R. Ohbuchi, “Fusing Multiple Features for Shape-based 3D
Model Retrieval,” Proc. BMVC 2014, 2014.

[19] T. Furuya and R. Ohbuchi, “Diffusion-on-Manifold Aggregation of Local
Features for Shape-based 3D Model Retrieval,” Proc. ICMR 2015,
pp.171–178, 2015.

[20] T. Furuya, S. Kurabe, and R. Ohbuchi, “Randomized sub-volume
partitioning for part-based 3D model retrieval,” Proc. EG3DOR 2015, pp.
15–22, 2015.

[21] T. Matsuda, T. Furuya, and R. Ohbuchi, “Lightweight binary voxel shape
features for 3D data matching and retrieval,” Proc. BigMM 2015, pp.20–
22, 2015.

[22] X. Zhou, K. Yu, T. Zhang, and T.S. Huang, “Image Classification using
Super-Vector Coding of Local Image Descriptors,” Proc. ECCV 2010,
pp.141–154, 2010.

[23] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular quantization-
based binary codes for fast similarity search,” Proc. NIPS 2012, 2012.

[24] Y. Guo et al., “Rotational Projection Statistics for 3D Local Surface
Description and Object Recognition,” IJCV, 105(1), pp.63–86, 2013.

[25] Y. Huang, Z. Wu, L. Wang, and T. Tan, “Feature Coding in Image
Classification, A Comprehensive Study,” PAMI, 36(3), pp.493–506,
2014.

[26] Y. Ohkita, Y. Ohishi, T. Furuya, and R. Ohbuchi, “Non-rigid 3D Model
Retrieval Using Set of Local Statistical Features,” Proc. ICME 2012
Workshop on Hot Topics in 3D Multimedia, pp.593–598, 2012.

[27] Y. Uchida and S. Shigeyuki, “Image Retrieval with Fisher Vectors of
Binary Features,” Proc. ACPR 2013, pp.23–28, 2015.

[28] Z. Lian et al., “SHREC'11 Track: Shape Retrieval on Non-rigid 3D
Watertight Meshes,” Proc. EG 3DOR 2011, pp.79–88, 2011

