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ABSTRACT 

This paper proposes a 3D model retrieval algorithm that employs 
an unsupervised distance metric learning with a combination of 
appearance-based features; two sets of local visual features and a 
set of global features. These visual features are extracted from 
range images rendered from multiple viewpoints about the 3D 
model to be compared. The local visual features are bag-of-
features histograms of a set of Scale Invariant Feature Transform 
(SIFT) features by Lowe [7] sampled at either salient or dense and 
random points. The global visual feature is also a SIFT feature 
sampled at an image center. The proposed method then uses an 
unsupervised distance metric learning based on the Manifold 
Ranking (MR) [15] to compute distances between these features. 
However, the original MR may not be effective when applied to a 
set of features having certain distance distribution. We propose an 
empirical method to adjust the distance profile so that the MR 
becomes effective. Experiments showed that the retrieval 
algorithm using a linear combination of distances computed from 
the proposed set of features by using the modified MR performed 
well across multiple benchmarks having different characteristics.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering. 
I.3.5 [Computational Geometry and Object Modeling]: Curve, 
surface, solid, and object representations. I.4.8 [Scene Analysis]: 
Shape.   

General Terms 
Algorithms, Experimentation. 

Keywords 
Content-based retrieval, manifold ranking, distance metric 
learning, bag-of-features, 3D geometric modeling, 3D object 
retrieval, feature combination. 

1. INTRODUCTION 
Effective and efficient management of 3D models, especially via 
content based retrieval by their shape [5][11], has become an 
important tool in such diverse areas as mechanical design, medical 

diagnosis, 3D game, as well as movie and 3D TV content 
production.  

Of various 3D model retrieval methods, view-based approaches, 
the Light Field Descriptor (LFD) [1] being an early example, have 
enjoyed high retrieval performance. The view-based approaches 
also have an advantage, for they are relatively immune to 
variations in shape representations, e.g., voxels, B-Rep solids, 
polygon soup, point set, etc. Recently, view-based 3D model 
matching approaches employing multi-view, multi-scale, local 
visual features, e.g., the BF-SIFT [8] and the BF-DSIFT [3] has 
been proposed. To integrate thousands or tens of thousands of 
local features extracted from multiple images, the method 
employed a Bag-of-Features (BoF) approach [2][10][13]. The 
BoF integration produces a feature per 3D model, making the 
model to model comparison faster and easier than comparing sets 
of local features. The method produced very good retrieval 
performance for articulated models, and performed as well as the 
other methods for rigid models. However, their distance 
computation employed one of several fixed distance metrics. It 
has been shown in image retrieval and other fields that a distance 
metric adaptive to distribution of features in the feature space 
improves distance computation, and thus retrieval performance.  

In this paper, to further improve retrieval performance, we apply 
Manifold Ranking of Zhou et al [15] on the features produced by 
bag-of-visual features algorithms for 3D model retrieval. In doing 
so, we discovered that certain distribution of distances made the 
MR ineffective for high-dimensional feature vectors produced by 
some of bag-of-features approaches. We thus propose an 
empirical method to adjust the distance distribution in order to 
improve efficacy of the MR algorithm. Experiments showed that 
our modified MR algorithm, called DA-MR, for Distance Adjusted 
Manifold Ranking, works quite well.  

 
Figure 1. An overview of the proposed algorithm. The 
Distance Adjusted Manifold Ranking (DA-MR) is effective 
for high-dimensional features of the BF-DSIFT [3].  
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We also experiment with combination of both local and global 
visual features for more robust 3D model retrieval algorithm. A 
method using local feature only could have difficulty 
distinguishing some of the shapes, e.g., pipes bent in U shape and 
in S shape, for they have almost identical local features. A global 
feature, on the other hand, would have difficulty handling 
articulated shapes, e.g., snakes in various different posture. We 
explore combinations of (1) bag of salient local visual feature, 
(2) bag of dense and random local visual feature, and (3) global 
visual feature, to see if a robust combination could be found.  

Contributions of this paper can be summarized as follows.  

(1) Identification of a difficulty in applying the Manifold 
Ranking [15] algorithm for certain high dimensional features 
often produced by bag-of-features approach. We propose an 
empirical remedy for the difficulty. Experimental evaluation 
of the proposed remedy shows its effectiveness.  

(2) Demonstration of a combination of local and global features 
that could produce a 3D model retrieval method that perform 
robustly for a database containing unknown composition of 
rigid and articulated/globally deformed models.  

The remaining parts of this paper are structured as follows. We 
will describe the proposed algorithm in Section 2. Empirical 
evaluation of the proposed algorithm will be presented in 
Section 3, followed by summary and future work in Section 4. 

2. ALGORITHM  
In this section, we first describe two variations of our bag of local 
visual features approach to 3D model feature extraction [8][3]. 
We then describe a method to improve distance computation 
among a pair of such feature vectors by using the Manifold 
Ranking [15] algorithm having distance profile modification. 

2.1 Local and Global Visual Features  
We combine three methods to compute feature a vector describing 
a 3D model. The first two, the Bag-of-Features Salient SIFT (BF-
SSIFT) [8], Bag-of-Features Dense SIFT (BF-DISFT) [3] by 
Ohbuchi, Furuya, Osada, et al. are based on local features 
extracted from multi-view range image renderings. These local 
features are integrated into a feature vector per 3D model by using 
the bag-of-features approach.  
For the global feature, we propose a simple one; per-View Match 
One SIFT (VM-1SIFT) based also on SIFT. The VM-1SIFT also 
employs multi-view range image renderings, but extract a global 
feature, which is a SIFT feature, per range image. Thus a 3D 
model is described by a set of global features whose number 
equals the number of views. 

2.1.1 Bag-of-Local Visual Features 
The BF-SSIFT and BF-DSIFT computes a feature per 3D model 
following the steps below; 
1. Partially normalize pose: Both BF-SSIFT and BF-DSIFT 

perform partial pose normalization for translation and 
uniform scaling so that the model is centered at origin and 
fits within a sphere of radius 1.0.  

2. Render multi-view range images: Render range images of 
the model from rN  viewpoints spaced evenly in the solid 
angle. We used Nr=42 for the experiments below, following 

the paper by Furuya, et al. [3]. The rendering is done on a 
GPU via OpenGL API.  

3. Extract SIFT features: From the set of range images, 
extract local, multi-scale, multi-orientation, visual features by 
using the Scale Invariant Feature Transform (SIFT) [7] 
algorithm. A SIFT feature encodes position, orientation, and 
scale of gray-scale gradient change about its sample point. 
For the BF-SSIFT, we employ the original SIFT algorithm, 
which first detects interest, or “salient” points, and then 
computes 128D SIFT feature at each of these interest points. 
For the BF-DSIFT, we disable the interest point detector, and 
sampling positions are chosen randomly and densely. The 
BF-SSIFT extracts ~1k SIFT features per 3D model, while 
BF-DSIFT extracts about ~10k SFIT features per 3D model.  

4. Quantize SIFT features into visual words: Encode a local 
feature into a visual word drawn from a vocabulary of size 

vN  by using a pre-learned codebook. The codebook is 
learned, unsupervised, from tens of thousands of SIFT 
features extracted from a set of models, e.g., the models in 
the database to be retrieved. The encoding, or Vector 
Quantization (VQ), is a closest point query in a high 
dimensional (e.g., 128D for SIFT feature) space. To speed up 
the learning and encoding, the algorithm uses Extremely 
Randomized Clustering Tree (ERC-Tree) by Guerts, et al [4].  

5. Generate histogram: Visual words are accumulated into a 
histogram having vN  bins, which then becomes the feature 
vector for a 3D model.  

6. Compute distance: Dissimilarity among a pair of feature 
vectors (the histograms) is computed. The distance may be 
computed by using “fixed” distance metrics, such as 
Kullback-Leibler Divergence (KLD) or L1-Norm, or by data-
adaptive distance metric, e.g., by using  the Manifold 
Ranking (MR) algorithm by Zhou et al [15]. 

There are many possible methods to compute distance ( ),i jd x x  
among features ix  and jx We compared the following three..Let 
n be the dimension of the vectors. Then, L1 norm ( )1 ,L i jd x x is 
defined as follows.  

 ( )1 ,
n

L i j ik jkk
d x x= −∑x x  (1)

  
The second, Cosine distance cos ( , )i jd x x , gives angular cosine 
distance between the two vectors; 

 cos ( , ) 1 i j
i j

i j
d

⋅
= −

⋅

x x
x x

x x
 (2)

 

Another distance is the Kullback-Leibler Divergence (KLD), 
which is sometimes referred to as information divergence, or 
relative entropy. It is known to work well for comparing 
histograms. We used its symmetric version as follows; 

 ( )
1

( , ) ln
n

kj
KLD i j kj ki

kii

x
d x x

x
=

= −∑x x  (3)
 

Normally, distance among a pair of 3D models is the distance 
among their respective features computed by using one of the 
distances above. In this paper, we employ the Manifold Ranking 
[15], with a modification discussed in Section 2.3, so that the 
resulting distance is adapted to the distribution of features in the 
feature space. In experiments described in Section 3, we compare 
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the three distances above with their MR-treated versions for 
retrieval performance. 

2.1.2 Global Visual Feature 
The global visual feature is called 1SIFT, and is based also on 
Lowe’s SIFT. After rendering the 3D model from rN  viewpoints, 
as with the BF-DSIFT, the 1SIFT extracts only one SIFT feature 
(thus the name 1SIFT) at the center of each range image so that 
the SIFT feature acts as a global feature per range image. The 
VM-1SIFT does not employ the BoF approach, but uses a set of 

rN
 
 SIFT features to describe a 3D model.  

To compute distance among a pair of 3D models, the VM-1SIFT 
compute distances among all the v × v pairs of SIFT features, and 
choose the minimum of these distances as the overall distance 
among the 3D model pair. Let ipx  and jqx  be the 1SIFT features 
from the view p and q of the 3D models iX  and jX , respectively. 
Then the distance ( , )i jD x x  between models iX  and jX  are 
defined as below. Here, the distance ( ),ip jqd x y  is one of the 
Cosine, L1, or KLD distances shown above. 

 ( )
1 1

( , ) ,
i iN N

i j ip jq
p q

D min d
= =

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑x x x y  (4) 

The VM-1SIFT performed surprisingly well for a database of 
rigid shapes. As shown in Section 3.1, it performed better than the 
LFD [1] for the PSB [9] database, for example. 
Figure 2a and Figure 2b show examples of sampling patterns for a 
range image of the SSIFT and the DSIFT. Number of samples per 
range image Np for the SSIFT is determined “automatically” by 
the interest point detector of the SIFT algorithm. Np for the DSIFT, 
on the other hand, is a user-defined parameter. Overall, we set the 
numbers of features per 3D model to be 1.3k for the SSIFT and 
13k for the DSIFT in the experiments below. Figure 2c shows an 
obvious sampling pattern of the 1SIFT. The number of sample per 
range image for the 1SIFT is, by definition, one.  

   

  
(a) SSIFT, Np=38 (b) DSIFT, Np=304 (c) 1SIFT, Np=1 

Figure 2. Sampling patterns of a range image for the BF-
SSIFT and BF-DSIFT. 

2.2 Data-Adaptive Distance via Manifold 
Ranking 
Intuitively, the MR algorithm simulates “diffusion” of relevance 
value from a feature point (e.g., that of a query) on an irregularly 
connected graph of high-dimensional features points (e.g., that of 
all the 3D models in a database). The graph, or mesh, is typically 
formed by connecting a point to its k-nearest-neighbors. The 
proximity used during mesh generation is determined by using a 
distance measure, e.g., L1-norm, in the ambient feature space. 
This distance metric affects the mesh topology. Each edge of the 
graph is added with a weight computed from the distance among 

the vertices of the edge. The weight represents “diffusion 
coefficients” of the relevance value over the edges; the higher the 
weights, the more easily the relevance value diffuses. The 
diffusion of relevance value happens on a graph from the source, 
i.e., a query.  

The meshing step creates the affinity matrix W  where ijW  
indicates the similarity between feature points ix , and jx ;  

 
( , )

 exp   

 0                   otherwise

i j

ij

d
if i j

σ

⎧ ⎛ ⎞
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⎪
⎩

x x
W  (5)

 

 

Note that 0ii =W  since there is no ark connecting a point with 
itself. The matrix W  is positive symmetric.  

After the meshing, the algorithm forms a normalized graph 
Laplacian L , 

 
1 1
2 2( )

− −
= −L D D W D  (6)

 
where D is a diagonal matrix in which ijD  equals to the sum of 
the i-th row of W , that is, ij ijj=∑D W  The ranking vector 

1, , T
nf f= ⎡ ⎤⎣ ⎦F  can then be estimated by iterating the following 

until convergence; 

 ( )( 1) ( )1 1
1 1

t t
μ μ

+ = − +
+ +

F I L F S  (7)
 

The parameter 0μ >  is a regularization parameter, and affects 
retrieval performance and the convergence of the iteration above. 
Let *F  be the limit of the above iteration. Rank each point ix  as 
a label *arg maxi j c ijy f≤= . 

 The MR algorithm iteratively diffuses the initial value of label 
source vector 1, , ,T

ns s= ⎡ ⎤⎣ ⎦S  in which 1is = corresponds to the 
query. At the equilibrium, the higher the diffused relevance value 
at a point, the higher the similarity rank of the point to the query. 
As the diffusion occurs on the manifold via multiple paths, 
similarity ranks thus computed are better than those computed 
directly in the input feature space. The distance metric ( ),i id x x  
used for forming the affinity matrix W  affects diffusion of rank 
values during the ranking process. If ijW is very low, due to a 
very high ( ), ,i id x x  the rank value won’t diffuse easily, possibly 
impeding the ranking process.  

Computational cost is an issue to be considered for applying MR. 
MR is performed once per query, and cost of MR is dominated by 
the cost of meshing and computing *F . The cost increases with 
the size of matrix ,L that is, the number of features n. 

2.3 Distance Statistics and Manifold Ranking 
While MR is known to work in various multimedia information 
retrieval settings, our initial attempt in applying MR to the BF-
DSIFT and BF-1SIFT degraded their retrieval performances. On 
the other hand, MR boosted the performance of the BF-SSIFT. 
We investigated the cause, and found that the MR did not work 
for certain distribution of distances. Figure 3 shows distance 
distribution for the BF-SSIFT, the BF-DSIFT, and the VM-1SIFT, 
computed by using the KLD. The profile is computed by using the 
MSB, and is an average over all the queries.  
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In the figure, “Original” indicate the distances without the 
proposed adjustment. The profile for the original BF-DSIFT 
shows a very large jump in distance from the query (rank 0) to its 
nearest neighbor (rank 1). As equation (5) for ijW

 
indicates, such 

a large distance from query to its nearest neighbor creates edges 
having very low diffusion coefficients, preventing the diffusion of 
relevance rank over the network of features. We thus devised a 
simple empirical Distance Transformation (DT) to remove the 
jump, which is to simply subtract from all the distance values the 
amount of the jump prior to computing weights ijW . In Figure 3, 
adjusted distance plots are indicated as “Adjusted” 

2.4 Multiple Feature Combination 
To combine multiple features, we employ a simple late-fusion 
approach, by computing linear combination of distances derived 
from multiple features. Here, each distance may or may be the 
result of Manifold Ranking.  

3. EXPERIMENTS AND RESULTS 
We performed the experiments using three benchmark databases: 
the MSB [14] for highly articulated but less detailed shapes, the 
PSB [9] for a set of diverse and detailed shapes. Figure 4 shows 
examples of 3D models from the two databases. The MSB 
consists of 255 models in 10 classes. The MSB include such 
articulated shapes as “humans”, “octopuses”, “snakes”, “pliers”, 
and “spiders”. The PSB contains two equal-sized subsets, the 
training set and test set, each consisting of 907 models and about 
90 classes. For our evaluation, we used the PSB test set 
partitioned into 92 classes. The PSB contains a more diverse set of 
3D shapes than the MSB. To evaluated retrieval performance 
using the PSB, we used every model in the PSB test set of 907 
models as queries to retrieve models in the test set. Similarly for 
the MSB, all the models in the database are used as queries. 

Same database is used for both visual codebook learning and 
retrieval experiments. That is, the codebook generated by using 
the MSB database, for example, is used to query the MSB. We 
used the training set size 50,000tN = of SIFT features extracted 
from multi-view images of models in a database for training. For 
both codebook learning and for retrieval, we used the following 
set of parameters. We fixed, for the BF-SSIFT and BF-DSIFT, the 

number of views Nr =42, and range images size 256 256×  pixels. 
Number of samples per range image for the BF-DSIFT is fixed at 
Np=300. Vocabulary size Nv for the BF-SSIFT and BF-DSIFT 
depends on visual complexity of the range images, and thus on the 
complexity and diversity of shapes in the 3D model database.  

We chose the vocabulary size (codebook size) Nv based on 
preliminary experiments. The Nv used for the experiments are 
listed in Table 1. For the BF-SSIFT, we used k-means clustering 
for codebook learning, combined with a linear search for feature 
encoding (i.e., vector quantization). This is feasible since the 
number of SIFT features per 3D model of 700~1,100 and 
vocabulary size Nv~1.2k are both moderate. Due to the use of k-
means clustering for codebook learning, the vocabulary sizes for 
BF-SSIFT are rounded numbers. In comparison, the BF-DSIFT 
generated, on average, about 13k SIFT features per 3D model. 
The ERC-Tree vector quantizer used in the BF-DSIFT is a 
randomized algorithm, and its number of vocabulary Nv is not 
rounded. Vocabulary size Nv for BF-DSIFT is controlled 
indirectly by a parameter. The MR has the regularization 
parameter μ  and the region of influence parameter σ . In the 
following experiments, we varied μ  and σ  in the range 
0.0025 50.0μ≤ ≤ , and 0.01 0.5σ≤ ≤ , respectively, and used the 
best performing combination of the parameters.  

As the performance index, we used Recall-Precision plot and R-
precision. R-precision is a ratio, in percentile, of the models 
retrieved from the desired class kC  (i.e., the same class as the 
query) in the top R retrievals, in which R is the size of the class 

kC .  

3.1 Distance Adjustment for the MR 
This experiment evaluates effectiveness of the proposed Distance 
Adjustment (DA) in improving MR. Table 2 and Table 3 compare 
retrieval accuracies in R-Precision of five features, the BF-SSIFT, 
BF-DSIFT, VM-1SIFT, SHD and SPRH. We used the executables 
available online for the SHD and the SPRH. Table 2 and Table 3 
show results for the PSB and MSB benchmarks, respectively. The 
distance ( ),d x y is computed using three methods, the KLD, L1-
norm, and Cosine distance (COS). Three rows for each feature 
are; (1) “None” for no MR, (2) “MR” for original MR, and 

Figure 3. Nearest neighbor is very far from the query for 
certain (feature, distance metric) combination, e.g., (MSB 
BF-DSIFT, Kullback-Leibler Divergence).  

(a) PSB

   

(b) MSB
 

Figure 4. Examples of 3D models from the Princeton Shape
Benchmark (PSB) (a) [9] and the McGill Shape Benchmark
(MSB) (b) [14]. 
 

Table 1. Vocabulary sizes used for the experiments. 

Database Method Vocabulary size 
Nv 

R-Precision  
[%] 

PSB BF-SSIFT 1,200 44.8
BF-DSIFT 30,215 54.1

MSB BF-SSIFT 900 75.7
BF-DSIFT 31,770 75.5
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(3) “DA-MR” for MR with DA. For each table, “*” indicates the 
best performer for the feature.  

Without the DA, the MR is not effective for the BF-DSIFT and 
the VM-1SIFT. However, with the DA, performances of the VM-
1SIFT and the BF-DSIFT improved significantly. For example, 
MR with DA pushed the performance of the BF-DSIFT up to R-
Precision=60.4% for rigid models (PSB), and R-Precision=90.7% 
for articulated models (MSB). For some other features, such as the 
BF-SSIFT and SPRH [12], the original MR (without DA) was 
more or less effective. However, in some cases, the DA improved 
efficacy of the MR for those features as well. For example, for the 
MSB, the SPRH feature benefited more from the DA-MR than the 
original MR. The SHD feature is an exception among those five 
features evaluated; the DA did not have clear influence on its 
retrieval performance using MR.  

Figure 5 and Figure 6 show recall-precision plots for the VM-
1SIFT, BF-SSIFT, and BF-DSIFT, each with and without the DA-
MR. For comparison, performances of the SHD and LFD features 
without the MR (i.e., original features) are plotted. 

Table 2. Manifold ranking and retrieval performance with 
and without Distance Adjustment (DA)  (PSB database). 

Algorithms R-Precision [%] 
KLD L1 COS 

BF-SSIFT 
None 44.8  33.6 42.3 
MR 48.0  46.9 44.2 
DA-MR * 50.3  *50.8 45.6 

BF-DSIFT 
None 54.1  54.4 51.1 
MR 53.1  54.5 51.5 
DA-MR *60.4  59.3 55.8 

VM-1SIFT 
None 50.9  44.2 42.2 
MR 44.4  48.1 49.2 
DA-MR *56.5  52.7 51.4 

SHD 
None 35.4  39.6 38.3 
MR 39.0  40.7 *42.0 
DA-MR 38.8  *42.5 41.7 

SPRH 
None 36.3  36.3 34.6 
MR *39.4  38.1 36.6 
DA-MR *39.9  39.1 36.7 

 
Figure 5. Recall-precision plot for the PSB database.  

Table 3. Manifold ranking and retrieval performance with 
and without Distance Adjustment (DA) (MSB database). 

Algorithms R-Precision [%] 
KLD L1 COS 

BF-SSIFT 
None 75.7  64.6 70.3 
MR 84.4  78.2 79.9 
DA-MR *86.8  83.7 79.9 

BF-DSIFT 
None 75.4  75.9 74.5 
MR 75.5  76.1 75.2 
DA-MR *90.7  88.4 84.7 

VM-1SIFT 
None 48.2  43.3 41.7 
MR 42.7  47.2 46.0 
DA-MR *54.9  49.9 48.1 

SHD 
None 48.4  55.6 51.3 
MR 55.5  *61.6 58.5 
DA-MR 54.7  *61.4 57.5 

SPRH 
None 51.1  53.0 57.3 
MR 58.9  56.8 63.6 
DA-MR 63.3  63.5 *65.2 

 
Figure 6. Recall-precision plot for the MSB database. 

3.2 Feature Combinations  
We tried several combinations of (1) bag of salient local visual 
feature, (2) bag of dense and random local visual feature, and 
(3) global visual feature, to see if they improve retrieval 
performance, and to see if they improve robustness of the retrieval 
algorithm against the composition of databases. For various 
combinations, Table 4 shows retrieval performances for the PSB, 
and Table 5 shows the retrieval performances for the MSB. For 
comparison, we included performance figures for the LFD [1] and 
the Spherical Harmonics Descriptor [6].  

For the rigid shapes of the PSB, the combination of VM-1SIFT 
with BF-DSIFT performed the best, although the combination of 
VM-1SIFT, BF-DSIFT, and BF-SSIFT performed about as well. 
Note that the VM-1SIFT outperformed both LFD and SHD for the 
PSB, an indication of the power of the SIFT. For the articulated 
shapes of the MSB, as expected, combinations of two local 
features, “BF-SSIFT + BF-DSIFT”, did the best. Note, however, 
that the combination “BF-SSIFT + BF-DSIFT + VM-1SIFT” 
performed nearly as well. In another word, adding VM-1SIFT to 
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the mix of “BF-SSIFT + BF-DSIFT” did not hurt much. The 
combination of all the three features, including the global one, 
may be a good bet for a database of an unknown composition.  

Table 4. Feature combination and retrieval performance 
with fixed and DA-MR distances (PSB benchmark). 

Feature combinations Ranking method 
Fixed DA-MR

LFD (original) 44.7
SHD (original) 39.6

BF-SSIFT 44.8 50.3
BF-DSIFT 54.1 60.4
VM-1SIFT 50.9 56.5

BF-SSIFT + BF-DSIFT 53.8 59.9 
BF-SSIFT + VM-1SIFT 54.5 59.3 
BF-DSIFT + VM-1SIFT 57.6 * 64.0 

BF-SSIFT + BF-DSIFT + VM-1SIFT 57.1 * 63.6 

Table 5. Feature combination and retrieval performance 
with fixed and DA-MR distances (MSB benchmark). 

Feature combinations Ranking method 
Fixed DA-MR

LFD (original) 55.5
SHD (original) 55.6

BF-SSIFT 75.7 86.8
BF-DSIFT 75.4 90.7
VM-1SIFT 48.2 54.9

BF-SSIFT + BF-DSIFT 76.1 * 91.9 
BF-SSIFT + VM-1SIFT 69.0 82.0 
BF-DSIFT + VM-1SIFT 70.8 88.0 

BF-SSIFT + BF-DSIFT + VM-1SIFT 73.8 * 90.3 

4. SUMMARY AND CONCLUSION  
In this paper, we presented a 3D model retrieval algorithm that 
combines the BF-DSIFT algorithm [3] with a data-adaptive 
distance computation using the Manifold Ranking (MR) [15]. In 
doing so, we discovered that distance distribution produced by the 
BF-DSIFT made the MR less effective. We thus proposed an 
empirical remedy called Distance Adjustment (DA) to be applied 
prior to the MR. Our experimental evaluation showed that the DA 
does improve efficacy of the MR for certain features. The original 
MR was not effective at all if applied directly to BF-DSIFT 
features. However, the MR with DA was effective for such 
features. With the DA-MR, for example, the retrieval performance 
of the BF-DSIFT for the articulated models of the McGill Shape 
Benchmark [14] improved from 76% to 91% in R-Precision.  

We had successfully employed the BF-DSIFT with DA-MR to 
enter the SHREC 2010 tracks on “Non-rigid shapes” and “Generic 
3D Warehouse” for the 1st place and the 1st place tie, respectively. 
Using the DA-MR BF-DSIFT, a query for the SHREC 2010 
Generic Warehouse is processed in about 2s, including the multi-
view rendering, SIFT feature extraction, BoF integration, and DA-
MR based ranking of the entire models in the database.  

We also evaluated retrieval performances of combinations of local 
and global features. We found that combination of distances 
generated by three different features do improve robustness of the 
retrieval algorithm against composition of databases, with almost 
negligible impact on retrieval performance. Compared to the 
method we used for the SHREC 2010 tracks, the DA-MR BF-

DSIFT, combination of features performed better on the PSB and 
about equal for the MSB.  
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