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Abstract—Various algorithms for shape-based retrieval of non-
rigid 3D models, with invariance to articulation and/or global 
deformation, have been developed. A majority of these 
algorithms assumes that 3D models have mathematically well-
defined representations, e.g., closed, manifold mesh. These 
algorithms are thus not applicable to other types of shape 
models, for example, those defined as polygon soup. This paper 
proposes a 3D model retrieval algorithm that accepts diverse 
3D shape representations and is is able to compare non-rigid 
3D models. The algorithm employs a set of hundreds to 
thousands of 3D, statistical, local features to describe a 3D 
model. These features are integrated into a feature vector per 
3D model by using bag-of-features approach for efficiency in 
comparing 3D models and for invariance against articulation 
and global deformation. Experimental evaluation showed that 
the algorithm performed well for non-rigid 3D model retrieval. 
 

Index Terms— 3D model retrieval; 3D geometrical 
modeling; bag-of-words; shape descriptor, articulated model. 

I. INTRODUCTION 

Three-dimensional (3D) shape model has become a 
mainstream multi-media data type. It used for mechanical 
and architectural design, entertainment, medical diagnosis, 
and for archaeology. Accordingly, effective and efficient 
management methods for 3D models, especially via content 
based retrieval by their shape, has become quite important. 

In this paper, we propose a shape-based 3D model 
retrieval algorithm that accepts diverse set of 3D shape 
representations, and is invariant to similarity transformation 
and articulation and/or global deformation. The algorithm 
employs a 3D feature, not an appearance-based feature, so 
that the algorithm is able to capture internal as well as 
external structure of a 3D model. The algorithm accepts a 
3D model represented as a set of oriented point sets. Almost 
any surface-based 3D model representations can be 
converted into oriented point set by sampling its surfaces by 
(oriented) points. The algorithm computes hundreds to 
thousands of Local Statistical Features, or LSFs, from a 3D 
model. Each LSF is inherently invariant to similarity 
transformation. By integrating large number of LSFs into a 
feature vector per 3D model, the algorithm assumes 
invariance against articulation and/or global deformation. 
Experimental evaluation has shown that, for an algorithm 
that accepts polygons soup models, the algorithm has a very 

good, if not the best, retrieval accuracy for non-rigid (i.e., 
articulated) 3D models. 

II. RELATED WORK 

Requirements for shape-based retrieval of 3D shape 
models vary depending on its application. Oftentimes, 
invariance to similarity transformation, that is, a 
combination of 3DOF translation, 3DOF rotation, and 
1DOF (uniform) scaling, is required. Most 3D model 
retrieval algorithms aim at invariance against similarity 
transformation.  

Invariance to shape representation may also be important, 
as a 3D shape may be represented by using one of many 
mutually incompatible 3D shape representations. Recent 
mechanical CAD models are probably “solid” models, 
which defines 3D volumes embedded in 3D space. A large 
portion of 3D models, e.g., those used for movies and games, 
however, uses polygon soup and/or (a set of) open manifold 
mesh representations. A 3D model may also be defined by 
using a set of (unconnected) oriented points placed at the 
assumed surfaces of a model. While some previous 3D 
model retrieval algorithms (e.g., [8][1][3][5][4]) could 
accept diverse set of shape representation, others are limited 
to manifold or watertight mesh (e.g., [10][11]). 

Another possible requirement is invariance, against 
articulation and/or global deformation. A 3D model in 
different pose is often required to be treated as the same or 
similar, as in the case of snake, pliers, or human (e.g., 
Figure 1) in McGill Shape Benchmark [7]. Earlier 3D model 
retrieval algorithms (e.g., [8][1][5][3]) use global feature, so 
they don’t have invariance to articulation; articulated figures 
are recognized as different. More recent such methods as a 
set of local features [4] or diffusion-based distance 
computed on manifold mesh surface [10][11] to describe a 
3D model for invariance to articulation. While [4] accepts 
various shape representations, it is unable to consider 
internal structure of 3D models as it compares 3D model 

     

Figure 1. Human figures in McGill Shape Benchmark [7]. 
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based on exterior view of 3D models. Diffusion distance 
based algorithms (e.g., [10][11]) on the other hand, are 
limited to manifold meshes.  

Our proposed algorithm employs a set of 3D local 
features to describe a 3D model. It is very tolerant of input 
shape representation; the feature can be computed from 
polygon soup or oriented point set models. By integrating 
the set of local features into a feature vector per 3D model, 
invariance to articulation is realized, and the cost of 
comparison between a pair of 3D models is reduced.  

II. PROPOSED ALGORITHM 

Proposed Local Statistical Feature (LSF) algorithm follows 
the steps below to compare 3D shape models. (See 
Figure 2.) The algorithm natively compares 3D models in 
oriented point set representation. If the 3D models are in 
surface based representation, e.g., manifold surface or 
polygon soup, step 1 is required to convert them into 
oriented point set models.  

1. If a 3D model to be compare is in surface based 
representation it is converted into oriented point set 
representation consisting of m points. 

2. Compute a set of   LSFs from the set of m oriented 
points of the 3D model. 

3. Integrated n LSFs into a feature vector per 3D model.  
4. Distances among feature vectors of a query model and 

database models are computed. Top matches are 
returned as retrieval result. 

 

A. Converting surfaces into oriented points 

As described above, if a 3D model is represented as a set 
of surfaces, the model needs to be converted into oriented 
point set model by sampling the surfaces (with normal 
vectors) with m uniformly spaced points. First, if the model 
contained non-triangular polygons, they are triangulated 
prior to point generation.  

Osada et al [8] uses the following equation to samples the 
surface at position P ; 

      1 1 1 2 2 1 2 31 1 .u r u u u     P t t t
 

(1) 

In the equation, 1t , 2t , and 3t  are vertices of the triangle, 
and 1u  and 2u are pseudo-random number sequences 
(PRNS). We use the same equation, but instead of PRNS, 
we use low-discrepancy sequence or quasi-random number 
sequence (QRNS). The QRNS produces points that are more 
uniformly distributed than PRNS. Our implementation uses 
Sobol's QRNS [12].  

Given a total number of samples per 3D model, a number 
of points proportional to area of a triangle is generated for 
the triangle. Assume that the total area of the 3D model is S. 
Then, a point should be placed area / .s S m  For the ith 
triangular facet if  having an area area( )if , its number of 
points iq  is computed as follows;  
   1floor area .i i iq f s q     (2) 

   1areai i i iq f s q q      (3) 

Each point i is associated with the position Pi as well as 
the surface normal vector of the surface on which the point 
is placed at.  

B. Computing Local Statistical Features 

For each 3D model, n m  feature points are selected 
from the m oriented points, and n LSFs per 3D model are 
computed at these points. The algorithm selects specified 
number n of feature points randomly from the m sample 
points. Each LSF is computed using a set of sample points 
enclosed in a sphere of radius r centered at the feature point. 
The LSF radius r for a 3D model is set relative to the radius 
of smallest sphere enclosing the 3D model. For example, 
with r=0.5, the LSF sphere of influence is just large enough 
to enclose the 3D model.  

Assume that the feature center is ܘଵ and its normal vector 
is ܖଵ. Assume also that point ܘଶ with an associated normal 
vector ܖଶ is a point within the sphere of influence of radius 
r of the feature center  ܘଵ . Using ܘଵ  and  ܘଶ , a 4-tuple 
(, , , ) consisting of a distance  and three values , ,  
related to angles is computed. Here, point ܘଵ is the LSF 
feature point (LSF sphere center), and ܘଶ is the point other 
than the feature point but contained in the sphere of 
influence. The four values  , , and are computed as 
follows (See Figure 3); 

  1 2arctan , .  w n u n   (4) 

 2  v n  (5) 

  2 1 2 1 .    u p p p p  (6) 

 2 1 .  p p  (7) 
where 1,u n    2 1 2 1 ,    v p p u p p u  and 

. w u v  
If there are k points within the sphere, a set of (k-1) tuples 

are computed for a feature center, and (k-1) each of values 
 , , and are collected into a 4-dimensional joint 
histogram. If the histogram has 5 bins for each values of the 
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Figure 2. A large number of local features are extracted, and they are
integrated into a feature vector per 3D model.  
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tuple, resulting LSF feature, if ‘flattened’ into 1D vector, is 
5ସ ൌ 625 dimensional. 

LSF is similar to Surflet Pair Relation Histograms 
(SPRH) [12] by Wahl, et al. LSF differs from SPRH in two 
aspects; (1) SPRH is global, while LSF is localized within a 
sphere of influence, and (2) LSF computes a statistics 
between the center (“feature point”) and the other points 
within the sphere of influence, while SPRH computes a 
statistics among all the pair of points. 

Parameters m, n, and r have impact on retrieval 
performance and computational cost. Being a statistical 
feature, one would like to have a large number m of sample 
points and a large number n of feature points. But an 
increase in m and/or n obviously increases computational 
costs. In the experiments described below, as a compromise, 
we will use m=2,048 and n=512. 

A small r ensures locality of features, which makes the 
algorithm more invariant against global deformation and 
articulation. A smaller r also means lower computational 
cost. However, a small radius means a small number of 
sample points in the sphere. Small number of sample points 
results in an under-populated, less accurate histogram, 
especially since the histogram has relatively large number of 
bins (e.g., 625). A large r would produce a well-populated 
histogram, but with a significant increase in cost of 
computation. Also, reduced locality of the feature means 
reduced invariance to global deformation and articulation. 

 

C. Integrating LSFs into a feature per 3D model 

At this point a 3D model is described by a set of hundreds 
to thousands of LSF features. Comparing a pair of sets for 
their similarity (or distance) can be quite expensive. Our 
algorithm thus integrate the set (a large number of) of 
features per 3D model into a feature vector per 3D model by 
using two approaches; well known Bag-of-Features (BF) or 
Bag-of-Words approach, and a simpler, Linear Combination 
(LC) approach. In the following, a feature vectors per 3D 
model produced by using BF integration and LC integration 
is called BF-LSF and LC-LSF, respectively.  

Bag-of-features integtation: BF-LSF 

In the field of object recognition for 2D images, Bag-of-
Features (BF) approach is one of the most popular algorithm 

to compare among sets, or bags of features [2]. The 
approach first extracts a set of local features from an object 
(e.g., 3D model) to be compared. Each one of these features 
is converted, by vector quantization, into a visual word in a 
given visual codebook having vocabulary size k. After 
vector quantization, the object is represented as a set of 
visual words. The set of visual word is integrated into a 
histogram with k bins by counting population of each word.  
This histogram is the feature describing the content. In the 
process of integration, location of features in the object is 
ignored.  

The visual codebook is learned by clustering of a large 
set of local features extracted from the objects (e.g., images) 
to be compared. In our implementation, we used k-means 
clustering. Each visual word is a center of a cluster. 
Depending on the diversity and complexity of objects to be 
compared, optimal number of words k in the codebook, thus 
the dimension of feature vector per image, may vary. For 
image recognition and retrieval, k varies from a few hundred 
to hundreds of thousands.  

The number of vocabulary k impacts both retrieval 
performance and computational cost. For a large vocabulary 
size k and a large number of samples to cluster, the k-means 
clustering for codebook learning would take significant 
amount of time. More importantly, cost of vector 
quantization, incurred for each new query, would be very 
significant for a large k.  

Linear Combination Integration: LC-LSF 

Given a set of local features, linear combination approach 
combines the features by simply summing, component by 
component, the histograms of local features into a single 
histogram having same dimension as the local features. 
Figure 4 illustrates this integration algorithm. This approach 
may be considered as a regressed form of the Bag-of-
Features approach. 

LC-LSF does not require pre-computation of visual 
codebook by clustering nor vector quantization. During 
retrieval, LC-LSC does not require vector quantization. So 
the cost of integration is significantly lower than BF-LSF. 

 
Figure 4. Linear Combination (LC) approach for integrating local statistical 
features.  

No integration: AC-LSF  

We compared proposed BF-LSF and LC-LSF with an 
approach that does not use integration of LSFs. That is, 
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Figure 3. Compute a 4-tuple () from a pair of oriented points. 
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given n LSF features per 3D model, all pairs of LSF features 
are compared among two sets of LSF features. We call this 
approach All pair Comparison LSF (AC-LSF). This 
approach is computationally very expensive during a search 
through a database; it requires O(n2) per pair of 3D models 
for comparison. For this reason, only a few experiments will 
be performed using AC-LSF. 

D. Computing Distance between 3D Models 

Distances between integrated feature vectors px  and qx  
produced by LC-LSF or BF-LSF are computed by using one 
of the following two distance “metrics”, L1-norm DL1 and 
(symmetric version of) Kullback-Leibler Divergence (KLD) 
DKLD. 
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m
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(9) 

In case of AC-LSF, a set of features, instead of a single 
feature vector, is given per 3D model. The distance between 
two models whose sets of features are Xp and Xq, respectively, 
is computed by using the following equation; 

 
    , ,1

1

, min ,
n

AC p q p i q jj n
i

D X X d
 



  x x

 
(10) 

In the equation,  , ,,p i q jd x x  is a distance among a pair 
of LSF features computed by using either L1-norm or KLD. 

If the distance among a pair of LSF features  , ,,p i q jd x x  
in (13) is computed by using L1-norm, the distance among 
3D models using AC-LSF is called  , 1 ,AC L p qD X X . If 
 , ,,p i q jd x x is computed by using KLD, it is called 

 , ,AC KLD p qD X X
. 

IV. EXPERIMENTS AND RESULTS 

We have conducted experiments to evaluate the proposed 
algorithms LC-LSF and BF-LSF for shape-based 3D model 
retrieval. They are compared against AC-LSF as well as 
SPRH [13] (combined with the surface to point-set model 
conversion described in section 2,1), Light Field Descriptor 
(LFD) [1], Spherical Harmonic Descriptor (SHD) [5], and 
Bag-of-Features Dense SIFT (BF-DSIFT) [4]. 

Retrieval experiments are performed by using two 
benchmark databases. McGill Shape Benchmark (MSB) [7] 
is a set of highly articulated (non-rigid), watertight, high 
polygon-count yet less geometrically varied/detailed models. 
Princeton Shape Benchmark (PSB) [9] contains a set of 
polygon soup models having diverse shape variations. 
Figure 5 shows examples of models from the databases. 

MSB consists of 255 models in 10 classes, and includes such 
articulated shape classes as “humans”, “octopuses”, “snakes”, 
“pliers”, and “spiders”. PSB contains two subsets of 907 
models each, “training” set and “test” set. Both training set 
and test set contains about 90 classes. Number of classes for 
the two sets differs by a few, and while most of the classes 
overlap, there are classes that are unique to one or the other 
set. We used PSB test set partitioned into 92 classes for 
evaluation. Each model from the test set is presented as a 
query to retrieve models in the test set. 

As the numerical performance index, we use R-Precision, 
which is a ratio, in percentile, of the models retrieved from 
the desired class kC  (i.e., the same class as the query) in the 
top R retrievals, in which R is the size of the class kC

. For the experiments below, we used the number of 
surface sample points m=2,048 and number of feature points 
n=512. Visual codebook for BF-LSF is learned by k-means 
clustering from 500k LSF features randomly drawn from all 
the LSF features extracted from all the 3D models in a PSB 
test set. Training samples are limited to 500k to contain time 
necessary for k-means clustering.  

A. LSF Radius of Influence and Retrieval Accuracy 

In this experiment, impact of LSF radius of influence r 
on retrieval accuracy is evaluated. Figure 6 plots the results 
of the experiment.  

For MSB, performance peaks exists; the peak for BF-
LSF exists at r=0.3 and the peak for LC-LSF exists at 
r=0.1~0.2. For PSB, on the other hand, no visible peak 
exists; both for BF-LSF and LC-LSF, the larger the LSF 
radius, the higher the retrieval accuracy. These tendencies 
can be explained as follows. The non-rigid, highly articulated 
models of MSB database prefer bag-of-feature integration of 
local (smaller radius) features. PSB database that consists 
mostly of rigid 3D models, however, prefers global feature. 

The plot also shows that, for the MSB, BF-LSF 
significantly outperforms LC-LSF. However, for the PSB, 
while BF-LSF consistently outperforms LC-LSF, the 
discrepancy in performance is much smaller.  

 
Figure 6. LSF radius of influence r and retrieval accuracy. (L1-norm for 
distance among integrated features.) 
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Figure 5. Examples 3D models from Princeton Shape Benchmark (PSB)
(a) [12] and McGill Shape Benchmark (MSB) (b) [7]. 
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Note that the peak in retrieval accuracy may be affected 
by other factors than r, most notably number of samples m 
and number of LSFs n per 3D model. There is interaction 
between parameters m, n, and r. For an LSF with good 
locality (i.e., small r) to have a well populated histogram, a 
very large m is needed. Also, a large n is necessary for BF 
integration to work well. Thus, ideally, we'd like to have 
experimented with m>>2,048 and/or n>>512. However, due 
mostly to computational cost concern, we settled for 
m=2,048 and n=512 for the experiments in this paper.  

B. Vocabulary size and retrieval performance 

In this set of experiments, we explored the effect of 
vocabulary size on retrieval accuracy. The result is plotted in 
Figure 7 and Figure 8. 

Recall that the k-means has a random component 
(initialization) so that the quality of vocabulary and thus 
retrieval accuracy may vary depending on runs. Ideally, for a 
given vocabulary size, an average of multiple runs should be 
plotted. In this experiment, however, retrieval accuracy of an 
individual run is plotted, resulting in a plot with random 
variation in R-precision. Nonetheless, the plots for both MSB 
and LSB suggest that a vocabulary size of more than a few 
thousand words is necessary to achieve a plateau in retrieval 
accuracy.  

 
Figure 7. Vocabulary size and retrieval accuracy (MSB). 

 
Figure 8. Vocabulary size and retrieval accuracy. (PSB) 

C. Computational cost 

Table 1 and Table 2 show computational costs of a naive 
implementation of the algorithm. The timings for feature 
extraction and integration are for all database models. The 
timings are for processing all the database models and all the 
queries of the benchmarks.  

Feature extraction and integration are done once per 3D 
model. To compute an LSF, the naive implementation 
searched for points in a sphere of LSF influence by brute-
force linear search. Similarly, to vector quantize an LSF 
feature, the naive implementation of BF-LSF searched for 
the nearest visual word, i.e., cluster center, by using linear 
search. Both of these could have been made much more 
efficient, e.g., by using kd-tree and other algorithms for fast 
nearest neighbor search. 

In an experiment to search through a database of 907 
models, distance computation among a pair of 3D models is 
performed 9072 =822,649 times. While AC-LSF performs 
admirably in terms of accuracy, its computational cost is 
prohibitive. We aborted the AC-LSF experiment for the PSB 
database after a long time. Overall, while BF-LSF costs more 
than LC-LSF for the feature integration, gain in retrieval 
accuracy would justify the cost.  

 
Table 1. Execution timing for MSB benchmark. 

MSB 
Extract 
feature 

Integrate 
feature 

Compute 
distance 

R-precision 
[%] 

AC-LSF 21min n/a >48hrs 73.9
LC-LSF 21min 10min 6s 72.1
BF-LSF 21min 80min 20s 76.5

 
Table 2. Execution timing for PSB benchmark. 

PSB 
Extract 
feature 

Integrate 
feature 

Compute 
distance R-precision [%]

AC-LSF 75min aborted aborted  - 
LC-LSF 75min 31min 52s 37.7
BF-LSF 75min 95min 186s 40.9

D. Performance comparison with other algorithms 

We compared the retrieval accuracy of proposed LC-LSF 
and BF-LSF algorithms with four other algorithms, SPRH 
[13], SHD [5], LFD [1], and BF-DSIFT [4] algorithms. We 
used our own original implementations of SPRH, LSF, and 
BF-DSIFT. Executables for SHD and LFD are downloaded 
from respective author’s web sites. 

Figure 9 compares these methods for their retrieval 
accuracy. The first three, SPRH, SHD, and LFD, are all 
global features, while the latter three, BF-DSIFT, LC-LSF, 
and BF-LSF employ sets of local features. As expected, the 
latter three using sets of local features performed better for 
articulated models of MSB. BF-DSIFT and BF-LSF tied for 
the 1st place with R-Precision=76%. For rigid yet complex 
and diverse models of PSB, view-based local feature BF-
DSIFT and view-based global feature LFD did better than 
the others including BF-LSF.  

E. Comparison using SHREC 2011 Non-rigid 3D  

We also compared the performance of BF-LSF with 
those of participants in the SHape REtrieval Contest 2011 
Non-rigid 3D Watertight Meshes track. Please refer to [6] for 
details of the results. Among 9 entrants of the track, BF-LSF 
placed 3rd in Nearest Neighbor (NN) and 6th in the 
Discounted Cumulative Gains (DCG) index. Note that an 
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entry by Sipiran, et al that employed HKS [11], performed 
worst among the 9 entrants.  

While not at the top in terms of retrieval accuracy among 
the entrants, the proposed algorithm does have an advantage 
other entrants did not have. As the name of the track suggests, 
its benchmark database consists of watertight meshes 
representing 3D solids. All but one of the algorithms in the 
track requires 3D models to be represented as watertight 
meshes. (Please note that this is not an issue for the track, 
since it is a track for “Non-rigid watertight meshes”.) 
Consequently, those other algorithms can’t handle PSB that 
contains polygon soup models. Our BF-LSF, on the other 
hand, does not require the model to be watertight; it can 
handle a diverse set of 3D model representations, e.g., those 
found in PSB. 

  
Figure 9. Retrieval accuracies of various algorithms. 

V. SUMMARY AND CONCLUSION 

We proposed a 3D model retrieval algorithm that 
tolerates articulation and global deformation, in addition to 
being able to handle a diverse set of shape representations 
including polygon soup and oriented point set. A set of 3D 
local geometrical features is integrated into a feature vector 
per 3D model to achieve articulation invariance and efficient 
comparison among 3D models.   

Experimental evaluation using two 3D model retrieval 
benchmarks showed that the algorithm is quite effective for 
database consisting of highly articulated, yet simpler shapes, 
that is, McGill Shape Benchmark [7]. For rigid, highly 
diverse set of shape models in Princeton Shape Benchmark 
[10], retrieval accuracy of the proposed algorithm is modest 
compared to the other state of the art algorithms. 

As a future work, we’d like to evaluate the method using 
a benchmark that contains meaningful internal structure. In 
such a benchmark, BF-LSF, which captures 3D geometrical 
feature, might have an advantage over algorithms that are 
based on external appearance of 3D models. We also need to 
explore the impacts of various parameters, such as the 
number of sample points m and the radius r of influence of 
LSF. We’d also like to experiment with distance metric 
learning for improved retrieval accuracy. 
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